1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 * rx_ring_num : This can be used to program the number of receive rings used
31 * rx_ring_sz: This defines the number of descriptors each ring can have. This
32 * is also an array of size 8.
33 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
34 * values are 1, 2 and 3.
35 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
36 * tx_fifo_len: This too is an array of 8. Each element defines the number of
37 * Tx descriptors that can be associated with each corresponding FIFO.
38 ************************************************************************/
40 #include <linux/config.h>
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/pci.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/kernel.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/stddef.h>
54 #include <linux/ioctl.h>
55 #include <linux/timex.h>
56 #include <linux/sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/workqueue.h>
59 #include <linux/if_vlan.h>
61 #include <asm/system.h>
62 #include <asm/uaccess.h>
67 #include "s2io-regs.h"
69 #define DRV_VERSION "Version 2.0.9.3"
71 /* S2io Driver name & version. */
72 static char s2io_driver_name[] = "Neterion";
73 static char s2io_driver_version[] = DRV_VERSION;
75 int rxd_size[4] = {32,48,48,64};
76 int rxd_count[4] = {127,85,85,63};
78 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
82 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
83 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
89 * Cards with following subsystem_id have a link state indication
90 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
91 * macro below identifies these cards given the subsystem_id.
93 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
94 (dev_type == XFRAME_I_DEVICE) ? \
95 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
96 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
98 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
99 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
100 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
103 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
106 mac_info_t *mac_control;
108 mac_control = &sp->mac_control;
109 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
111 if (rxb_size <= rxd_count[sp->rxd_mode]) {
119 /* Ethtool related variables and Macros. */
120 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
121 "Register test\t(offline)",
122 "Eeprom test\t(offline)",
123 "Link test\t(online)",
124 "RLDRAM test\t(offline)",
125 "BIST Test\t(offline)"
128 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
130 {"tmac_data_octets"},
134 {"tmac_pause_ctrl_frms"},
135 {"tmac_any_err_frms"},
136 {"tmac_vld_ip_octets"},
144 {"rmac_data_octets"},
145 {"rmac_fcs_err_frms"},
147 {"rmac_vld_mcst_frms"},
148 {"rmac_vld_bcst_frms"},
149 {"rmac_in_rng_len_err_frms"},
151 {"rmac_pause_ctrl_frms"},
152 {"rmac_discarded_frms"},
153 {"rmac_usized_frms"},
154 {"rmac_osized_frms"},
156 {"rmac_jabber_frms"},
164 {"rmac_err_drp_udp"},
166 {"rmac_accepted_ip"},
168 {"\n DRIVER STATISTICS"},
169 {"single_bit_ecc_errs"},
170 {"double_bit_ecc_errs"},
173 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
174 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
176 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
177 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
179 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
180 init_timer(&timer); \
181 timer.function = handle; \
182 timer.data = (unsigned long) arg; \
183 mod_timer(&timer, (jiffies + exp)) \
186 static void s2io_vlan_rx_register(struct net_device *dev,
187 struct vlan_group *grp)
189 nic_t *nic = dev->priv;
192 spin_lock_irqsave(&nic->tx_lock, flags);
194 spin_unlock_irqrestore(&nic->tx_lock, flags);
197 /* Unregister the vlan */
198 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
200 nic_t *nic = dev->priv;
203 spin_lock_irqsave(&nic->tx_lock, flags);
205 nic->vlgrp->vlan_devices[vid] = NULL;
206 spin_unlock_irqrestore(&nic->tx_lock, flags);
210 * Constants to be programmed into the Xena's registers, to configure
214 #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
217 static u64 herc_act_dtx_cfg[] = {
219 0x8000051536750000ULL, 0x80000515367500E0ULL,
221 0x8000051536750004ULL, 0x80000515367500E4ULL,
223 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
225 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
227 0x801205150D440000ULL, 0x801205150D4400E0ULL,
229 0x801205150D440004ULL, 0x801205150D4400E4ULL,
231 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
233 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
238 static u64 xena_mdio_cfg[] = {
240 0xC001010000000000ULL, 0xC0010100000000E0ULL,
241 0xC0010100008000E4ULL,
242 /* Remove Reset from PMA PLL */
243 0xC001010000000000ULL, 0xC0010100000000E0ULL,
244 0xC0010100000000E4ULL,
248 static u64 xena_dtx_cfg[] = {
249 0x8000051500000000ULL, 0x80000515000000E0ULL,
250 0x80000515D93500E4ULL, 0x8001051500000000ULL,
251 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
252 0x8002051500000000ULL, 0x80020515000000E0ULL,
253 0x80020515F21000E4ULL,
254 /* Set PADLOOPBACKN */
255 0x8002051500000000ULL, 0x80020515000000E0ULL,
256 0x80020515B20000E4ULL, 0x8003051500000000ULL,
257 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
258 0x8004051500000000ULL, 0x80040515000000E0ULL,
259 0x80040515B20000E4ULL, 0x8005051500000000ULL,
260 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
262 /* Remove PADLOOPBACKN */
263 0x8002051500000000ULL, 0x80020515000000E0ULL,
264 0x80020515F20000E4ULL, 0x8003051500000000ULL,
265 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
266 0x8004051500000000ULL, 0x80040515000000E0ULL,
267 0x80040515F20000E4ULL, 0x8005051500000000ULL,
268 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
273 * Constants for Fixing the MacAddress problem seen mostly on
276 static u64 fix_mac[] = {
277 0x0060000000000000ULL, 0x0060600000000000ULL,
278 0x0040600000000000ULL, 0x0000600000000000ULL,
279 0x0020600000000000ULL, 0x0060600000000000ULL,
280 0x0020600000000000ULL, 0x0060600000000000ULL,
281 0x0020600000000000ULL, 0x0060600000000000ULL,
282 0x0020600000000000ULL, 0x0060600000000000ULL,
283 0x0020600000000000ULL, 0x0060600000000000ULL,
284 0x0020600000000000ULL, 0x0060600000000000ULL,
285 0x0020600000000000ULL, 0x0060600000000000ULL,
286 0x0020600000000000ULL, 0x0060600000000000ULL,
287 0x0020600000000000ULL, 0x0060600000000000ULL,
288 0x0020600000000000ULL, 0x0060600000000000ULL,
289 0x0020600000000000ULL, 0x0000600000000000ULL,
290 0x0040600000000000ULL, 0x0060600000000000ULL,
294 /* Module Loadable parameters. */
295 static unsigned int tx_fifo_num = 1;
296 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
297 {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
298 static unsigned int rx_ring_num = 1;
299 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
300 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
301 static unsigned int rts_frm_len[MAX_RX_RINGS] =
302 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
303 static unsigned int rx_ring_mode = 1;
304 static unsigned int use_continuous_tx_intrs = 1;
305 static unsigned int rmac_pause_time = 65535;
306 static unsigned int mc_pause_threshold_q0q3 = 187;
307 static unsigned int mc_pause_threshold_q4q7 = 187;
308 static unsigned int shared_splits;
309 static unsigned int tmac_util_period = 5;
310 static unsigned int rmac_util_period = 5;
311 static unsigned int bimodal = 0;
312 static unsigned int l3l4hdr_size = 128;
313 #ifndef CONFIG_S2IO_NAPI
314 static unsigned int indicate_max_pkts;
316 /* Frequency of Rx desc syncs expressed as power of 2 */
317 static unsigned int rxsync_frequency = 3;
318 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
319 static unsigned int intr_type = 0;
323 * This table lists all the devices that this driver supports.
325 static struct pci_device_id s2io_tbl[] __devinitdata = {
326 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
327 PCI_ANY_ID, PCI_ANY_ID},
328 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
329 PCI_ANY_ID, PCI_ANY_ID},
330 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
331 PCI_ANY_ID, PCI_ANY_ID},
332 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
333 PCI_ANY_ID, PCI_ANY_ID},
337 MODULE_DEVICE_TABLE(pci, s2io_tbl);
339 static struct pci_driver s2io_driver = {
341 .id_table = s2io_tbl,
342 .probe = s2io_init_nic,
343 .remove = __devexit_p(s2io_rem_nic),
346 /* A simplifier macro used both by init and free shared_mem Fns(). */
347 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
350 * init_shared_mem - Allocation and Initialization of Memory
351 * @nic: Device private variable.
352 * Description: The function allocates all the memory areas shared
353 * between the NIC and the driver. This includes Tx descriptors,
354 * Rx descriptors and the statistics block.
357 static int init_shared_mem(struct s2io_nic *nic)
360 void *tmp_v_addr, *tmp_v_addr_next;
361 dma_addr_t tmp_p_addr, tmp_p_addr_next;
362 RxD_block_t *pre_rxd_blk = NULL;
363 int i, j, blk_cnt, rx_sz, tx_sz;
364 int lst_size, lst_per_page;
365 struct net_device *dev = nic->dev;
369 mac_info_t *mac_control;
370 struct config_param *config;
372 mac_control = &nic->mac_control;
373 config = &nic->config;
376 /* Allocation and initialization of TXDLs in FIOFs */
378 for (i = 0; i < config->tx_fifo_num; i++) {
379 size += config->tx_cfg[i].fifo_len;
381 if (size > MAX_AVAILABLE_TXDS) {
382 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
384 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
388 lst_size = (sizeof(TxD_t) * config->max_txds);
389 tx_sz = lst_size * size;
390 lst_per_page = PAGE_SIZE / lst_size;
392 for (i = 0; i < config->tx_fifo_num; i++) {
393 int fifo_len = config->tx_cfg[i].fifo_len;
394 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
395 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
397 if (!mac_control->fifos[i].list_info) {
399 "Malloc failed for list_info\n");
402 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
404 for (i = 0; i < config->tx_fifo_num; i++) {
405 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
407 mac_control->fifos[i].tx_curr_put_info.offset = 0;
408 mac_control->fifos[i].tx_curr_put_info.fifo_len =
409 config->tx_cfg[i].fifo_len - 1;
410 mac_control->fifos[i].tx_curr_get_info.offset = 0;
411 mac_control->fifos[i].tx_curr_get_info.fifo_len =
412 config->tx_cfg[i].fifo_len - 1;
413 mac_control->fifos[i].fifo_no = i;
414 mac_control->fifos[i].nic = nic;
415 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1;
417 for (j = 0; j < page_num; j++) {
421 tmp_v = pci_alloc_consistent(nic->pdev,
425 "pci_alloc_consistent ");
426 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
429 /* If we got a zero DMA address(can happen on
430 * certain platforms like PPC), reallocate.
431 * Store virtual address of page we don't want,
435 mac_control->zerodma_virt_addr = tmp_v;
437 "%s: Zero DMA address for TxDL. ", dev->name);
439 "Virtual address %p\n", tmp_v);
440 tmp_v = pci_alloc_consistent(nic->pdev,
444 "pci_alloc_consistent ");
445 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
449 while (k < lst_per_page) {
450 int l = (j * lst_per_page) + k;
451 if (l == config->tx_cfg[i].fifo_len)
453 mac_control->fifos[i].list_info[l].list_virt_addr =
454 tmp_v + (k * lst_size);
455 mac_control->fifos[i].list_info[l].list_phy_addr =
456 tmp_p + (k * lst_size);
462 /* Allocation and initialization of RXDs in Rings */
464 for (i = 0; i < config->rx_ring_num; i++) {
465 if (config->rx_cfg[i].num_rxd %
466 (rxd_count[nic->rxd_mode] + 1)) {
467 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
468 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
470 DBG_PRINT(ERR_DBG, "RxDs per Block");
473 size += config->rx_cfg[i].num_rxd;
474 mac_control->rings[i].block_count =
475 config->rx_cfg[i].num_rxd /
476 (rxd_count[nic->rxd_mode] + 1 );
477 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
478 mac_control->rings[i].block_count;
480 if (nic->rxd_mode == RXD_MODE_1)
481 size = (size * (sizeof(RxD1_t)));
483 size = (size * (sizeof(RxD3_t)));
486 for (i = 0; i < config->rx_ring_num; i++) {
487 mac_control->rings[i].rx_curr_get_info.block_index = 0;
488 mac_control->rings[i].rx_curr_get_info.offset = 0;
489 mac_control->rings[i].rx_curr_get_info.ring_len =
490 config->rx_cfg[i].num_rxd - 1;
491 mac_control->rings[i].rx_curr_put_info.block_index = 0;
492 mac_control->rings[i].rx_curr_put_info.offset = 0;
493 mac_control->rings[i].rx_curr_put_info.ring_len =
494 config->rx_cfg[i].num_rxd - 1;
495 mac_control->rings[i].nic = nic;
496 mac_control->rings[i].ring_no = i;
498 blk_cnt = config->rx_cfg[i].num_rxd /
499 (rxd_count[nic->rxd_mode] + 1);
500 /* Allocating all the Rx blocks */
501 for (j = 0; j < blk_cnt; j++) {
502 rx_block_info_t *rx_blocks;
505 rx_blocks = &mac_control->rings[i].rx_blocks[j];
506 size = SIZE_OF_BLOCK; //size is always page size
507 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
509 if (tmp_v_addr == NULL) {
511 * In case of failure, free_shared_mem()
512 * is called, which should free any
513 * memory that was alloced till the
516 rx_blocks->block_virt_addr = tmp_v_addr;
519 memset(tmp_v_addr, 0, size);
520 rx_blocks->block_virt_addr = tmp_v_addr;
521 rx_blocks->block_dma_addr = tmp_p_addr;
522 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
523 rxd_count[nic->rxd_mode],
525 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
526 rx_blocks->rxds[l].virt_addr =
527 rx_blocks->block_virt_addr +
528 (rxd_size[nic->rxd_mode] * l);
529 rx_blocks->rxds[l].dma_addr =
530 rx_blocks->block_dma_addr +
531 (rxd_size[nic->rxd_mode] * l);
534 mac_control->rings[i].rx_blocks[j].block_virt_addr =
536 mac_control->rings[i].rx_blocks[j].block_dma_addr =
539 /* Interlinking all Rx Blocks */
540 for (j = 0; j < blk_cnt; j++) {
542 mac_control->rings[i].rx_blocks[j].block_virt_addr;
544 mac_control->rings[i].rx_blocks[(j + 1) %
545 blk_cnt].block_virt_addr;
547 mac_control->rings[i].rx_blocks[j].block_dma_addr;
549 mac_control->rings[i].rx_blocks[(j + 1) %
550 blk_cnt].block_dma_addr;
552 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
553 pre_rxd_blk->reserved_2_pNext_RxD_block =
554 (unsigned long) tmp_v_addr_next;
555 pre_rxd_blk->pNext_RxD_Blk_physical =
556 (u64) tmp_p_addr_next;
559 if (nic->rxd_mode >= RXD_MODE_3A) {
561 * Allocation of Storages for buffer addresses in 2BUFF mode
562 * and the buffers as well.
564 for (i = 0; i < config->rx_ring_num; i++) {
565 blk_cnt = config->rx_cfg[i].num_rxd /
566 (rxd_count[nic->rxd_mode]+ 1);
567 mac_control->rings[i].ba =
568 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
570 if (!mac_control->rings[i].ba)
572 for (j = 0; j < blk_cnt; j++) {
574 mac_control->rings[i].ba[j] =
575 kmalloc((sizeof(buffAdd_t) *
576 (rxd_count[nic->rxd_mode] + 1)),
578 if (!mac_control->rings[i].ba[j])
580 while (k != rxd_count[nic->rxd_mode]) {
581 ba = &mac_control->rings[i].ba[j][k];
583 ba->ba_0_org = (void *) kmalloc
584 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
587 tmp = (unsigned long)ba->ba_0_org;
589 tmp &= ~((unsigned long) ALIGN_SIZE);
590 ba->ba_0 = (void *) tmp;
592 ba->ba_1_org = (void *) kmalloc
593 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
596 tmp = (unsigned long) ba->ba_1_org;
598 tmp &= ~((unsigned long) ALIGN_SIZE);
599 ba->ba_1 = (void *) tmp;
606 /* Allocation and initialization of Statistics block */
607 size = sizeof(StatInfo_t);
608 mac_control->stats_mem = pci_alloc_consistent
609 (nic->pdev, size, &mac_control->stats_mem_phy);
611 if (!mac_control->stats_mem) {
613 * In case of failure, free_shared_mem() is called, which
614 * should free any memory that was alloced till the
619 mac_control->stats_mem_sz = size;
621 tmp_v_addr = mac_control->stats_mem;
622 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
623 memset(tmp_v_addr, 0, size);
624 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
625 (unsigned long long) tmp_p_addr);
631 * free_shared_mem - Free the allocated Memory
632 * @nic: Device private variable.
633 * Description: This function is to free all memory locations allocated by
634 * the init_shared_mem() function and return it to the kernel.
637 static void free_shared_mem(struct s2io_nic *nic)
639 int i, j, blk_cnt, size;
641 dma_addr_t tmp_p_addr;
642 mac_info_t *mac_control;
643 struct config_param *config;
644 int lst_size, lst_per_page;
645 struct net_device *dev = nic->dev;
650 mac_control = &nic->mac_control;
651 config = &nic->config;
653 lst_size = (sizeof(TxD_t) * config->max_txds);
654 lst_per_page = PAGE_SIZE / lst_size;
656 for (i = 0; i < config->tx_fifo_num; i++) {
657 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
659 for (j = 0; j < page_num; j++) {
660 int mem_blks = (j * lst_per_page);
661 if (!mac_control->fifos[i].list_info)
663 if (!mac_control->fifos[i].list_info[mem_blks].
666 pci_free_consistent(nic->pdev, PAGE_SIZE,
667 mac_control->fifos[i].
670 mac_control->fifos[i].
674 /* If we got a zero DMA address during allocation,
677 if (mac_control->zerodma_virt_addr) {
678 pci_free_consistent(nic->pdev, PAGE_SIZE,
679 mac_control->zerodma_virt_addr,
682 "%s: Freeing TxDL with zero DMA addr. ",
684 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
685 mac_control->zerodma_virt_addr);
687 kfree(mac_control->fifos[i].list_info);
690 size = SIZE_OF_BLOCK;
691 for (i = 0; i < config->rx_ring_num; i++) {
692 blk_cnt = mac_control->rings[i].block_count;
693 for (j = 0; j < blk_cnt; j++) {
694 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
696 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
698 if (tmp_v_addr == NULL)
700 pci_free_consistent(nic->pdev, size,
701 tmp_v_addr, tmp_p_addr);
702 kfree(mac_control->rings[i].rx_blocks[j].rxds);
706 if (nic->rxd_mode >= RXD_MODE_3A) {
707 /* Freeing buffer storage addresses in 2BUFF mode. */
708 for (i = 0; i < config->rx_ring_num; i++) {
709 blk_cnt = config->rx_cfg[i].num_rxd /
710 (rxd_count[nic->rxd_mode] + 1);
711 for (j = 0; j < blk_cnt; j++) {
713 if (!mac_control->rings[i].ba[j])
715 while (k != rxd_count[nic->rxd_mode]) {
717 &mac_control->rings[i].ba[j][k];
722 kfree(mac_control->rings[i].ba[j]);
724 kfree(mac_control->rings[i].ba);
728 if (mac_control->stats_mem) {
729 pci_free_consistent(nic->pdev,
730 mac_control->stats_mem_sz,
731 mac_control->stats_mem,
732 mac_control->stats_mem_phy);
737 * s2io_verify_pci_mode -
740 static int s2io_verify_pci_mode(nic_t *nic)
742 XENA_dev_config_t __iomem *bar0 = nic->bar0;
743 register u64 val64 = 0;
746 val64 = readq(&bar0->pci_mode);
747 mode = (u8)GET_PCI_MODE(val64);
749 if ( val64 & PCI_MODE_UNKNOWN_MODE)
750 return -1; /* Unknown PCI mode */
756 * s2io_print_pci_mode -
758 static int s2io_print_pci_mode(nic_t *nic)
760 XENA_dev_config_t __iomem *bar0 = nic->bar0;
761 register u64 val64 = 0;
763 struct config_param *config = &nic->config;
765 val64 = readq(&bar0->pci_mode);
766 mode = (u8)GET_PCI_MODE(val64);
768 if ( val64 & PCI_MODE_UNKNOWN_MODE)
769 return -1; /* Unknown PCI mode */
771 if (val64 & PCI_MODE_32_BITS) {
772 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
774 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
778 case PCI_MODE_PCI_33:
779 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
780 config->bus_speed = 33;
782 case PCI_MODE_PCI_66:
783 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
784 config->bus_speed = 133;
786 case PCI_MODE_PCIX_M1_66:
787 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
788 config->bus_speed = 133; /* Herc doubles the clock rate */
790 case PCI_MODE_PCIX_M1_100:
791 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
792 config->bus_speed = 200;
794 case PCI_MODE_PCIX_M1_133:
795 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
796 config->bus_speed = 266;
798 case PCI_MODE_PCIX_M2_66:
799 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
800 config->bus_speed = 133;
802 case PCI_MODE_PCIX_M2_100:
803 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
804 config->bus_speed = 200;
806 case PCI_MODE_PCIX_M2_133:
807 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
808 config->bus_speed = 266;
811 return -1; /* Unsupported bus speed */
818 * init_nic - Initialization of hardware
819 * @nic: device peivate variable
820 * Description: The function sequentially configures every block
821 * of the H/W from their reset values.
822 * Return Value: SUCCESS on success and
823 * '-1' on failure (endian settings incorrect).
826 static int init_nic(struct s2io_nic *nic)
828 XENA_dev_config_t __iomem *bar0 = nic->bar0;
829 struct net_device *dev = nic->dev;
830 register u64 val64 = 0;
834 mac_info_t *mac_control;
835 struct config_param *config;
836 int mdio_cnt = 0, dtx_cnt = 0;
837 unsigned long long mem_share;
840 mac_control = &nic->mac_control;
841 config = &nic->config;
843 /* to set the swapper controle on the card */
844 if(s2io_set_swapper(nic)) {
845 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
850 * Herc requires EOI to be removed from reset before XGXS, so..
852 if (nic->device_type & XFRAME_II_DEVICE) {
853 val64 = 0xA500000000ULL;
854 writeq(val64, &bar0->sw_reset);
856 val64 = readq(&bar0->sw_reset);
859 /* Remove XGXS from reset state */
861 writeq(val64, &bar0->sw_reset);
863 val64 = readq(&bar0->sw_reset);
865 /* Enable Receiving broadcasts */
866 add = &bar0->mac_cfg;
867 val64 = readq(&bar0->mac_cfg);
868 val64 |= MAC_RMAC_BCAST_ENABLE;
869 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
870 writel((u32) val64, add);
871 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
872 writel((u32) (val64 >> 32), (add + 4));
874 /* Read registers in all blocks */
875 val64 = readq(&bar0->mac_int_mask);
876 val64 = readq(&bar0->mc_int_mask);
877 val64 = readq(&bar0->xgxs_int_mask);
881 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
884 * Configuring the XAUI Interface of Xena.
885 * ***************************************
886 * To Configure the Xena's XAUI, one has to write a series
887 * of 64 bit values into two registers in a particular
888 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
889 * which will be defined in the array of configuration values
890 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
891 * to switch writing from one regsiter to another. We continue
892 * writing these values until we encounter the 'END_SIGN' macro.
893 * For example, After making a series of 21 writes into
894 * dtx_control register the 'SWITCH_SIGN' appears and hence we
895 * start writing into mdio_control until we encounter END_SIGN.
897 if (nic->device_type & XFRAME_II_DEVICE) {
898 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
899 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
900 &bar0->dtx_control, UF);
902 msleep(1); /* Necessary!! */
908 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
909 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
913 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
914 &bar0->dtx_control, UF);
915 val64 = readq(&bar0->dtx_control);
919 while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
920 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
924 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
925 &bar0->mdio_control, UF);
926 val64 = readq(&bar0->mdio_control);
929 if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
930 (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
938 /* Tx DMA Initialization */
940 writeq(val64, &bar0->tx_fifo_partition_0);
941 writeq(val64, &bar0->tx_fifo_partition_1);
942 writeq(val64, &bar0->tx_fifo_partition_2);
943 writeq(val64, &bar0->tx_fifo_partition_3);
946 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
948 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
949 13) | vBIT(config->tx_cfg[i].fifo_priority,
952 if (i == (config->tx_fifo_num - 1)) {
959 writeq(val64, &bar0->tx_fifo_partition_0);
963 writeq(val64, &bar0->tx_fifo_partition_1);
967 writeq(val64, &bar0->tx_fifo_partition_2);
971 writeq(val64, &bar0->tx_fifo_partition_3);
976 /* Enable Tx FIFO partition 0. */
977 val64 = readq(&bar0->tx_fifo_partition_0);
978 val64 |= BIT(0); /* To enable the FIFO partition. */
979 writeq(val64, &bar0->tx_fifo_partition_0);
982 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
983 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
985 if ((nic->device_type == XFRAME_I_DEVICE) &&
986 (get_xena_rev_id(nic->pdev) < 4))
987 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
989 val64 = readq(&bar0->tx_fifo_partition_0);
990 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
991 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
994 * Initialization of Tx_PA_CONFIG register to ignore packet
995 * integrity checking.
997 val64 = readq(&bar0->tx_pa_cfg);
998 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
999 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1000 writeq(val64, &bar0->tx_pa_cfg);
1002 /* Rx DMA intialization. */
1004 for (i = 0; i < config->rx_ring_num; i++) {
1006 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1009 writeq(val64, &bar0->rx_queue_priority);
1012 * Allocating equal share of memory to all the
1016 if (nic->device_type & XFRAME_II_DEVICE)
1021 for (i = 0; i < config->rx_ring_num; i++) {
1024 mem_share = (mem_size / config->rx_ring_num +
1025 mem_size % config->rx_ring_num);
1026 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1029 mem_share = (mem_size / config->rx_ring_num);
1030 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1033 mem_share = (mem_size / config->rx_ring_num);
1034 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1037 mem_share = (mem_size / config->rx_ring_num);
1038 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1041 mem_share = (mem_size / config->rx_ring_num);
1042 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1045 mem_share = (mem_size / config->rx_ring_num);
1046 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1049 mem_share = (mem_size / config->rx_ring_num);
1050 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1053 mem_share = (mem_size / config->rx_ring_num);
1054 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1058 writeq(val64, &bar0->rx_queue_cfg);
1061 * Filling Tx round robin registers
1062 * as per the number of FIFOs
1064 switch (config->tx_fifo_num) {
1066 val64 = 0x0000000000000000ULL;
1067 writeq(val64, &bar0->tx_w_round_robin_0);
1068 writeq(val64, &bar0->tx_w_round_robin_1);
1069 writeq(val64, &bar0->tx_w_round_robin_2);
1070 writeq(val64, &bar0->tx_w_round_robin_3);
1071 writeq(val64, &bar0->tx_w_round_robin_4);
1074 val64 = 0x0000010000010000ULL;
1075 writeq(val64, &bar0->tx_w_round_robin_0);
1076 val64 = 0x0100000100000100ULL;
1077 writeq(val64, &bar0->tx_w_round_robin_1);
1078 val64 = 0x0001000001000001ULL;
1079 writeq(val64, &bar0->tx_w_round_robin_2);
1080 val64 = 0x0000010000010000ULL;
1081 writeq(val64, &bar0->tx_w_round_robin_3);
1082 val64 = 0x0100000000000000ULL;
1083 writeq(val64, &bar0->tx_w_round_robin_4);
1086 val64 = 0x0001000102000001ULL;
1087 writeq(val64, &bar0->tx_w_round_robin_0);
1088 val64 = 0x0001020000010001ULL;
1089 writeq(val64, &bar0->tx_w_round_robin_1);
1090 val64 = 0x0200000100010200ULL;
1091 writeq(val64, &bar0->tx_w_round_robin_2);
1092 val64 = 0x0001000102000001ULL;
1093 writeq(val64, &bar0->tx_w_round_robin_3);
1094 val64 = 0x0001020000000000ULL;
1095 writeq(val64, &bar0->tx_w_round_robin_4);
1098 val64 = 0x0001020300010200ULL;
1099 writeq(val64, &bar0->tx_w_round_robin_0);
1100 val64 = 0x0100000102030001ULL;
1101 writeq(val64, &bar0->tx_w_round_robin_1);
1102 val64 = 0x0200010000010203ULL;
1103 writeq(val64, &bar0->tx_w_round_robin_2);
1104 val64 = 0x0001020001000001ULL;
1105 writeq(val64, &bar0->tx_w_round_robin_3);
1106 val64 = 0x0203000100000000ULL;
1107 writeq(val64, &bar0->tx_w_round_robin_4);
1110 val64 = 0x0001000203000102ULL;
1111 writeq(val64, &bar0->tx_w_round_robin_0);
1112 val64 = 0x0001020001030004ULL;
1113 writeq(val64, &bar0->tx_w_round_robin_1);
1114 val64 = 0x0001000203000102ULL;
1115 writeq(val64, &bar0->tx_w_round_robin_2);
1116 val64 = 0x0001020001030004ULL;
1117 writeq(val64, &bar0->tx_w_round_robin_3);
1118 val64 = 0x0001000000000000ULL;
1119 writeq(val64, &bar0->tx_w_round_robin_4);
1122 val64 = 0x0001020304000102ULL;
1123 writeq(val64, &bar0->tx_w_round_robin_0);
1124 val64 = 0x0304050001020001ULL;
1125 writeq(val64, &bar0->tx_w_round_robin_1);
1126 val64 = 0x0203000100000102ULL;
1127 writeq(val64, &bar0->tx_w_round_robin_2);
1128 val64 = 0x0304000102030405ULL;
1129 writeq(val64, &bar0->tx_w_round_robin_3);
1130 val64 = 0x0001000200000000ULL;
1131 writeq(val64, &bar0->tx_w_round_robin_4);
1134 val64 = 0x0001020001020300ULL;
1135 writeq(val64, &bar0->tx_w_round_robin_0);
1136 val64 = 0x0102030400010203ULL;
1137 writeq(val64, &bar0->tx_w_round_robin_1);
1138 val64 = 0x0405060001020001ULL;
1139 writeq(val64, &bar0->tx_w_round_robin_2);
1140 val64 = 0x0304050000010200ULL;
1141 writeq(val64, &bar0->tx_w_round_robin_3);
1142 val64 = 0x0102030000000000ULL;
1143 writeq(val64, &bar0->tx_w_round_robin_4);
1146 val64 = 0x0001020300040105ULL;
1147 writeq(val64, &bar0->tx_w_round_robin_0);
1148 val64 = 0x0200030106000204ULL;
1149 writeq(val64, &bar0->tx_w_round_robin_1);
1150 val64 = 0x0103000502010007ULL;
1151 writeq(val64, &bar0->tx_w_round_robin_2);
1152 val64 = 0x0304010002060500ULL;
1153 writeq(val64, &bar0->tx_w_round_robin_3);
1154 val64 = 0x0103020400000000ULL;
1155 writeq(val64, &bar0->tx_w_round_robin_4);
1159 /* Filling the Rx round robin registers as per the
1160 * number of Rings and steering based on QoS.
1162 switch (config->rx_ring_num) {
1164 val64 = 0x8080808080808080ULL;
1165 writeq(val64, &bar0->rts_qos_steering);
1168 val64 = 0x0000010000010000ULL;
1169 writeq(val64, &bar0->rx_w_round_robin_0);
1170 val64 = 0x0100000100000100ULL;
1171 writeq(val64, &bar0->rx_w_round_robin_1);
1172 val64 = 0x0001000001000001ULL;
1173 writeq(val64, &bar0->rx_w_round_robin_2);
1174 val64 = 0x0000010000010000ULL;
1175 writeq(val64, &bar0->rx_w_round_robin_3);
1176 val64 = 0x0100000000000000ULL;
1177 writeq(val64, &bar0->rx_w_round_robin_4);
1179 val64 = 0x8080808040404040ULL;
1180 writeq(val64, &bar0->rts_qos_steering);
1183 val64 = 0x0001000102000001ULL;
1184 writeq(val64, &bar0->rx_w_round_robin_0);
1185 val64 = 0x0001020000010001ULL;
1186 writeq(val64, &bar0->rx_w_round_robin_1);
1187 val64 = 0x0200000100010200ULL;
1188 writeq(val64, &bar0->rx_w_round_robin_2);
1189 val64 = 0x0001000102000001ULL;
1190 writeq(val64, &bar0->rx_w_round_robin_3);
1191 val64 = 0x0001020000000000ULL;
1192 writeq(val64, &bar0->rx_w_round_robin_4);
1194 val64 = 0x8080804040402020ULL;
1195 writeq(val64, &bar0->rts_qos_steering);
1198 val64 = 0x0001020300010200ULL;
1199 writeq(val64, &bar0->rx_w_round_robin_0);
1200 val64 = 0x0100000102030001ULL;
1201 writeq(val64, &bar0->rx_w_round_robin_1);
1202 val64 = 0x0200010000010203ULL;
1203 writeq(val64, &bar0->rx_w_round_robin_2);
1204 val64 = 0x0001020001000001ULL;
1205 writeq(val64, &bar0->rx_w_round_robin_3);
1206 val64 = 0x0203000100000000ULL;
1207 writeq(val64, &bar0->rx_w_round_robin_4);
1209 val64 = 0x8080404020201010ULL;
1210 writeq(val64, &bar0->rts_qos_steering);
1213 val64 = 0x0001000203000102ULL;
1214 writeq(val64, &bar0->rx_w_round_robin_0);
1215 val64 = 0x0001020001030004ULL;
1216 writeq(val64, &bar0->rx_w_round_robin_1);
1217 val64 = 0x0001000203000102ULL;
1218 writeq(val64, &bar0->rx_w_round_robin_2);
1219 val64 = 0x0001020001030004ULL;
1220 writeq(val64, &bar0->rx_w_round_robin_3);
1221 val64 = 0x0001000000000000ULL;
1222 writeq(val64, &bar0->rx_w_round_robin_4);
1224 val64 = 0x8080404020201008ULL;
1225 writeq(val64, &bar0->rts_qos_steering);
1228 val64 = 0x0001020304000102ULL;
1229 writeq(val64, &bar0->rx_w_round_robin_0);
1230 val64 = 0x0304050001020001ULL;
1231 writeq(val64, &bar0->rx_w_round_robin_1);
1232 val64 = 0x0203000100000102ULL;
1233 writeq(val64, &bar0->rx_w_round_robin_2);
1234 val64 = 0x0304000102030405ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_3);
1236 val64 = 0x0001000200000000ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_4);
1239 val64 = 0x8080404020100804ULL;
1240 writeq(val64, &bar0->rts_qos_steering);
1243 val64 = 0x0001020001020300ULL;
1244 writeq(val64, &bar0->rx_w_round_robin_0);
1245 val64 = 0x0102030400010203ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_1);
1247 val64 = 0x0405060001020001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_2);
1249 val64 = 0x0304050000010200ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_3);
1251 val64 = 0x0102030000000000ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_4);
1254 val64 = 0x8080402010080402ULL;
1255 writeq(val64, &bar0->rts_qos_steering);
1258 val64 = 0x0001020300040105ULL;
1259 writeq(val64, &bar0->rx_w_round_robin_0);
1260 val64 = 0x0200030106000204ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_1);
1262 val64 = 0x0103000502010007ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_2);
1264 val64 = 0x0304010002060500ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_3);
1266 val64 = 0x0103020400000000ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_4);
1269 val64 = 0x8040201008040201ULL;
1270 writeq(val64, &bar0->rts_qos_steering);
1276 for (i = 0; i < 8; i++)
1277 writeq(val64, &bar0->rts_frm_len_n[i]);
1279 /* Set the default rts frame length for the rings configured */
1280 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1281 for (i = 0 ; i < config->rx_ring_num ; i++)
1282 writeq(val64, &bar0->rts_frm_len_n[i]);
1284 /* Set the frame length for the configured rings
1285 * desired by the user
1287 for (i = 0; i < config->rx_ring_num; i++) {
1288 /* If rts_frm_len[i] == 0 then it is assumed that user not
1289 * specified frame length steering.
1290 * If the user provides the frame length then program
1291 * the rts_frm_len register for those values or else
1292 * leave it as it is.
1294 if (rts_frm_len[i] != 0) {
1295 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1296 &bar0->rts_frm_len_n[i]);
1300 /* Program statistics memory */
1301 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1303 if (nic->device_type == XFRAME_II_DEVICE) {
1304 val64 = STAT_BC(0x320);
1305 writeq(val64, &bar0->stat_byte_cnt);
1309 * Initializing the sampling rate for the device to calculate the
1310 * bandwidth utilization.
1312 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1313 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1314 writeq(val64, &bar0->mac_link_util);
1318 * Initializing the Transmit and Receive Traffic Interrupt
1322 * TTI Initialization. Default Tx timer gets us about
1323 * 250 interrupts per sec. Continuous interrupts are enabled
1326 if (nic->device_type == XFRAME_II_DEVICE) {
1327 int count = (nic->config.bus_speed * 125)/2;
1328 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1331 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1333 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1334 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1335 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1336 if (use_continuous_tx_intrs)
1337 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1338 writeq(val64, &bar0->tti_data1_mem);
1340 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1341 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1342 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1343 writeq(val64, &bar0->tti_data2_mem);
1345 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1346 writeq(val64, &bar0->tti_command_mem);
1349 * Once the operation completes, the Strobe bit of the command
1350 * register will be reset. We poll for this particular condition
1351 * We wait for a maximum of 500ms for the operation to complete,
1352 * if it's not complete by then we return error.
1356 val64 = readq(&bar0->tti_command_mem);
1357 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1361 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1369 if (nic->config.bimodal) {
1371 for (k = 0; k < config->rx_ring_num; k++) {
1372 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1373 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1374 writeq(val64, &bar0->tti_command_mem);
1377 * Once the operation completes, the Strobe bit of the command
1378 * register will be reset. We poll for this particular condition
1379 * We wait for a maximum of 500ms for the operation to complete,
1380 * if it's not complete by then we return error.
1384 val64 = readq(&bar0->tti_command_mem);
1385 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1390 "%s: TTI init Failed\n",
1400 /* RTI Initialization */
1401 if (nic->device_type == XFRAME_II_DEVICE) {
1403 * Programmed to generate Apprx 500 Intrs per
1406 int count = (nic->config.bus_speed * 125)/4;
1407 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1409 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1411 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1412 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1413 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1415 writeq(val64, &bar0->rti_data1_mem);
1417 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1418 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1419 if (nic->intr_type == MSI_X)
1420 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1421 RTI_DATA2_MEM_RX_UFC_D(0x40));
1423 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1424 RTI_DATA2_MEM_RX_UFC_D(0x80));
1425 writeq(val64, &bar0->rti_data2_mem);
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1429 | RTI_CMD_MEM_OFFSET(i);
1430 writeq(val64, &bar0->rti_command_mem);
1433 * Once the operation completes, the Strobe bit of the
1434 * command register will be reset. We poll for this
1435 * particular condition. We wait for a maximum of 500ms
1436 * for the operation to complete, if it's not complete
1437 * by then we return error.
1441 val64 = readq(&bar0->rti_command_mem);
1442 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1446 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1457 * Initializing proper values as Pause threshold into all
1458 * the 8 Queues on Rx side.
1460 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1461 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1463 /* Disable RMAC PAD STRIPPING */
1464 add = &bar0->mac_cfg;
1465 val64 = readq(&bar0->mac_cfg);
1466 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1467 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1468 writel((u32) (val64), add);
1469 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1470 writel((u32) (val64 >> 32), (add + 4));
1471 val64 = readq(&bar0->mac_cfg);
1474 * Set the time value to be inserted in the pause frame
1475 * generated by xena.
1477 val64 = readq(&bar0->rmac_pause_cfg);
1478 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1479 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1480 writeq(val64, &bar0->rmac_pause_cfg);
1483 * Set the Threshold Limit for Generating the pause frame
1484 * If the amount of data in any Queue exceeds ratio of
1485 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1486 * pause frame is generated
1489 for (i = 0; i < 4; i++) {
1491 (((u64) 0xFF00 | nic->mac_control.
1492 mc_pause_threshold_q0q3)
1495 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1498 for (i = 0; i < 4; i++) {
1500 (((u64) 0xFF00 | nic->mac_control.
1501 mc_pause_threshold_q4q7)
1504 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1507 * TxDMA will stop Read request if the number of read split has
1508 * exceeded the limit pointed by shared_splits
1510 val64 = readq(&bar0->pic_control);
1511 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1512 writeq(val64, &bar0->pic_control);
1515 * Programming the Herc to split every write transaction
1516 * that does not start on an ADB to reduce disconnects.
1518 if (nic->device_type == XFRAME_II_DEVICE) {
1519 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1520 writeq(val64, &bar0->wreq_split_mask);
1523 /* Setting Link stability period to 64 ms */
1524 if (nic->device_type == XFRAME_II_DEVICE) {
1525 val64 = MISC_LINK_STABILITY_PRD(3);
1526 writeq(val64, &bar0->misc_control);
1531 #define LINK_UP_DOWN_INTERRUPT 1
1532 #define MAC_RMAC_ERR_TIMER 2
1534 static int s2io_link_fault_indication(nic_t *nic)
1536 if (nic->intr_type != INTA)
1537 return MAC_RMAC_ERR_TIMER;
1538 if (nic->device_type == XFRAME_II_DEVICE)
1539 return LINK_UP_DOWN_INTERRUPT;
1541 return MAC_RMAC_ERR_TIMER;
1545 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1546 * @nic: device private variable,
1547 * @mask: A mask indicating which Intr block must be modified and,
1548 * @flag: A flag indicating whether to enable or disable the Intrs.
1549 * Description: This function will either disable or enable the interrupts
1550 * depending on the flag argument. The mask argument can be used to
1551 * enable/disable any Intr block.
1552 * Return Value: NONE.
1555 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1557 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1558 register u64 val64 = 0, temp64 = 0;
1560 /* Top level interrupt classification */
1561 /* PIC Interrupts */
1562 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1563 /* Enable PIC Intrs in the general intr mask register */
1564 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1565 if (flag == ENABLE_INTRS) {
1566 temp64 = readq(&bar0->general_int_mask);
1567 temp64 &= ~((u64) val64);
1568 writeq(temp64, &bar0->general_int_mask);
1570 * If Hercules adapter enable GPIO otherwise
1571 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1572 * interrupts for now.
1575 if (s2io_link_fault_indication(nic) ==
1576 LINK_UP_DOWN_INTERRUPT ) {
1577 temp64 = readq(&bar0->pic_int_mask);
1578 temp64 &= ~((u64) PIC_INT_GPIO);
1579 writeq(temp64, &bar0->pic_int_mask);
1580 temp64 = readq(&bar0->gpio_int_mask);
1581 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1582 writeq(temp64, &bar0->gpio_int_mask);
1584 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1587 * No MSI Support is available presently, so TTI and
1588 * RTI interrupts are also disabled.
1590 } else if (flag == DISABLE_INTRS) {
1592 * Disable PIC Intrs in the general
1593 * intr mask register
1595 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1596 temp64 = readq(&bar0->general_int_mask);
1598 writeq(val64, &bar0->general_int_mask);
1602 /* DMA Interrupts */
1603 /* Enabling/Disabling Tx DMA interrupts */
1604 if (mask & TX_DMA_INTR) {
1605 /* Enable TxDMA Intrs in the general intr mask register */
1606 val64 = TXDMA_INT_M;
1607 if (flag == ENABLE_INTRS) {
1608 temp64 = readq(&bar0->general_int_mask);
1609 temp64 &= ~((u64) val64);
1610 writeq(temp64, &bar0->general_int_mask);
1612 * Keep all interrupts other than PFC interrupt
1613 * and PCC interrupt disabled in DMA level.
1615 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1617 writeq(val64, &bar0->txdma_int_mask);
1619 * Enable only the MISC error 1 interrupt in PFC block
1621 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1622 writeq(val64, &bar0->pfc_err_mask);
1624 * Enable only the FB_ECC error interrupt in PCC block
1626 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1627 writeq(val64, &bar0->pcc_err_mask);
1628 } else if (flag == DISABLE_INTRS) {
1630 * Disable TxDMA Intrs in the general intr mask
1633 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1634 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1635 temp64 = readq(&bar0->general_int_mask);
1637 writeq(val64, &bar0->general_int_mask);
1641 /* Enabling/Disabling Rx DMA interrupts */
1642 if (mask & RX_DMA_INTR) {
1643 /* Enable RxDMA Intrs in the general intr mask register */
1644 val64 = RXDMA_INT_M;
1645 if (flag == ENABLE_INTRS) {
1646 temp64 = readq(&bar0->general_int_mask);
1647 temp64 &= ~((u64) val64);
1648 writeq(temp64, &bar0->general_int_mask);
1650 * All RxDMA block interrupts are disabled for now
1653 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1654 } else if (flag == DISABLE_INTRS) {
1656 * Disable RxDMA Intrs in the general intr mask
1659 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1660 temp64 = readq(&bar0->general_int_mask);
1662 writeq(val64, &bar0->general_int_mask);
1666 /* MAC Interrupts */
1667 /* Enabling/Disabling MAC interrupts */
1668 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1669 val64 = TXMAC_INT_M | RXMAC_INT_M;
1670 if (flag == ENABLE_INTRS) {
1671 temp64 = readq(&bar0->general_int_mask);
1672 temp64 &= ~((u64) val64);
1673 writeq(temp64, &bar0->general_int_mask);
1675 * All MAC block error interrupts are disabled for now
1678 } else if (flag == DISABLE_INTRS) {
1680 * Disable MAC Intrs in the general intr mask register
1682 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1683 writeq(DISABLE_ALL_INTRS,
1684 &bar0->mac_rmac_err_mask);
1686 temp64 = readq(&bar0->general_int_mask);
1688 writeq(val64, &bar0->general_int_mask);
1692 /* XGXS Interrupts */
1693 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1694 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1695 if (flag == ENABLE_INTRS) {
1696 temp64 = readq(&bar0->general_int_mask);
1697 temp64 &= ~((u64) val64);
1698 writeq(temp64, &bar0->general_int_mask);
1700 * All XGXS block error interrupts are disabled for now
1703 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1704 } else if (flag == DISABLE_INTRS) {
1706 * Disable MC Intrs in the general intr mask register
1708 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1709 temp64 = readq(&bar0->general_int_mask);
1711 writeq(val64, &bar0->general_int_mask);
1715 /* Memory Controller(MC) interrupts */
1716 if (mask & MC_INTR) {
1718 if (flag == ENABLE_INTRS) {
1719 temp64 = readq(&bar0->general_int_mask);
1720 temp64 &= ~((u64) val64);
1721 writeq(temp64, &bar0->general_int_mask);
1723 * Enable all MC Intrs.
1725 writeq(0x0, &bar0->mc_int_mask);
1726 writeq(0x0, &bar0->mc_err_mask);
1727 } else if (flag == DISABLE_INTRS) {
1729 * Disable MC Intrs in the general intr mask register
1731 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1732 temp64 = readq(&bar0->general_int_mask);
1734 writeq(val64, &bar0->general_int_mask);
1739 /* Tx traffic interrupts */
1740 if (mask & TX_TRAFFIC_INTR) {
1741 val64 = TXTRAFFIC_INT_M;
1742 if (flag == ENABLE_INTRS) {
1743 temp64 = readq(&bar0->general_int_mask);
1744 temp64 &= ~((u64) val64);
1745 writeq(temp64, &bar0->general_int_mask);
1747 * Enable all the Tx side interrupts
1748 * writing 0 Enables all 64 TX interrupt levels
1750 writeq(0x0, &bar0->tx_traffic_mask);
1751 } else if (flag == DISABLE_INTRS) {
1753 * Disable Tx Traffic Intrs in the general intr mask
1756 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1757 temp64 = readq(&bar0->general_int_mask);
1759 writeq(val64, &bar0->general_int_mask);
1763 /* Rx traffic interrupts */
1764 if (mask & RX_TRAFFIC_INTR) {
1765 val64 = RXTRAFFIC_INT_M;
1766 if (flag == ENABLE_INTRS) {
1767 temp64 = readq(&bar0->general_int_mask);
1768 temp64 &= ~((u64) val64);
1769 writeq(temp64, &bar0->general_int_mask);
1770 /* writing 0 Enables all 8 RX interrupt levels */
1771 writeq(0x0, &bar0->rx_traffic_mask);
1772 } else if (flag == DISABLE_INTRS) {
1774 * Disable Rx Traffic Intrs in the general intr mask
1777 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1778 temp64 = readq(&bar0->general_int_mask);
1780 writeq(val64, &bar0->general_int_mask);
1785 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1789 if (flag == FALSE) {
1790 if ((!herc && (rev_id >= 4)) || herc) {
1791 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1792 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1793 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1797 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1798 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1799 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1804 if ((!herc && (rev_id >= 4)) || herc) {
1805 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1806 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1807 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1808 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1809 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1813 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1814 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1815 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1816 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1817 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1826 * verify_xena_quiescence - Checks whether the H/W is ready
1827 * @val64 : Value read from adapter status register.
1828 * @flag : indicates if the adapter enable bit was ever written once
1830 * Description: Returns whether the H/W is ready to go or not. Depending
1831 * on whether adapter enable bit was written or not the comparison
1832 * differs and the calling function passes the input argument flag to
1834 * Return: 1 If xena is quiescence
1835 * 0 If Xena is not quiescence
1838 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1841 u64 tmp64 = ~((u64) val64);
1842 int rev_id = get_xena_rev_id(sp->pdev);
1844 herc = (sp->device_type == XFRAME_II_DEVICE);
1847 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1848 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1849 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1850 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1851 ADAPTER_STATUS_P_PLL_LOCK))) {
1852 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1859 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1860 * @sp: Pointer to device specifc structure
1862 * New procedure to clear mac address reading problems on Alpha platforms
1866 static void fix_mac_address(nic_t * sp)
1868 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1872 while (fix_mac[i] != END_SIGN) {
1873 writeq(fix_mac[i++], &bar0->gpio_control);
1875 val64 = readq(&bar0->gpio_control);
1880 * start_nic - Turns the device on
1881 * @nic : device private variable.
1883 * This function actually turns the device on. Before this function is
1884 * called,all Registers are configured from their reset states
1885 * and shared memory is allocated but the NIC is still quiescent. On
1886 * calling this function, the device interrupts are cleared and the NIC is
1887 * literally switched on by writing into the adapter control register.
1889 * SUCCESS on success and -1 on failure.
1892 static int start_nic(struct s2io_nic *nic)
1894 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1895 struct net_device *dev = nic->dev;
1896 register u64 val64 = 0;
1899 mac_info_t *mac_control;
1900 struct config_param *config;
1902 mac_control = &nic->mac_control;
1903 config = &nic->config;
1905 /* PRC Initialization and configuration */
1906 for (i = 0; i < config->rx_ring_num; i++) {
1907 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1908 &bar0->prc_rxd0_n[i]);
1910 val64 = readq(&bar0->prc_ctrl_n[i]);
1911 if (nic->config.bimodal)
1912 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1913 if (nic->rxd_mode == RXD_MODE_1)
1914 val64 |= PRC_CTRL_RC_ENABLED;
1916 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1917 writeq(val64, &bar0->prc_ctrl_n[i]);
1920 if (nic->rxd_mode == RXD_MODE_3B) {
1921 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1922 val64 = readq(&bar0->rx_pa_cfg);
1923 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1924 writeq(val64, &bar0->rx_pa_cfg);
1928 * Enabling MC-RLDRAM. After enabling the device, we timeout
1929 * for around 100ms, which is approximately the time required
1930 * for the device to be ready for operation.
1932 val64 = readq(&bar0->mc_rldram_mrs);
1933 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1934 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1935 val64 = readq(&bar0->mc_rldram_mrs);
1937 msleep(100); /* Delay by around 100 ms. */
1939 /* Enabling ECC Protection. */
1940 val64 = readq(&bar0->adapter_control);
1941 val64 &= ~ADAPTER_ECC_EN;
1942 writeq(val64, &bar0->adapter_control);
1945 * Clearing any possible Link state change interrupts that
1946 * could have popped up just before Enabling the card.
1948 val64 = readq(&bar0->mac_rmac_err_reg);
1950 writeq(val64, &bar0->mac_rmac_err_reg);
1953 * Verify if the device is ready to be enabled, if so enable
1956 val64 = readq(&bar0->adapter_status);
1957 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1958 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1959 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1960 (unsigned long long) val64);
1964 /* Enable select interrupts */
1965 if (nic->intr_type != INTA)
1966 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
1968 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
1969 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1970 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1971 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1975 * With some switches, link might be already up at this point.
1976 * Because of this weird behavior, when we enable laser,
1977 * we may not get link. We need to handle this. We cannot
1978 * figure out which switch is misbehaving. So we are forced to
1979 * make a global change.
1982 /* Enabling Laser. */
1983 val64 = readq(&bar0->adapter_control);
1984 val64 |= ADAPTER_EOI_TX_ON;
1985 writeq(val64, &bar0->adapter_control);
1987 /* SXE-002: Initialize link and activity LED */
1988 subid = nic->pdev->subsystem_device;
1989 if (((subid & 0xFF) >= 0x07) &&
1990 (nic->device_type == XFRAME_I_DEVICE)) {
1991 val64 = readq(&bar0->gpio_control);
1992 val64 |= 0x0000800000000000ULL;
1993 writeq(val64, &bar0->gpio_control);
1994 val64 = 0x0411040400000000ULL;
1995 writeq(val64, (void __iomem *)bar0 + 0x2700);
1999 * Don't see link state interrupts on certain switches, so
2000 * directly scheduling a link state task from here.
2002 schedule_work(&nic->set_link_task);
2008 * free_tx_buffers - Free all queued Tx buffers
2009 * @nic : device private variable.
2011 * Free all queued Tx buffers.
2012 * Return Value: void
2015 static void free_tx_buffers(struct s2io_nic *nic)
2017 struct net_device *dev = nic->dev;
2018 struct sk_buff *skb;
2021 mac_info_t *mac_control;
2022 struct config_param *config;
2023 int cnt = 0, frg_cnt;
2025 mac_control = &nic->mac_control;
2026 config = &nic->config;
2028 for (i = 0; i < config->tx_fifo_num; i++) {
2029 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2030 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2033 (struct sk_buff *) ((unsigned long) txdp->
2036 memset(txdp, 0, sizeof(TxD_t) *
2040 frg_cnt = skb_shinfo(skb)->nr_frags;
2041 pci_unmap_single(nic->pdev, (dma_addr_t)
2042 txdp->Buffer_Pointer,
2043 skb->len - skb->data_len,
2049 for (j = 0; j < frg_cnt; j++, txdp++) {
2051 &skb_shinfo(skb)->frags[j];
2052 pci_unmap_page(nic->pdev,
2062 memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
2066 "%s:forcibly freeing %d skbs on FIFO%d\n",
2068 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2069 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2074 * stop_nic - To stop the nic
2075 * @nic ; device private variable.
2077 * This function does exactly the opposite of what the start_nic()
2078 * function does. This function is called to stop the device.
2083 static void stop_nic(struct s2io_nic *nic)
2085 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2086 register u64 val64 = 0;
2087 u16 interruptible, i;
2088 mac_info_t *mac_control;
2089 struct config_param *config;
2091 mac_control = &nic->mac_control;
2092 config = &nic->config;
2094 /* Disable all interrupts */
2095 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2096 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2097 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2098 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2101 for (i = 0; i < config->rx_ring_num; i++) {
2102 val64 = readq(&bar0->prc_ctrl_n[i]);
2103 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2104 writeq(val64, &bar0->prc_ctrl_n[i]);
2108 int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2110 struct net_device *dev = nic->dev;
2111 struct sk_buff *frag_list;
2114 /* Buffer-1 receives L3/L4 headers */
2115 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2116 (nic->pdev, skb->data, l3l4hdr_size + 4,
2117 PCI_DMA_FROMDEVICE);
2119 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2120 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2121 if (skb_shinfo(skb)->frag_list == NULL) {
2122 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2125 frag_list = skb_shinfo(skb)->frag_list;
2126 frag_list->next = NULL;
2127 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2128 frag_list->data = tmp;
2129 frag_list->tail = tmp;
2131 /* Buffer-2 receives L4 data payload */
2132 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2133 frag_list->data, dev->mtu,
2134 PCI_DMA_FROMDEVICE);
2135 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2136 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2142 * fill_rx_buffers - Allocates the Rx side skbs
2143 * @nic: device private variable
2144 * @ring_no: ring number
2146 * The function allocates Rx side skbs and puts the physical
2147 * address of these buffers into the RxD buffer pointers, so that the NIC
2148 * can DMA the received frame into these locations.
2149 * The NIC supports 3 receive modes, viz
2151 * 2. three buffer and
2152 * 3. Five buffer modes.
2153 * Each mode defines how many fragments the received frame will be split
2154 * up into by the NIC. The frame is split into L3 header, L4 Header,
2155 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2156 * is split into 3 fragments. As of now only single buffer mode is
2159 * SUCCESS on success or an appropriate -ve value on failure.
2162 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2164 struct net_device *dev = nic->dev;
2165 struct sk_buff *skb;
2167 int off, off1, size, block_no, block_no1;
2170 mac_info_t *mac_control;
2171 struct config_param *config;
2174 #ifndef CONFIG_S2IO_NAPI
2175 unsigned long flags;
2177 RxD_t *first_rxdp = NULL;
2179 mac_control = &nic->mac_control;
2180 config = &nic->config;
2181 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2182 atomic_read(&nic->rx_bufs_left[ring_no]);
2184 while (alloc_tab < alloc_cnt) {
2185 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2187 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
2189 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2190 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2192 rxdp = mac_control->rings[ring_no].
2193 rx_blocks[block_no].rxds[off].virt_addr;
2195 if ((block_no == block_no1) && (off == off1) &&
2196 (rxdp->Host_Control)) {
2197 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2199 DBG_PRINT(INTR_DBG, " info equated\n");
2202 if (off && (off == rxd_count[nic->rxd_mode])) {
2203 mac_control->rings[ring_no].rx_curr_put_info.
2205 if (mac_control->rings[ring_no].rx_curr_put_info.
2206 block_index == mac_control->rings[ring_no].
2208 mac_control->rings[ring_no].rx_curr_put_info.
2210 block_no = mac_control->rings[ring_no].
2211 rx_curr_put_info.block_index;
2212 if (off == rxd_count[nic->rxd_mode])
2214 mac_control->rings[ring_no].rx_curr_put_info.
2216 rxdp = mac_control->rings[ring_no].
2217 rx_blocks[block_no].block_virt_addr;
2218 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2221 #ifndef CONFIG_S2IO_NAPI
2222 spin_lock_irqsave(&nic->put_lock, flags);
2223 mac_control->rings[ring_no].put_pos =
2224 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2225 spin_unlock_irqrestore(&nic->put_lock, flags);
2227 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2228 ((nic->rxd_mode >= RXD_MODE_3A) &&
2229 (rxdp->Control_2 & BIT(0)))) {
2230 mac_control->rings[ring_no].rx_curr_put_info.
2234 /* calculate size of skb based on ring mode */
2235 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2236 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2237 if (nic->rxd_mode == RXD_MODE_1)
2238 size += NET_IP_ALIGN;
2239 else if (nic->rxd_mode == RXD_MODE_3B)
2240 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2242 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2245 skb = dev_alloc_skb(size);
2247 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2248 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2251 first_rxdp->Control_1 |= RXD_OWN_XENA;
2255 if (nic->rxd_mode == RXD_MODE_1) {
2256 /* 1 buffer mode - normal operation mode */
2257 memset(rxdp, 0, sizeof(RxD1_t));
2258 skb_reserve(skb, NET_IP_ALIGN);
2259 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2260 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2261 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
2262 rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
2264 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2266 * 2 or 3 buffer mode -
2267 * Both 2 buffer mode and 3 buffer mode provides 128
2268 * byte aligned receive buffers.
2270 * 3 buffer mode provides header separation where in
2271 * skb->data will have L3/L4 headers where as
2272 * skb_shinfo(skb)->frag_list will have the L4 data
2276 memset(rxdp, 0, sizeof(RxD3_t));
2277 ba = &mac_control->rings[ring_no].ba[block_no][off];
2278 skb_reserve(skb, BUF0_LEN);
2279 tmp = (u64)(unsigned long) skb->data;
2282 skb->data = (void *) (unsigned long)tmp;
2283 skb->tail = (void *) (unsigned long)tmp;
2285 ((RxD3_t*)rxdp)->Buffer0_ptr =
2286 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2287 PCI_DMA_FROMDEVICE);
2288 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2289 if (nic->rxd_mode == RXD_MODE_3B) {
2290 /* Two buffer mode */
2293 * Buffer2 will have L3/L4 header plus
2296 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2297 (nic->pdev, skb->data, dev->mtu + 4,
2298 PCI_DMA_FROMDEVICE);
2300 /* Buffer-1 will be dummy buffer not used */
2301 ((RxD3_t*)rxdp)->Buffer1_ptr =
2302 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2303 PCI_DMA_FROMDEVICE);
2304 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2305 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2309 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2310 dev_kfree_skb_irq(skb);
2313 first_rxdp->Control_1 |=
2319 rxdp->Control_2 |= BIT(0);
2321 rxdp->Host_Control = (unsigned long) (skb);
2322 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2323 rxdp->Control_1 |= RXD_OWN_XENA;
2325 if (off == (rxd_count[nic->rxd_mode] + 1))
2327 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2329 rxdp->Control_2 |= SET_RXD_MARKER;
2330 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2333 first_rxdp->Control_1 |= RXD_OWN_XENA;
2337 atomic_inc(&nic->rx_bufs_left[ring_no]);
2342 /* Transfer ownership of first descriptor to adapter just before
2343 * exiting. Before that, use memory barrier so that ownership
2344 * and other fields are seen by adapter correctly.
2348 first_rxdp->Control_1 |= RXD_OWN_XENA;
2354 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2356 struct net_device *dev = sp->dev;
2358 struct sk_buff *skb;
2360 mac_info_t *mac_control;
2363 mac_control = &sp->mac_control;
2364 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2365 rxdp = mac_control->rings[ring_no].
2366 rx_blocks[blk].rxds[j].virt_addr;
2367 skb = (struct sk_buff *)
2368 ((unsigned long) rxdp->Host_Control);
2372 if (sp->rxd_mode == RXD_MODE_1) {
2373 pci_unmap_single(sp->pdev, (dma_addr_t)
2374 ((RxD1_t*)rxdp)->Buffer0_ptr,
2376 HEADER_ETHERNET_II_802_3_SIZE
2377 + HEADER_802_2_SIZE +
2379 PCI_DMA_FROMDEVICE);
2380 memset(rxdp, 0, sizeof(RxD1_t));
2381 } else if(sp->rxd_mode == RXD_MODE_3B) {
2382 ba = &mac_control->rings[ring_no].
2384 pci_unmap_single(sp->pdev, (dma_addr_t)
2385 ((RxD3_t*)rxdp)->Buffer0_ptr,
2387 PCI_DMA_FROMDEVICE);
2388 pci_unmap_single(sp->pdev, (dma_addr_t)
2389 ((RxD3_t*)rxdp)->Buffer1_ptr,
2391 PCI_DMA_FROMDEVICE);
2392 pci_unmap_single(sp->pdev, (dma_addr_t)
2393 ((RxD3_t*)rxdp)->Buffer2_ptr,
2395 PCI_DMA_FROMDEVICE);
2396 memset(rxdp, 0, sizeof(RxD3_t));
2398 pci_unmap_single(sp->pdev, (dma_addr_t)
2399 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2400 PCI_DMA_FROMDEVICE);
2401 pci_unmap_single(sp->pdev, (dma_addr_t)
2402 ((RxD3_t*)rxdp)->Buffer1_ptr,
2404 PCI_DMA_FROMDEVICE);
2405 pci_unmap_single(sp->pdev, (dma_addr_t)
2406 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2407 PCI_DMA_FROMDEVICE);
2408 memset(rxdp, 0, sizeof(RxD3_t));
2411 atomic_dec(&sp->rx_bufs_left[ring_no]);
2416 * free_rx_buffers - Frees all Rx buffers
2417 * @sp: device private variable.
2419 * This function will free all Rx buffers allocated by host.
2424 static void free_rx_buffers(struct s2io_nic *sp)
2426 struct net_device *dev = sp->dev;
2427 int i, blk = 0, buf_cnt = 0;
2428 mac_info_t *mac_control;
2429 struct config_param *config;
2431 mac_control = &sp->mac_control;
2432 config = &sp->config;
2434 for (i = 0; i < config->rx_ring_num; i++) {
2435 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2436 free_rxd_blk(sp,i,blk);
2438 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2439 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2440 mac_control->rings[i].rx_curr_put_info.offset = 0;
2441 mac_control->rings[i].rx_curr_get_info.offset = 0;
2442 atomic_set(&sp->rx_bufs_left[i], 0);
2443 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2444 dev->name, buf_cnt, i);
2449 * s2io_poll - Rx interrupt handler for NAPI support
2450 * @dev : pointer to the device structure.
2451 * @budget : The number of packets that were budgeted to be processed
2452 * during one pass through the 'Poll" function.
2454 * Comes into picture only if NAPI support has been incorporated. It does
2455 * the same thing that rx_intr_handler does, but not in a interrupt context
2456 * also It will process only a given number of packets.
2458 * 0 on success and 1 if there are No Rx packets to be processed.
2461 #if defined(CONFIG_S2IO_NAPI)
2462 static int s2io_poll(struct net_device *dev, int *budget)
2464 nic_t *nic = dev->priv;
2465 int pkt_cnt = 0, org_pkts_to_process;
2466 mac_info_t *mac_control;
2467 struct config_param *config;
2468 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2472 atomic_inc(&nic->isr_cnt);
2473 mac_control = &nic->mac_control;
2474 config = &nic->config;
2476 nic->pkts_to_process = *budget;
2477 if (nic->pkts_to_process > dev->quota)
2478 nic->pkts_to_process = dev->quota;
2479 org_pkts_to_process = nic->pkts_to_process;
2481 val64 = readq(&bar0->rx_traffic_int);
2482 writeq(val64, &bar0->rx_traffic_int);
2484 for (i = 0; i < config->rx_ring_num; i++) {
2485 rx_intr_handler(&mac_control->rings[i]);
2486 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2487 if (!nic->pkts_to_process) {
2488 /* Quota for the current iteration has been met */
2495 dev->quota -= pkt_cnt;
2497 netif_rx_complete(dev);
2499 for (i = 0; i < config->rx_ring_num; i++) {
2500 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2501 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2502 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2506 /* Re enable the Rx interrupts. */
2507 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
2508 atomic_dec(&nic->isr_cnt);
2512 dev->quota -= pkt_cnt;
2515 for (i = 0; i < config->rx_ring_num; i++) {
2516 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2517 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2518 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2522 atomic_dec(&nic->isr_cnt);
2528 * rx_intr_handler - Rx interrupt handler
2529 * @nic: device private variable.
2531 * If the interrupt is because of a received frame or if the
2532 * receive ring contains fresh as yet un-processed frames,this function is
2533 * called. It picks out the RxD at which place the last Rx processing had
2534 * stopped and sends the skb to the OSM's Rx handler and then increments
2539 static void rx_intr_handler(ring_info_t *ring_data)
2541 nic_t *nic = ring_data->nic;
2542 struct net_device *dev = (struct net_device *) nic->dev;
2543 int get_block, put_block, put_offset;
2544 rx_curr_get_info_t get_info, put_info;
2546 struct sk_buff *skb;
2547 #ifndef CONFIG_S2IO_NAPI
2550 spin_lock(&nic->rx_lock);
2551 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2552 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2553 __FUNCTION__, dev->name);
2554 spin_unlock(&nic->rx_lock);
2558 get_info = ring_data->rx_curr_get_info;
2559 get_block = get_info.block_index;
2560 put_info = ring_data->rx_curr_put_info;
2561 put_block = put_info.block_index;
2562 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2563 #ifndef CONFIG_S2IO_NAPI
2564 spin_lock(&nic->put_lock);
2565 put_offset = ring_data->put_pos;
2566 spin_unlock(&nic->put_lock);
2568 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2571 while (RXD_IS_UP2DT(rxdp)) {
2572 /* If your are next to put index then it's FIFO full condition */
2573 if ((get_block == put_block) &&
2574 (get_info.offset + 1) == put_info.offset) {
2575 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2578 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2580 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2582 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2583 spin_unlock(&nic->rx_lock);
2586 if (nic->rxd_mode == RXD_MODE_1) {
2587 pci_unmap_single(nic->pdev, (dma_addr_t)
2588 ((RxD1_t*)rxdp)->Buffer0_ptr,
2590 HEADER_ETHERNET_II_802_3_SIZE +
2593 PCI_DMA_FROMDEVICE);
2594 } else if (nic->rxd_mode == RXD_MODE_3B) {
2595 pci_unmap_single(nic->pdev, (dma_addr_t)
2596 ((RxD3_t*)rxdp)->Buffer0_ptr,
2597 BUF0_LEN, PCI_DMA_FROMDEVICE);
2598 pci_unmap_single(nic->pdev, (dma_addr_t)
2599 ((RxD3_t*)rxdp)->Buffer1_ptr,
2600 BUF1_LEN, PCI_DMA_FROMDEVICE);
2601 pci_unmap_single(nic->pdev, (dma_addr_t)
2602 ((RxD3_t*)rxdp)->Buffer2_ptr,
2604 PCI_DMA_FROMDEVICE);
2606 pci_unmap_single(nic->pdev, (dma_addr_t)
2607 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2608 PCI_DMA_FROMDEVICE);
2609 pci_unmap_single(nic->pdev, (dma_addr_t)
2610 ((RxD3_t*)rxdp)->Buffer1_ptr,
2612 PCI_DMA_FROMDEVICE);
2613 pci_unmap_single(nic->pdev, (dma_addr_t)
2614 ((RxD3_t*)rxdp)->Buffer2_ptr,
2615 dev->mtu, PCI_DMA_FROMDEVICE);
2617 rx_osm_handler(ring_data, rxdp);
2619 ring_data->rx_curr_get_info.offset = get_info.offset;
2620 rxdp = ring_data->rx_blocks[get_block].
2621 rxds[get_info.offset].virt_addr;
2622 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2623 get_info.offset = 0;
2624 ring_data->rx_curr_get_info.offset = get_info.offset;
2626 if (get_block == ring_data->block_count)
2628 ring_data->rx_curr_get_info.block_index = get_block;
2629 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2632 #ifdef CONFIG_S2IO_NAPI
2633 nic->pkts_to_process -= 1;
2634 if (!nic->pkts_to_process)
2638 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2642 spin_unlock(&nic->rx_lock);
2646 * tx_intr_handler - Transmit interrupt handler
2647 * @nic : device private variable
2649 * If an interrupt was raised to indicate DMA complete of the
2650 * Tx packet, this function is called. It identifies the last TxD
2651 * whose buffer was freed and frees all skbs whose data have already
2652 * DMA'ed into the NICs internal memory.
2657 static void tx_intr_handler(fifo_info_t *fifo_data)
2659 nic_t *nic = fifo_data->nic;
2660 struct net_device *dev = (struct net_device *) nic->dev;
2661 tx_curr_get_info_t get_info, put_info;
2662 struct sk_buff *skb;
2666 get_info = fifo_data->tx_curr_get_info;
2667 put_info = fifo_data->tx_curr_put_info;
2668 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2670 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2671 (get_info.offset != put_info.offset) &&
2672 (txdlp->Host_Control)) {
2673 /* Check for TxD errors */
2674 if (txdlp->Control_1 & TXD_T_CODE) {
2675 unsigned long long err;
2676 err = txdlp->Control_1 & TXD_T_CODE;
2677 if ((err >> 48) == 0xA) {
2678 DBG_PRINT(TX_DBG, "TxD returned due \
2679 to loss of link\n");
2682 DBG_PRINT(ERR_DBG, "***TxD error \
2687 skb = (struct sk_buff *) ((unsigned long)
2688 txdlp->Host_Control);
2690 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2692 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2696 frg_cnt = skb_shinfo(skb)->nr_frags;
2697 nic->tx_pkt_count++;
2699 pci_unmap_single(nic->pdev, (dma_addr_t)
2700 txdlp->Buffer_Pointer,
2701 skb->len - skb->data_len,
2707 for (j = 0; j < frg_cnt; j++, txdlp++) {
2709 &skb_shinfo(skb)->frags[j];
2710 if (!txdlp->Buffer_Pointer)
2712 pci_unmap_page(nic->pdev,
2722 (sizeof(TxD_t) * fifo_data->max_txds));
2724 /* Updating the statistics block */
2725 nic->stats.tx_bytes += skb->len;
2726 dev_kfree_skb_irq(skb);
2729 get_info.offset %= get_info.fifo_len + 1;
2730 txdlp = (TxD_t *) fifo_data->list_info
2731 [get_info.offset].list_virt_addr;
2732 fifo_data->tx_curr_get_info.offset =
2736 spin_lock(&nic->tx_lock);
2737 if (netif_queue_stopped(dev))
2738 netif_wake_queue(dev);
2739 spin_unlock(&nic->tx_lock);
2743 * alarm_intr_handler - Alarm Interrrupt handler
2744 * @nic: device private variable
2745 * Description: If the interrupt was neither because of Rx packet or Tx
2746 * complete, this function is called. If the interrupt was to indicate
2747 * a loss of link, the OSM link status handler is invoked for any other
2748 * alarm interrupt the block that raised the interrupt is displayed
2749 * and a H/W reset is issued.
2754 static void alarm_intr_handler(struct s2io_nic *nic)
2756 struct net_device *dev = (struct net_device *) nic->dev;
2757 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2758 register u64 val64 = 0, err_reg = 0;
2760 /* Handling link status change error Intr */
2761 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2762 err_reg = readq(&bar0->mac_rmac_err_reg);
2763 writeq(err_reg, &bar0->mac_rmac_err_reg);
2764 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2765 schedule_work(&nic->set_link_task);
2769 /* Handling Ecc errors */
2770 val64 = readq(&bar0->mc_err_reg);
2771 writeq(val64, &bar0->mc_err_reg);
2772 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2773 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
2774 nic->mac_control.stats_info->sw_stat.
2776 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
2778 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
2779 if (nic->device_type != XFRAME_II_DEVICE) {
2780 /* Reset XframeI only if critical error */
2781 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
2782 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2783 netif_stop_queue(dev);
2784 schedule_work(&nic->rst_timer_task);
2788 nic->mac_control.stats_info->sw_stat.
2793 /* In case of a serious error, the device will be Reset. */
2794 val64 = readq(&bar0->serr_source);
2795 if (val64 & SERR_SOURCE_ANY) {
2796 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2797 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
2798 (unsigned long long)val64);
2799 netif_stop_queue(dev);
2800 schedule_work(&nic->rst_timer_task);
2804 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2805 * Error occurs, the adapter will be recycled by disabling the
2806 * adapter enable bit and enabling it again after the device
2807 * becomes Quiescent.
2809 val64 = readq(&bar0->pcc_err_reg);
2810 writeq(val64, &bar0->pcc_err_reg);
2811 if (val64 & PCC_FB_ECC_DB_ERR) {
2812 u64 ac = readq(&bar0->adapter_control);
2813 ac &= ~(ADAPTER_CNTL_EN);
2814 writeq(ac, &bar0->adapter_control);
2815 ac = readq(&bar0->adapter_control);
2816 schedule_work(&nic->set_link_task);
2819 /* Other type of interrupts are not being handled now, TODO */
2823 * wait_for_cmd_complete - waits for a command to complete.
2824 * @sp : private member of the device structure, which is a pointer to the
2825 * s2io_nic structure.
2826 * Description: Function that waits for a command to Write into RMAC
2827 * ADDR DATA registers to be completed and returns either success or
2828 * error depending on whether the command was complete or not.
2830 * SUCCESS on success and FAILURE on failure.
2833 static int wait_for_cmd_complete(nic_t * sp)
2835 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2836 int ret = FAILURE, cnt = 0;
2840 val64 = readq(&bar0->rmac_addr_cmd_mem);
2841 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2854 * s2io_reset - Resets the card.
2855 * @sp : private member of the device structure.
2856 * Description: Function to Reset the card. This function then also
2857 * restores the previously saved PCI configuration space registers as
2858 * the card reset also resets the configuration space.
2863 void s2io_reset(nic_t * sp)
2865 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2869 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
2870 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
2872 val64 = SW_RESET_ALL;
2873 writeq(val64, &bar0->sw_reset);
2876 * At this stage, if the PCI write is indeed completed, the
2877 * card is reset and so is the PCI Config space of the device.
2878 * So a read cannot be issued at this stage on any of the
2879 * registers to ensure the write into "sw_reset" register
2881 * Question: Is there any system call that will explicitly force
2882 * all the write commands still pending on the bus to be pushed
2884 * As of now I'am just giving a 250ms delay and hoping that the
2885 * PCI write to sw_reset register is done by this time.
2889 /* Restore the PCI state saved during initialization. */
2890 pci_restore_state(sp->pdev);
2891 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
2897 /* Set swapper to enable I/O register access */
2898 s2io_set_swapper(sp);
2900 /* Restore the MSIX table entries from local variables */
2901 restore_xmsi_data(sp);
2903 /* Clear certain PCI/PCI-X fields after reset */
2904 if (sp->device_type == XFRAME_II_DEVICE) {
2905 /* Clear parity err detect bit */
2906 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
2908 /* Clearing PCIX Ecc status register */
2909 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
2911 /* Clearing PCI_STATUS error reflected here */
2912 writeq(BIT(62), &bar0->txpic_int_reg);
2915 /* Reset device statistics maintained by OS */
2916 memset(&sp->stats, 0, sizeof (struct net_device_stats));
2918 /* SXE-002: Configure link and activity LED to turn it off */
2919 subid = sp->pdev->subsystem_device;
2920 if (((subid & 0xFF) >= 0x07) &&
2921 (sp->device_type == XFRAME_I_DEVICE)) {
2922 val64 = readq(&bar0->gpio_control);
2923 val64 |= 0x0000800000000000ULL;
2924 writeq(val64, &bar0->gpio_control);
2925 val64 = 0x0411040400000000ULL;
2926 writeq(val64, (void __iomem *)bar0 + 0x2700);
2930 * Clear spurious ECC interrupts that would have occured on
2931 * XFRAME II cards after reset.
2933 if (sp->device_type == XFRAME_II_DEVICE) {
2934 val64 = readq(&bar0->pcc_err_reg);
2935 writeq(val64, &bar0->pcc_err_reg);
2938 sp->device_enabled_once = FALSE;
2942 * s2io_set_swapper - to set the swapper controle on the card
2943 * @sp : private member of the device structure,
2944 * pointer to the s2io_nic structure.
2945 * Description: Function to set the swapper control on the card
2946 * correctly depending on the 'endianness' of the system.
2948 * SUCCESS on success and FAILURE on failure.
2951 int s2io_set_swapper(nic_t * sp)
2953 struct net_device *dev = sp->dev;
2954 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2955 u64 val64, valt, valr;
2958 * Set proper endian settings and verify the same by reading
2959 * the PIF Feed-back register.
2962 val64 = readq(&bar0->pif_rd_swapper_fb);
2963 if (val64 != 0x0123456789ABCDEFULL) {
2965 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
2966 0x8100008181000081ULL, /* FE=1, SE=0 */
2967 0x4200004242000042ULL, /* FE=0, SE=1 */
2968 0}; /* FE=0, SE=0 */
2971 writeq(value[i], &bar0->swapper_ctrl);
2972 val64 = readq(&bar0->pif_rd_swapper_fb);
2973 if (val64 == 0x0123456789ABCDEFULL)
2978 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2980 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2981 (unsigned long long) val64);
2986 valr = readq(&bar0->swapper_ctrl);
2989 valt = 0x0123456789ABCDEFULL;
2990 writeq(valt, &bar0->xmsi_address);
2991 val64 = readq(&bar0->xmsi_address);
2995 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
2996 0x0081810000818100ULL, /* FE=1, SE=0 */
2997 0x0042420000424200ULL, /* FE=0, SE=1 */
2998 0}; /* FE=0, SE=0 */
3001 writeq((value[i] | valr), &bar0->swapper_ctrl);
3002 writeq(valt, &bar0->xmsi_address);
3003 val64 = readq(&bar0->xmsi_address);
3009 unsigned long long x = val64;
3010 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3011 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3015 val64 = readq(&bar0->swapper_ctrl);
3016 val64 &= 0xFFFF000000000000ULL;
3020 * The device by default set to a big endian format, so a
3021 * big endian driver need not set anything.
3023 val64 |= (SWAPPER_CTRL_TXP_FE |
3024 SWAPPER_CTRL_TXP_SE |
3025 SWAPPER_CTRL_TXD_R_FE |
3026 SWAPPER_CTRL_TXD_W_FE |
3027 SWAPPER_CTRL_TXF_R_FE |
3028 SWAPPER_CTRL_RXD_R_FE |
3029 SWAPPER_CTRL_RXD_W_FE |
3030 SWAPPER_CTRL_RXF_W_FE |
3031 SWAPPER_CTRL_XMSI_FE |
3032 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3033 if (sp->intr_type == INTA)
3034 val64 |= SWAPPER_CTRL_XMSI_SE;
3035 writeq(val64, &bar0->swapper_ctrl);
3038 * Initially we enable all bits to make it accessible by the
3039 * driver, then we selectively enable only those bits that
3042 val64 |= (SWAPPER_CTRL_TXP_FE |
3043 SWAPPER_CTRL_TXP_SE |
3044 SWAPPER_CTRL_TXD_R_FE |
3045 SWAPPER_CTRL_TXD_R_SE |
3046 SWAPPER_CTRL_TXD_W_FE |
3047 SWAPPER_CTRL_TXD_W_SE |
3048 SWAPPER_CTRL_TXF_R_FE |
3049 SWAPPER_CTRL_RXD_R_FE |
3050 SWAPPER_CTRL_RXD_R_SE |
3051 SWAPPER_CTRL_RXD_W_FE |
3052 SWAPPER_CTRL_RXD_W_SE |
3053 SWAPPER_CTRL_RXF_W_FE |
3054 SWAPPER_CTRL_XMSI_FE |
3055 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3056 if (sp->intr_type == INTA)
3057 val64 |= SWAPPER_CTRL_XMSI_SE;
3058 writeq(val64, &bar0->swapper_ctrl);
3060 val64 = readq(&bar0->swapper_ctrl);
3063 * Verifying if endian settings are accurate by reading a
3064 * feedback register.
3066 val64 = readq(&bar0->pif_rd_swapper_fb);
3067 if (val64 != 0x0123456789ABCDEFULL) {
3068 /* Endian settings are incorrect, calls for another dekko. */
3069 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3071 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3072 (unsigned long long) val64);
3079 static int wait_for_msix_trans(nic_t *nic, int i)
3081 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3083 int ret = 0, cnt = 0;
3086 val64 = readq(&bar0->xmsi_access);
3087 if (!(val64 & BIT(15)))
3093 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3100 void restore_xmsi_data(nic_t *nic)
3102 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3106 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3107 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3108 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3109 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3110 writeq(val64, &bar0->xmsi_access);
3111 if (wait_for_msix_trans(nic, i)) {
3112 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3118 static void store_xmsi_data(nic_t *nic)
3120 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3121 u64 val64, addr, data;
3124 /* Store and display */
3125 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3126 val64 = (BIT(15) | vBIT(i, 26, 6));
3127 writeq(val64, &bar0->xmsi_access);
3128 if (wait_for_msix_trans(nic, i)) {
3129 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3132 addr = readq(&bar0->xmsi_address);
3133 data = readq(&bar0->xmsi_data);
3135 nic->msix_info[i].addr = addr;
3136 nic->msix_info[i].data = data;
3141 int s2io_enable_msi(nic_t *nic)
3143 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3144 u16 msi_ctrl, msg_val;
3145 struct config_param *config = &nic->config;
3146 struct net_device *dev = nic->dev;
3147 u64 val64, tx_mat, rx_mat;
3150 val64 = readq(&bar0->pic_control);
3152 writeq(val64, &bar0->pic_control);
3154 err = pci_enable_msi(nic->pdev);
3156 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3162 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3163 * for interrupt handling.
3165 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3167 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3168 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3170 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3172 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3174 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3175 tx_mat = readq(&bar0->tx_mat0_n[0]);
3176 for (i=0; i<config->tx_fifo_num; i++) {
3177 tx_mat |= TX_MAT_SET(i, 1);
3179 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3181 rx_mat = readq(&bar0->rx_mat);
3182 for (i=0; i<config->rx_ring_num; i++) {
3183 rx_mat |= RX_MAT_SET(i, 1);
3185 writeq(rx_mat, &bar0->rx_mat);
3187 dev->irq = nic->pdev->irq;
3191 int s2io_enable_msi_x(nic_t *nic)
3193 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3195 u16 msi_control; /* Temp variable */
3196 int ret, i, j, msix_indx = 1;
3198 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3200 if (nic->entries == NULL) {
3201 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3204 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3207 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3209 if (nic->s2io_entries == NULL) {
3210 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3211 kfree(nic->entries);
3214 memset(nic->s2io_entries, 0,
3215 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3217 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3218 nic->entries[i].entry = i;
3219 nic->s2io_entries[i].entry = i;
3220 nic->s2io_entries[i].arg = NULL;
3221 nic->s2io_entries[i].in_use = 0;
3224 tx_mat = readq(&bar0->tx_mat0_n[0]);
3225 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3226 tx_mat |= TX_MAT_SET(i, msix_indx);
3227 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3228 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3229 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3231 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3233 if (!nic->config.bimodal) {
3234 rx_mat = readq(&bar0->rx_mat);
3235 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3236 rx_mat |= RX_MAT_SET(j, msix_indx);
3237 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3238 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3239 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3241 writeq(rx_mat, &bar0->rx_mat);
3243 tx_mat = readq(&bar0->tx_mat0_n[7]);
3244 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3245 tx_mat |= TX_MAT_SET(i, msix_indx);
3246 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3247 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3248 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3250 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3253 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3255 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3256 kfree(nic->entries);
3257 kfree(nic->s2io_entries);
3258 nic->entries = NULL;
3259 nic->s2io_entries = NULL;
3264 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3265 * in the herc NIC. (Temp change, needs to be removed later)
3267 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3268 msi_control |= 0x1; /* Enable MSI */
3269 pci_write_config_word(nic->pdev, 0x42, msi_control);
3274 /* ********************************************************* *
3275 * Functions defined below concern the OS part of the driver *
3276 * ********************************************************* */
3279 * s2io_open - open entry point of the driver
3280 * @dev : pointer to the device structure.
3282 * This function is the open entry point of the driver. It mainly calls a
3283 * function to allocate Rx buffers and inserts them into the buffer
3284 * descriptors and then enables the Rx part of the NIC.
3286 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3290 static int s2io_open(struct net_device *dev)
3292 nic_t *sp = dev->priv;
3295 u16 msi_control; /* Temp variable */
3298 * Make sure you have link off by default every time
3299 * Nic is initialized
3301 netif_carrier_off(dev);
3302 sp->last_link_state = 0;
3304 /* Initialize H/W and enable interrupts */
3305 if (s2io_card_up(sp)) {
3306 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3309 goto hw_init_failed;
3312 /* Store the values of the MSIX table in the nic_t structure */
3313 store_xmsi_data(sp);
3315 /* After proper initialization of H/W, register ISR */
3316 if (sp->intr_type == MSI) {
3317 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3318 SA_SHIRQ, sp->name, dev);
3320 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3321 failed\n", dev->name);
3322 goto isr_registration_failed;
3325 if (sp->intr_type == MSI_X) {
3326 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3327 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3328 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3330 err = request_irq(sp->entries[i].vector,
3331 s2io_msix_fifo_handle, 0, sp->desc1,
3332 sp->s2io_entries[i].arg);
3333 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3334 sp->msix_info[i].addr);
3336 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3338 err = request_irq(sp->entries[i].vector,
3339 s2io_msix_ring_handle, 0, sp->desc2,
3340 sp->s2io_entries[i].arg);
3341 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3342 sp->msix_info[i].addr);
3345 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3346 failed\n", dev->name, i);
3347 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3348 goto isr_registration_failed;
3350 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3353 if (sp->intr_type == INTA) {
3354 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3357 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3359 goto isr_registration_failed;
3363 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3364 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3366 goto setting_mac_address_failed;
3369 netif_start_queue(dev);
3372 setting_mac_address_failed:
3373 if (sp->intr_type != MSI_X)
3374 free_irq(sp->pdev->irq, dev);
3375 isr_registration_failed:
3376 del_timer_sync(&sp->alarm_timer);
3377 if (sp->intr_type == MSI_X) {
3378 if (sp->device_type == XFRAME_II_DEVICE) {
3379 for (i=1; (sp->s2io_entries[i].in_use ==
3380 MSIX_REGISTERED_SUCCESS); i++) {
3381 int vector = sp->entries[i].vector;
3382 void *arg = sp->s2io_entries[i].arg;
3384 free_irq(vector, arg);
3386 pci_disable_msix(sp->pdev);
3389 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3390 msi_control &= 0xFFFE; /* Disable MSI */
3391 pci_write_config_word(sp->pdev, 0x42, msi_control);
3394 else if (sp->intr_type == MSI)
3395 pci_disable_msi(sp->pdev);
3398 if (sp->intr_type == MSI_X) {
3401 if (sp->s2io_entries)
3402 kfree(sp->s2io_entries);
3408 * s2io_close -close entry point of the driver
3409 * @dev : device pointer.
3411 * This is the stop entry point of the driver. It needs to undo exactly
3412 * whatever was done by the open entry point,thus it's usually referred to
3413 * as the close function.Among other things this function mainly stops the
3414 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3416 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3420 static int s2io_close(struct net_device *dev)
3422 nic_t *sp = dev->priv;
3426 flush_scheduled_work();
3427 netif_stop_queue(dev);
3428 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3431 if (sp->intr_type == MSI_X) {
3432 if (sp->device_type == XFRAME_II_DEVICE) {
3433 for (i=1; (sp->s2io_entries[i].in_use ==
3434 MSIX_REGISTERED_SUCCESS); i++) {
3435 int vector = sp->entries[i].vector;
3436 void *arg = sp->s2io_entries[i].arg;
3438 free_irq(vector, arg);
3440 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3441 msi_control &= 0xFFFE; /* Disable MSI */
3442 pci_write_config_word(sp->pdev, 0x42, msi_control);
3444 pci_disable_msix(sp->pdev);
3448 free_irq(sp->pdev->irq, dev);
3449 if (sp->intr_type == MSI)
3450 pci_disable_msi(sp->pdev);
3452 sp->device_close_flag = TRUE; /* Device is shut down. */
3457 * s2io_xmit - Tx entry point of te driver
3458 * @skb : the socket buffer containing the Tx data.
3459 * @dev : device pointer.
3461 * This function is the Tx entry point of the driver. S2IO NIC supports
3462 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3463 * NOTE: when device cant queue the pkt,just the trans_start variable will
3466 * 0 on success & 1 on failure.
3469 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3471 nic_t *sp = dev->priv;
3472 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3475 TxFIFO_element_t __iomem *tx_fifo;
3476 unsigned long flags;
3481 int vlan_priority = 0;
3482 mac_info_t *mac_control;
3483 struct config_param *config;
3485 mac_control = &sp->mac_control;
3486 config = &sp->config;
3488 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3489 spin_lock_irqsave(&sp->tx_lock, flags);
3490 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3491 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3493 spin_unlock_irqrestore(&sp->tx_lock, flags);
3500 /* Get Fifo number to Transmit based on vlan priority */
3501 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3502 vlan_tag = vlan_tx_tag_get(skb);
3503 vlan_priority = vlan_tag >> 13;
3504 queue = config->fifo_mapping[vlan_priority];
3507 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3508 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3509 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3512 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3513 /* Avoid "put" pointer going beyond "get" pointer */
3514 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
3515 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3516 netif_stop_queue(dev);
3518 spin_unlock_irqrestore(&sp->tx_lock, flags);
3522 /* A buffer with no data will be dropped */
3524 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3526 spin_unlock_irqrestore(&sp->tx_lock, flags);
3531 mss = skb_shinfo(skb)->tso_size;
3533 txdp->Control_1 |= TXD_TCP_LSO_EN;
3534 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3538 frg_cnt = skb_shinfo(skb)->nr_frags;
3539 frg_len = skb->len - skb->data_len;
3541 txdp->Buffer_Pointer = pci_map_single
3542 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3543 txdp->Host_Control = (unsigned long) skb;
3544 if (skb->ip_summed == CHECKSUM_HW) {
3546 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3550 txdp->Control_2 |= config->tx_intr_type;
3552 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3553 txdp->Control_2 |= TXD_VLAN_ENABLE;
3554 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3557 txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
3558 TXD_GATHER_CODE_FIRST);
3559 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3561 /* For fragmented SKB. */
3562 for (i = 0; i < frg_cnt; i++) {
3563 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3564 /* A '0' length fragment will be ignored */
3568 txdp->Buffer_Pointer = (u64) pci_map_page
3569 (sp->pdev, frag->page, frag->page_offset,
3570 frag->size, PCI_DMA_TODEVICE);
3571 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
3573 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3575 tx_fifo = mac_control->tx_FIFO_start[queue];
3576 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3577 writeq(val64, &tx_fifo->TxDL_Pointer);
3579 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3584 val64 |= TX_FIFO_SPECIAL_FUNC;
3586 writeq(val64, &tx_fifo->List_Control);
3591 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3592 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3594 /* Avoid "put" pointer going beyond "get" pointer */
3595 if (((put_off + 1) % queue_len) == get_off) {
3597 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3599 netif_stop_queue(dev);
3602 dev->trans_start = jiffies;
3603 spin_unlock_irqrestore(&sp->tx_lock, flags);
3609 s2io_alarm_handle(unsigned long data)
3611 nic_t *sp = (nic_t *)data;
3613 alarm_intr_handler(sp);
3614 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3618 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3620 struct net_device *dev = (struct net_device *) dev_id;
3621 nic_t *sp = dev->priv;
3624 mac_info_t *mac_control;
3625 struct config_param *config;
3627 atomic_inc(&sp->isr_cnt);
3628 mac_control = &sp->mac_control;
3629 config = &sp->config;
3630 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3632 /* If Intr is because of Rx Traffic */
3633 for (i = 0; i < config->rx_ring_num; i++)
3634 rx_intr_handler(&mac_control->rings[i]);
3636 /* If Intr is because of Tx Traffic */
3637 for (i = 0; i < config->tx_fifo_num; i++)
3638 tx_intr_handler(&mac_control->fifos[i]);
3641 * If the Rx buffer count is below the panic threshold then
3642 * reallocate the buffers from the interrupt handler itself,
3643 * else schedule a tasklet to reallocate the buffers.
3645 for (i = 0; i < config->rx_ring_num; i++) {
3646 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3647 int level = rx_buffer_level(sp, rxb_size, i);
3649 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3650 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3651 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3652 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3653 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3655 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3656 clear_bit(0, (&sp->tasklet_status));
3657 atomic_dec(&sp->isr_cnt);
3660 clear_bit(0, (&sp->tasklet_status));
3661 } else if (level == LOW) {
3662 tasklet_schedule(&sp->task);
3666 atomic_dec(&sp->isr_cnt);
3671 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
3673 ring_info_t *ring = (ring_info_t *)dev_id;
3674 nic_t *sp = ring->nic;
3675 int rxb_size, level, rng_n;
3677 atomic_inc(&sp->isr_cnt);
3678 rx_intr_handler(ring);
3680 rng_n = ring->ring_no;
3681 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3682 level = rx_buffer_level(sp, rxb_size, rng_n);
3684 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3686 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3687 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3688 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3689 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3691 clear_bit(0, (&sp->tasklet_status));
3694 clear_bit(0, (&sp->tasklet_status));
3695 } else if (level == LOW) {
3696 tasklet_schedule(&sp->task);
3698 atomic_dec(&sp->isr_cnt);
3704 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3706 fifo_info_t *fifo = (fifo_info_t *)dev_id;
3707 nic_t *sp = fifo->nic;
3709 atomic_inc(&sp->isr_cnt);
3710 tx_intr_handler(fifo);
3711 atomic_dec(&sp->isr_cnt);
3715 static void s2io_txpic_intr_handle(nic_t *sp)
3717 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3720 val64 = readq(&bar0->pic_int_status);
3721 if (val64 & PIC_INT_GPIO) {
3722 val64 = readq(&bar0->gpio_int_reg);
3723 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3724 (val64 & GPIO_INT_REG_LINK_UP)) {
3725 val64 |= GPIO_INT_REG_LINK_DOWN;
3726 val64 |= GPIO_INT_REG_LINK_UP;
3727 writeq(val64, &bar0->gpio_int_reg);
3731 if (((sp->last_link_state == LINK_UP) &&
3732 (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3733 ((sp->last_link_state == LINK_DOWN) &&
3734 (val64 & GPIO_INT_REG_LINK_UP))) {
3735 val64 = readq(&bar0->gpio_int_mask);
3736 val64 |= GPIO_INT_MASK_LINK_DOWN;
3737 val64 |= GPIO_INT_MASK_LINK_UP;
3738 writeq(val64, &bar0->gpio_int_mask);
3739 s2io_set_link((unsigned long)sp);
3742 if (sp->last_link_state == LINK_UP) {
3743 /*enable down interrupt */
3744 val64 = readq(&bar0->gpio_int_mask);
3745 /* unmasks link down intr */
3746 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
3747 /* masks link up intr */
3748 val64 |= GPIO_INT_MASK_LINK_UP;
3749 writeq(val64, &bar0->gpio_int_mask);
3751 /*enable UP Interrupt */
3752 val64 = readq(&bar0->gpio_int_mask);
3753 /* unmasks link up interrupt */
3754 val64 &= ~GPIO_INT_MASK_LINK_UP;
3755 /* masks link down interrupt */
3756 val64 |= GPIO_INT_MASK_LINK_DOWN;
3757 writeq(val64, &bar0->gpio_int_mask);
3763 * s2io_isr - ISR handler of the device .
3764 * @irq: the irq of the device.
3765 * @dev_id: a void pointer to the dev structure of the NIC.
3766 * @pt_regs: pointer to the registers pushed on the stack.
3767 * Description: This function is the ISR handler of the device. It
3768 * identifies the reason for the interrupt and calls the relevant
3769 * service routines. As a contongency measure, this ISR allocates the
3770 * recv buffers, if their numbers are below the panic value which is
3771 * presently set to 25% of the original number of rcv buffers allocated.
3773 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
3774 * IRQ_NONE: will be returned if interrupt is not from our device
3776 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3778 struct net_device *dev = (struct net_device *) dev_id;
3779 nic_t *sp = dev->priv;
3780 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3782 u64 reason = 0, val64;
3783 mac_info_t *mac_control;
3784 struct config_param *config;
3786 atomic_inc(&sp->isr_cnt);
3787 mac_control = &sp->mac_control;
3788 config = &sp->config;
3791 * Identify the cause for interrupt and call the appropriate
3792 * interrupt handler. Causes for the interrupt could be;
3796 * 4. Error in any functional blocks of the NIC.
3798 reason = readq(&bar0->general_int_status);
3801 /* The interrupt was not raised by Xena. */
3802 atomic_dec(&sp->isr_cnt);
3806 #ifdef CONFIG_S2IO_NAPI
3807 if (reason & GEN_INTR_RXTRAFFIC) {
3808 if (netif_rx_schedule_prep(dev)) {
3809 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3811 __netif_rx_schedule(dev);
3815 /* If Intr is because of Rx Traffic */
3816 if (reason & GEN_INTR_RXTRAFFIC) {
3818 * rx_traffic_int reg is an R1 register, writing all 1's
3819 * will ensure that the actual interrupt causing bit get's
3820 * cleared and hence a read can be avoided.
3822 val64 = 0xFFFFFFFFFFFFFFFFULL;
3823 writeq(val64, &bar0->rx_traffic_int);
3824 for (i = 0; i < config->rx_ring_num; i++) {
3825 rx_intr_handler(&mac_control->rings[i]);
3830 /* If Intr is because of Tx Traffic */
3831 if (reason & GEN_INTR_TXTRAFFIC) {
3833 * tx_traffic_int reg is an R1 register, writing all 1's
3834 * will ensure that the actual interrupt causing bit get's
3835 * cleared and hence a read can be avoided.
3837 val64 = 0xFFFFFFFFFFFFFFFFULL;
3838 writeq(val64, &bar0->tx_traffic_int);
3840 for (i = 0; i < config->tx_fifo_num; i++)
3841 tx_intr_handler(&mac_control->fifos[i]);
3844 if (reason & GEN_INTR_TXPIC)
3845 s2io_txpic_intr_handle(sp);
3847 * If the Rx buffer count is below the panic threshold then
3848 * reallocate the buffers from the interrupt handler itself,
3849 * else schedule a tasklet to reallocate the buffers.
3851 #ifndef CONFIG_S2IO_NAPI
3852 for (i = 0; i < config->rx_ring_num; i++) {
3854 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3855 int level = rx_buffer_level(sp, rxb_size, i);
3857 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3858 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3859 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3860 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3861 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3863 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3864 clear_bit(0, (&sp->tasklet_status));
3865 atomic_dec(&sp->isr_cnt);
3868 clear_bit(0, (&sp->tasklet_status));
3869 } else if (level == LOW) {
3870 tasklet_schedule(&sp->task);
3875 atomic_dec(&sp->isr_cnt);
3882 static void s2io_updt_stats(nic_t *sp)
3884 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3888 if (atomic_read(&sp->card_state) == CARD_UP) {
3889 /* Apprx 30us on a 133 MHz bus */
3890 val64 = SET_UPDT_CLICKS(10) |
3891 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3892 writeq(val64, &bar0->stat_cfg);
3895 val64 = readq(&bar0->stat_cfg);
3896 if (!(val64 & BIT(0)))
3900 break; /* Updt failed */
3906 * s2io_get_stats - Updates the device statistics structure.
3907 * @dev : pointer to the device structure.
3909 * This function updates the device statistics structure in the s2io_nic
3910 * structure and returns a pointer to the same.
3912 * pointer to the updated net_device_stats structure.
3915 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
3917 nic_t *sp = dev->priv;
3918 mac_info_t *mac_control;
3919 struct config_param *config;
3922 mac_control = &sp->mac_control;
3923 config = &sp->config;
3925 /* Configure Stats for immediate updt */
3926 s2io_updt_stats(sp);
3928 sp->stats.tx_packets =
3929 le32_to_cpu(mac_control->stats_info->tmac_frms);
3930 sp->stats.tx_errors =
3931 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3932 sp->stats.rx_errors =
3933 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3934 sp->stats.multicast =
3935 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
3936 sp->stats.rx_length_errors =
3937 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
3939 return (&sp->stats);
3943 * s2io_set_multicast - entry point for multicast address enable/disable.
3944 * @dev : pointer to the device structure
3946 * This function is a driver entry point which gets called by the kernel
3947 * whenever multicast addresses must be enabled/disabled. This also gets
3948 * called to set/reset promiscuous mode. Depending on the deivce flag, we
3949 * determine, if multicast address must be enabled or if promiscuous mode
3950 * is to be disabled etc.
3955 static void s2io_set_multicast(struct net_device *dev)
3958 struct dev_mc_list *mclist;
3959 nic_t *sp = dev->priv;
3960 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3961 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3963 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3966 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3967 /* Enable all Multicast addresses */
3968 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3969 &bar0->rmac_addr_data0_mem);
3970 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3971 &bar0->rmac_addr_data1_mem);
3972 val64 = RMAC_ADDR_CMD_MEM_WE |
3973 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3974 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3975 writeq(val64, &bar0->rmac_addr_cmd_mem);
3976 /* Wait till command completes */
3977 wait_for_cmd_complete(sp);
3980 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3981 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3982 /* Disable all Multicast addresses */
3983 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3984 &bar0->rmac_addr_data0_mem);
3985 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3986 &bar0->rmac_addr_data1_mem);
3987 val64 = RMAC_ADDR_CMD_MEM_WE |
3988 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3989 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3990 writeq(val64, &bar0->rmac_addr_cmd_mem);
3991 /* Wait till command completes */
3992 wait_for_cmd_complete(sp);
3995 sp->all_multi_pos = 0;
3998 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
3999 /* Put the NIC into promiscuous mode */
4000 add = &bar0->mac_cfg;
4001 val64 = readq(&bar0->mac_cfg);
4002 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4004 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4005 writel((u32) val64, add);
4006 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4007 writel((u32) (val64 >> 32), (add + 4));
4009 val64 = readq(&bar0->mac_cfg);
4010 sp->promisc_flg = 1;
4011 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4013 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4014 /* Remove the NIC from promiscuous mode */
4015 add = &bar0->mac_cfg;
4016 val64 = readq(&bar0->mac_cfg);
4017 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4020 writel((u32) val64, add);
4021 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4022 writel((u32) (val64 >> 32), (add + 4));
4024 val64 = readq(&bar0->mac_cfg);
4025 sp->promisc_flg = 0;
4026 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4030 /* Update individual M_CAST address list */
4031 if ((!sp->m_cast_flg) && dev->mc_count) {
4033 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4034 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4036 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4037 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4041 prev_cnt = sp->mc_addr_count;
4042 sp->mc_addr_count = dev->mc_count;
4044 /* Clear out the previous list of Mc in the H/W. */
4045 for (i = 0; i < prev_cnt; i++) {
4046 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4047 &bar0->rmac_addr_data0_mem);
4048 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4049 &bar0->rmac_addr_data1_mem);
4050 val64 = RMAC_ADDR_CMD_MEM_WE |
4051 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4052 RMAC_ADDR_CMD_MEM_OFFSET
4053 (MAC_MC_ADDR_START_OFFSET + i);
4054 writeq(val64, &bar0->rmac_addr_cmd_mem);
4056 /* Wait for command completes */
4057 if (wait_for_cmd_complete(sp)) {
4058 DBG_PRINT(ERR_DBG, "%s: Adding ",
4060 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4065 /* Create the new Rx filter list and update the same in H/W. */
4066 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4067 i++, mclist = mclist->next) {
4068 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4070 for (j = 0; j < ETH_ALEN; j++) {
4071 mac_addr |= mclist->dmi_addr[j];
4075 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4076 &bar0->rmac_addr_data0_mem);
4077 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4078 &bar0->rmac_addr_data1_mem);
4079 val64 = RMAC_ADDR_CMD_MEM_WE |
4080 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4081 RMAC_ADDR_CMD_MEM_OFFSET
4082 (i + MAC_MC_ADDR_START_OFFSET);
4083 writeq(val64, &bar0->rmac_addr_cmd_mem);
4085 /* Wait for command completes */
4086 if (wait_for_cmd_complete(sp)) {
4087 DBG_PRINT(ERR_DBG, "%s: Adding ",
4089 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4097 * s2io_set_mac_addr - Programs the Xframe mac address
4098 * @dev : pointer to the device structure.
4099 * @addr: a uchar pointer to the new mac address which is to be set.
4100 * Description : This procedure will program the Xframe to receive
4101 * frames with new Mac Address
4102 * Return value: SUCCESS on success and an appropriate (-)ve integer
4103 * as defined in errno.h file on failure.
4106 int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4108 nic_t *sp = dev->priv;
4109 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4110 register u64 val64, mac_addr = 0;
4114 * Set the new MAC address as the new unicast filter and reflect this
4115 * change on the device address registered with the OS. It will be
4118 for (i = 0; i < ETH_ALEN; i++) {
4120 mac_addr |= addr[i];
4123 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4124 &bar0->rmac_addr_data0_mem);
4127 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4128 RMAC_ADDR_CMD_MEM_OFFSET(0);
4129 writeq(val64, &bar0->rmac_addr_cmd_mem);
4130 /* Wait till command completes */
4131 if (wait_for_cmd_complete(sp)) {
4132 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4140 * s2io_ethtool_sset - Sets different link parameters.
4141 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4142 * @info: pointer to the structure with parameters given by ethtool to set
4145 * The function sets different link parameters provided by the user onto
4151 static int s2io_ethtool_sset(struct net_device *dev,
4152 struct ethtool_cmd *info)
4154 nic_t *sp = dev->priv;
4155 if ((info->autoneg == AUTONEG_ENABLE) ||
4156 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4159 s2io_close(sp->dev);
4167 * s2io_ethtol_gset - Return link specific information.
4168 * @sp : private member of the device structure, pointer to the
4169 * s2io_nic structure.
4170 * @info : pointer to the structure with parameters given by ethtool
4171 * to return link information.
4173 * Returns link specific information like speed, duplex etc.. to ethtool.
4175 * return 0 on success.
4178 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4180 nic_t *sp = dev->priv;
4181 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4182 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4183 info->port = PORT_FIBRE;
4184 /* info->transceiver?? TODO */
4186 if (netif_carrier_ok(sp->dev)) {
4187 info->speed = 10000;
4188 info->duplex = DUPLEX_FULL;
4194 info->autoneg = AUTONEG_DISABLE;
4199 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4200 * @sp : private member of the device structure, which is a pointer to the
4201 * s2io_nic structure.
4202 * @info : pointer to the structure with parameters given by ethtool to
4203 * return driver information.
4205 * Returns driver specefic information like name, version etc.. to ethtool.
4210 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4211 struct ethtool_drvinfo *info)
4213 nic_t *sp = dev->priv;
4215 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4216 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4217 strncpy(info->fw_version, "", sizeof(info->fw_version));
4218 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4219 info->regdump_len = XENA_REG_SPACE;
4220 info->eedump_len = XENA_EEPROM_SPACE;
4221 info->testinfo_len = S2IO_TEST_LEN;
4222 info->n_stats = S2IO_STAT_LEN;
4226 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4227 * @sp: private member of the device structure, which is a pointer to the
4228 * s2io_nic structure.
4229 * @regs : pointer to the structure with parameters given by ethtool for
4230 * dumping the registers.
4231 * @reg_space: The input argumnet into which all the registers are dumped.
4233 * Dumps the entire register space of xFrame NIC into the user given
4239 static void s2io_ethtool_gregs(struct net_device *dev,
4240 struct ethtool_regs *regs, void *space)
4244 u8 *reg_space = (u8 *) space;
4245 nic_t *sp = dev->priv;
4247 regs->len = XENA_REG_SPACE;
4248 regs->version = sp->pdev->subsystem_device;
4250 for (i = 0; i < regs->len; i += 8) {
4251 reg = readq(sp->bar0 + i);
4252 memcpy((reg_space + i), ®, 8);
4257 * s2io_phy_id - timer function that alternates adapter LED.
4258 * @data : address of the private member of the device structure, which
4259 * is a pointer to the s2io_nic structure, provided as an u32.
4260 * Description: This is actually the timer function that alternates the
4261 * adapter LED bit of the adapter control bit to set/reset every time on
4262 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4263 * once every second.
4265 static void s2io_phy_id(unsigned long data)
4267 nic_t *sp = (nic_t *) data;
4268 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4272 subid = sp->pdev->subsystem_device;
4273 if ((sp->device_type == XFRAME_II_DEVICE) ||
4274 ((subid & 0xFF) >= 0x07)) {
4275 val64 = readq(&bar0->gpio_control);
4276 val64 ^= GPIO_CTRL_GPIO_0;
4277 writeq(val64, &bar0->gpio_control);
4279 val64 = readq(&bar0->adapter_control);
4280 val64 ^= ADAPTER_LED_ON;
4281 writeq(val64, &bar0->adapter_control);
4284 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4288 * s2io_ethtool_idnic - To physically identify the nic on the system.
4289 * @sp : private member of the device structure, which is a pointer to the
4290 * s2io_nic structure.
4291 * @id : pointer to the structure with identification parameters given by
4293 * Description: Used to physically identify the NIC on the system.
4294 * The Link LED will blink for a time specified by the user for
4296 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4297 * identification is possible only if it's link is up.
4299 * int , returns 0 on success
4302 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4304 u64 val64 = 0, last_gpio_ctrl_val;
4305 nic_t *sp = dev->priv;
4306 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4309 subid = sp->pdev->subsystem_device;
4310 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4311 if ((sp->device_type == XFRAME_I_DEVICE) &&
4312 ((subid & 0xFF) < 0x07)) {
4313 val64 = readq(&bar0->adapter_control);
4314 if (!(val64 & ADAPTER_CNTL_EN)) {
4316 "Adapter Link down, cannot blink LED\n");
4320 if (sp->id_timer.function == NULL) {
4321 init_timer(&sp->id_timer);
4322 sp->id_timer.function = s2io_phy_id;
4323 sp->id_timer.data = (unsigned long) sp;
4325 mod_timer(&sp->id_timer, jiffies);
4327 msleep_interruptible(data * HZ);
4329 msleep_interruptible(MAX_FLICKER_TIME);
4330 del_timer_sync(&sp->id_timer);
4332 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4333 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4334 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4341 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4342 * @sp : private member of the device structure, which is a pointer to the
4343 * s2io_nic structure.
4344 * @ep : pointer to the structure with pause parameters given by ethtool.
4346 * Returns the Pause frame generation and reception capability of the NIC.
4350 static void s2io_ethtool_getpause_data(struct net_device *dev,
4351 struct ethtool_pauseparam *ep)
4354 nic_t *sp = dev->priv;
4355 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4357 val64 = readq(&bar0->rmac_pause_cfg);
4358 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4359 ep->tx_pause = TRUE;
4360 if (val64 & RMAC_PAUSE_RX_ENABLE)
4361 ep->rx_pause = TRUE;
4362 ep->autoneg = FALSE;
4366 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4367 * @sp : private member of the device structure, which is a pointer to the
4368 * s2io_nic structure.
4369 * @ep : pointer to the structure with pause parameters given by ethtool.
4371 * It can be used to set or reset Pause frame generation or reception
4372 * support of the NIC.
4374 * int, returns 0 on Success
4377 static int s2io_ethtool_setpause_data(struct net_device *dev,
4378 struct ethtool_pauseparam *ep)
4381 nic_t *sp = dev->priv;
4382 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4384 val64 = readq(&bar0->rmac_pause_cfg);
4386 val64 |= RMAC_PAUSE_GEN_ENABLE;
4388 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4390 val64 |= RMAC_PAUSE_RX_ENABLE;
4392 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4393 writeq(val64, &bar0->rmac_pause_cfg);
4398 * read_eeprom - reads 4 bytes of data from user given offset.
4399 * @sp : private member of the device structure, which is a pointer to the
4400 * s2io_nic structure.
4401 * @off : offset at which the data must be written
4402 * @data : Its an output parameter where the data read at the given
4405 * Will read 4 bytes of data from the user given offset and return the
4407 * NOTE: Will allow to read only part of the EEPROM visible through the
4410 * -1 on failure and 0 on success.
4413 #define S2IO_DEV_ID 5
4414 static int read_eeprom(nic_t * sp, int off, u64 * data)
4419 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4421 if (sp->device_type == XFRAME_I_DEVICE) {
4422 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4423 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4424 I2C_CONTROL_CNTL_START;
4425 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4427 while (exit_cnt < 5) {
4428 val64 = readq(&bar0->i2c_control);
4429 if (I2C_CONTROL_CNTL_END(val64)) {
4430 *data = I2C_CONTROL_GET_DATA(val64);
4439 if (sp->device_type == XFRAME_II_DEVICE) {
4440 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4441 SPI_CONTROL_BYTECNT(0x3) |
4442 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4443 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4444 val64 |= SPI_CONTROL_REQ;
4445 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4446 while (exit_cnt < 5) {
4447 val64 = readq(&bar0->spi_control);
4448 if (val64 & SPI_CONTROL_NACK) {
4451 } else if (val64 & SPI_CONTROL_DONE) {
4452 *data = readq(&bar0->spi_data);
4465 * write_eeprom - actually writes the relevant part of the data value.
4466 * @sp : private member of the device structure, which is a pointer to the
4467 * s2io_nic structure.
4468 * @off : offset at which the data must be written
4469 * @data : The data that is to be written
4470 * @cnt : Number of bytes of the data that are actually to be written into
4471 * the Eeprom. (max of 3)
4473 * Actually writes the relevant part of the data value into the Eeprom
4474 * through the I2C bus.
4476 * 0 on success, -1 on failure.
4479 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4481 int exit_cnt = 0, ret = -1;
4483 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4485 if (sp->device_type == XFRAME_I_DEVICE) {
4486 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4487 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4488 I2C_CONTROL_CNTL_START;
4489 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4491 while (exit_cnt < 5) {
4492 val64 = readq(&bar0->i2c_control);
4493 if (I2C_CONTROL_CNTL_END(val64)) {
4494 if (!(val64 & I2C_CONTROL_NACK))
4503 if (sp->device_type == XFRAME_II_DEVICE) {
4504 int write_cnt = (cnt == 8) ? 0 : cnt;
4505 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4507 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4508 SPI_CONTROL_BYTECNT(write_cnt) |
4509 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4510 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4511 val64 |= SPI_CONTROL_REQ;
4512 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4513 while (exit_cnt < 5) {
4514 val64 = readq(&bar0->spi_control);
4515 if (val64 & SPI_CONTROL_NACK) {
4518 } else if (val64 & SPI_CONTROL_DONE) {
4530 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4531 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4532 * @eeprom : pointer to the user level structure provided by ethtool,
4533 * containing all relevant information.
4534 * @data_buf : user defined value to be written into Eeprom.
4535 * Description: Reads the values stored in the Eeprom at given offset
4536 * for a given length. Stores these values int the input argument data
4537 * buffer 'data_buf' and returns these to the caller (ethtool.)
4542 static int s2io_ethtool_geeprom(struct net_device *dev,
4543 struct ethtool_eeprom *eeprom, u8 * data_buf)
4547 nic_t *sp = dev->priv;
4549 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4551 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4552 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4554 for (i = 0; i < eeprom->len; i += 4) {
4555 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4556 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4560 memcpy((data_buf + i), &valid, 4);
4566 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4567 * @sp : private member of the device structure, which is a pointer to the
4568 * s2io_nic structure.
4569 * @eeprom : pointer to the user level structure provided by ethtool,
4570 * containing all relevant information.
4571 * @data_buf ; user defined value to be written into Eeprom.
4573 * Tries to write the user provided value in the Eeprom, at the offset
4574 * given by the user.
4576 * 0 on success, -EFAULT on failure.
4579 static int s2io_ethtool_seeprom(struct net_device *dev,
4580 struct ethtool_eeprom *eeprom,
4583 int len = eeprom->len, cnt = 0;
4584 u64 valid = 0, data;
4585 nic_t *sp = dev->priv;
4587 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4589 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4590 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4596 data = (u32) data_buf[cnt] & 0x000000FF;
4598 valid = (u32) (data << 24);
4602 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4604 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4606 "write into the specified offset\n");
4617 * s2io_register_test - reads and writes into all clock domains.
4618 * @sp : private member of the device structure, which is a pointer to the
4619 * s2io_nic structure.
4620 * @data : variable that returns the result of each of the test conducted b
4623 * Read and write into all clock domains. The NIC has 3 clock domains,
4624 * see that registers in all the three regions are accessible.
4629 static int s2io_register_test(nic_t * sp, uint64_t * data)
4631 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4632 u64 val64 = 0, exp_val;
4635 val64 = readq(&bar0->pif_rd_swapper_fb);
4636 if (val64 != 0x123456789abcdefULL) {
4638 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4641 val64 = readq(&bar0->rmac_pause_cfg);
4642 if (val64 != 0xc000ffff00000000ULL) {
4644 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4647 val64 = readq(&bar0->rx_queue_cfg);
4648 if (sp->device_type == XFRAME_II_DEVICE)
4649 exp_val = 0x0404040404040404ULL;
4651 exp_val = 0x0808080808080808ULL;
4652 if (val64 != exp_val) {
4654 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4657 val64 = readq(&bar0->xgxs_efifo_cfg);
4658 if (val64 != 0x000000001923141EULL) {
4660 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4663 val64 = 0x5A5A5A5A5A5A5A5AULL;
4664 writeq(val64, &bar0->xmsi_data);
4665 val64 = readq(&bar0->xmsi_data);
4666 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4668 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4671 val64 = 0xA5A5A5A5A5A5A5A5ULL;
4672 writeq(val64, &bar0->xmsi_data);
4673 val64 = readq(&bar0->xmsi_data);
4674 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4676 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4684 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
4685 * @sp : private member of the device structure, which is a pointer to the
4686 * s2io_nic structure.
4687 * @data:variable that returns the result of each of the test conducted by
4690 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
4696 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4699 u64 ret_data, org_4F0, org_7F0;
4700 u8 saved_4F0 = 0, saved_7F0 = 0;
4701 struct net_device *dev = sp->dev;
4703 /* Test Write Error at offset 0 */
4704 /* Note that SPI interface allows write access to all areas
4705 * of EEPROM. Hence doing all negative testing only for Xframe I.
4707 if (sp->device_type == XFRAME_I_DEVICE)
4708 if (!write_eeprom(sp, 0, 0, 3))
4711 /* Save current values at offsets 0x4F0 and 0x7F0 */
4712 if (!read_eeprom(sp, 0x4F0, &org_4F0))
4714 if (!read_eeprom(sp, 0x7F0, &org_7F0))
4717 /* Test Write at offset 4f0 */
4718 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
4720 if (read_eeprom(sp, 0x4F0, &ret_data))
4723 if (ret_data != 0x012345) {
4724 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
4728 /* Reset the EEPROM data go FFFF */
4729 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
4731 /* Test Write Request Error at offset 0x7c */
4732 if (sp->device_type == XFRAME_I_DEVICE)
4733 if (!write_eeprom(sp, 0x07C, 0, 3))
4736 /* Test Write Request at offset 0x7f0 */
4737 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
4739 if (read_eeprom(sp, 0x7F0, &ret_data))
4742 if (ret_data != 0x012345) {
4743 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
4747 /* Reset the EEPROM data go FFFF */
4748 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
4750 if (sp->device_type == XFRAME_I_DEVICE) {
4751 /* Test Write Error at offset 0x80 */
4752 if (!write_eeprom(sp, 0x080, 0, 3))
4755 /* Test Write Error at offset 0xfc */
4756 if (!write_eeprom(sp, 0x0FC, 0, 3))
4759 /* Test Write Error at offset 0x100 */
4760 if (!write_eeprom(sp, 0x100, 0, 3))
4763 /* Test Write Error at offset 4ec */
4764 if (!write_eeprom(sp, 0x4EC, 0, 3))
4768 /* Restore values at offsets 0x4F0 and 0x7F0 */
4770 write_eeprom(sp, 0x4F0, org_4F0, 3);
4772 write_eeprom(sp, 0x7F0, org_7F0, 3);
4779 * s2io_bist_test - invokes the MemBist test of the card .
4780 * @sp : private member of the device structure, which is a pointer to the
4781 * s2io_nic structure.
4782 * @data:variable that returns the result of each of the test conducted by
4785 * This invokes the MemBist test of the card. We give around
4786 * 2 secs time for the Test to complete. If it's still not complete
4787 * within this peiod, we consider that the test failed.
4789 * 0 on success and -1 on failure.
4792 static int s2io_bist_test(nic_t * sp, uint64_t * data)
4795 int cnt = 0, ret = -1;
4797 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4798 bist |= PCI_BIST_START;
4799 pci_write_config_word(sp->pdev, PCI_BIST, bist);
4802 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4803 if (!(bist & PCI_BIST_START)) {
4804 *data = (bist & PCI_BIST_CODE_MASK);
4816 * s2io-link_test - verifies the link state of the nic
4817 * @sp ; private member of the device structure, which is a pointer to the
4818 * s2io_nic structure.
4819 * @data: variable that returns the result of each of the test conducted by
4822 * The function verifies the link state of the NIC and updates the input
4823 * argument 'data' appropriately.
4828 static int s2io_link_test(nic_t * sp, uint64_t * data)
4830 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4833 val64 = readq(&bar0->adapter_status);
4834 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4841 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4842 * @sp - private member of the device structure, which is a pointer to the
4843 * s2io_nic structure.
4844 * @data - variable that returns the result of each of the test
4845 * conducted by the driver.
4847 * This is one of the offline test that tests the read and write
4848 * access to the RldRam chip on the NIC.
4853 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4855 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4857 int cnt, iteration = 0, test_fail = 0;
4859 val64 = readq(&bar0->adapter_control);
4860 val64 &= ~ADAPTER_ECC_EN;
4861 writeq(val64, &bar0->adapter_control);
4863 val64 = readq(&bar0->mc_rldram_test_ctrl);
4864 val64 |= MC_RLDRAM_TEST_MODE;
4865 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4867 val64 = readq(&bar0->mc_rldram_mrs);
4868 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4869 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4871 val64 |= MC_RLDRAM_MRS_ENABLE;
4872 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4874 while (iteration < 2) {
4875 val64 = 0x55555555aaaa0000ULL;
4876 if (iteration == 1) {
4877 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4879 writeq(val64, &bar0->mc_rldram_test_d0);
4881 val64 = 0xaaaa5a5555550000ULL;
4882 if (iteration == 1) {
4883 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4885 writeq(val64, &bar0->mc_rldram_test_d1);
4887 val64 = 0x55aaaaaaaa5a0000ULL;
4888 if (iteration == 1) {
4889 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4891 writeq(val64, &bar0->mc_rldram_test_d2);
4893 val64 = (u64) (0x0000003ffffe0100ULL);
4894 writeq(val64, &bar0->mc_rldram_test_add);
4896 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4898 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4900 for (cnt = 0; cnt < 5; cnt++) {
4901 val64 = readq(&bar0->mc_rldram_test_ctrl);
4902 if (val64 & MC_RLDRAM_TEST_DONE)
4910 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4911 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4913 for (cnt = 0; cnt < 5; cnt++) {
4914 val64 = readq(&bar0->mc_rldram_test_ctrl);
4915 if (val64 & MC_RLDRAM_TEST_DONE)
4923 val64 = readq(&bar0->mc_rldram_test_ctrl);
4924 if (!(val64 & MC_RLDRAM_TEST_PASS))
4932 /* Bring the adapter out of test mode */
4933 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
4939 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4940 * @sp : private member of the device structure, which is a pointer to the
4941 * s2io_nic structure.
4942 * @ethtest : pointer to a ethtool command specific structure that will be
4943 * returned to the user.
4944 * @data : variable that returns the result of each of the test
4945 * conducted by the driver.
4947 * This function conducts 6 tests ( 4 offline and 2 online) to determine
4948 * the health of the card.
4953 static void s2io_ethtool_test(struct net_device *dev,
4954 struct ethtool_test *ethtest,
4957 nic_t *sp = dev->priv;
4958 int orig_state = netif_running(sp->dev);
4960 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4961 /* Offline Tests. */
4963 s2io_close(sp->dev);
4965 if (s2io_register_test(sp, &data[0]))
4966 ethtest->flags |= ETH_TEST_FL_FAILED;
4970 if (s2io_rldram_test(sp, &data[3]))
4971 ethtest->flags |= ETH_TEST_FL_FAILED;
4975 if (s2io_eeprom_test(sp, &data[1]))
4976 ethtest->flags |= ETH_TEST_FL_FAILED;
4978 if (s2io_bist_test(sp, &data[4]))
4979 ethtest->flags |= ETH_TEST_FL_FAILED;
4989 "%s: is not up, cannot run test\n",
4998 if (s2io_link_test(sp, &data[2]))
4999 ethtest->flags |= ETH_TEST_FL_FAILED;
5008 static void s2io_get_ethtool_stats(struct net_device *dev,
5009 struct ethtool_stats *estats,
5013 nic_t *sp = dev->priv;
5014 StatInfo_t *stat_info = sp->mac_control.stats_info;
5016 s2io_updt_stats(sp);
5018 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5019 le32_to_cpu(stat_info->tmac_frms);
5021 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5022 le32_to_cpu(stat_info->tmac_data_octets);
5023 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5025 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5026 le32_to_cpu(stat_info->tmac_mcst_frms);
5028 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5029 le32_to_cpu(stat_info->tmac_bcst_frms);
5030 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5032 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5033 le32_to_cpu(stat_info->tmac_any_err_frms);
5034 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5036 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5037 le32_to_cpu(stat_info->tmac_vld_ip);
5039 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5040 le32_to_cpu(stat_info->tmac_drop_ip);
5042 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5043 le32_to_cpu(stat_info->tmac_icmp);
5045 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5046 le32_to_cpu(stat_info->tmac_rst_tcp);
5047 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5048 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5049 le32_to_cpu(stat_info->tmac_udp);
5051 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5052 le32_to_cpu(stat_info->rmac_vld_frms);
5054 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5055 le32_to_cpu(stat_info->rmac_data_octets);
5056 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5057 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5059 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5060 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5062 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5063 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5064 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5065 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5066 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5068 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5069 le32_to_cpu(stat_info->rmac_discarded_frms);
5071 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5072 le32_to_cpu(stat_info->rmac_usized_frms);
5074 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5075 le32_to_cpu(stat_info->rmac_osized_frms);
5077 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5078 le32_to_cpu(stat_info->rmac_frag_frms);
5080 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5081 le32_to_cpu(stat_info->rmac_jabber_frms);
5082 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5083 le32_to_cpu(stat_info->rmac_ip);
5084 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5085 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5086 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5087 le32_to_cpu(stat_info->rmac_drop_ip);
5088 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5089 le32_to_cpu(stat_info->rmac_icmp);
5090 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5091 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5092 le32_to_cpu(stat_info->rmac_udp);
5094 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5095 le32_to_cpu(stat_info->rmac_err_drp_udp);
5097 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5098 le32_to_cpu(stat_info->rmac_pause_cnt);
5100 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5101 le32_to_cpu(stat_info->rmac_accepted_ip);
5102 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5104 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5105 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5108 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5110 return (XENA_REG_SPACE);
5114 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5116 nic_t *sp = dev->priv;
5118 return (sp->rx_csum);
5121 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5123 nic_t *sp = dev->priv;
5133 static int s2io_get_eeprom_len(struct net_device *dev)
5135 return (XENA_EEPROM_SPACE);
5138 static int s2io_ethtool_self_test_count(struct net_device *dev)
5140 return (S2IO_TEST_LEN);
5143 static void s2io_ethtool_get_strings(struct net_device *dev,
5144 u32 stringset, u8 * data)
5146 switch (stringset) {
5148 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5151 memcpy(data, ðtool_stats_keys,
5152 sizeof(ethtool_stats_keys));
5155 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5157 return (S2IO_STAT_LEN);
5160 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5163 dev->features |= NETIF_F_IP_CSUM;
5165 dev->features &= ~NETIF_F_IP_CSUM;
5171 static struct ethtool_ops netdev_ethtool_ops = {
5172 .get_settings = s2io_ethtool_gset,
5173 .set_settings = s2io_ethtool_sset,
5174 .get_drvinfo = s2io_ethtool_gdrvinfo,
5175 .get_regs_len = s2io_ethtool_get_regs_len,
5176 .get_regs = s2io_ethtool_gregs,
5177 .get_link = ethtool_op_get_link,
5178 .get_eeprom_len = s2io_get_eeprom_len,
5179 .get_eeprom = s2io_ethtool_geeprom,
5180 .set_eeprom = s2io_ethtool_seeprom,
5181 .get_pauseparam = s2io_ethtool_getpause_data,
5182 .set_pauseparam = s2io_ethtool_setpause_data,
5183 .get_rx_csum = s2io_ethtool_get_rx_csum,
5184 .set_rx_csum = s2io_ethtool_set_rx_csum,
5185 .get_tx_csum = ethtool_op_get_tx_csum,
5186 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5187 .get_sg = ethtool_op_get_sg,
5188 .set_sg = ethtool_op_set_sg,
5190 .get_tso = ethtool_op_get_tso,
5191 .set_tso = ethtool_op_set_tso,
5193 .self_test_count = s2io_ethtool_self_test_count,
5194 .self_test = s2io_ethtool_test,
5195 .get_strings = s2io_ethtool_get_strings,
5196 .phys_id = s2io_ethtool_idnic,
5197 .get_stats_count = s2io_ethtool_get_stats_count,
5198 .get_ethtool_stats = s2io_get_ethtool_stats
5202 * s2io_ioctl - Entry point for the Ioctl
5203 * @dev : Device pointer.
5204 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5205 * a proprietary structure used to pass information to the driver.
5206 * @cmd : This is used to distinguish between the different commands that
5207 * can be passed to the IOCTL functions.
5209 * Currently there are no special functionality supported in IOCTL, hence
5210 * function always return EOPNOTSUPPORTED
5213 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5219 * s2io_change_mtu - entry point to change MTU size for the device.
5220 * @dev : device pointer.
5221 * @new_mtu : the new MTU size for the device.
5222 * Description: A driver entry point to change MTU size for the device.
5223 * Before changing the MTU the device must be stopped.
5225 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5229 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5231 nic_t *sp = dev->priv;
5233 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5234 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5240 if (netif_running(dev)) {
5242 netif_stop_queue(dev);
5243 if (s2io_card_up(sp)) {
5244 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5247 if (netif_queue_stopped(dev))
5248 netif_wake_queue(dev);
5249 } else { /* Device is down */
5250 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5251 u64 val64 = new_mtu;
5253 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5260 * s2io_tasklet - Bottom half of the ISR.
5261 * @dev_adr : address of the device structure in dma_addr_t format.
5263 * This is the tasklet or the bottom half of the ISR. This is
5264 * an extension of the ISR which is scheduled by the scheduler to be run
5265 * when the load on the CPU is low. All low priority tasks of the ISR can
5266 * be pushed into the tasklet. For now the tasklet is used only to
5267 * replenish the Rx buffers in the Rx buffer descriptors.
5272 static void s2io_tasklet(unsigned long dev_addr)
5274 struct net_device *dev = (struct net_device *) dev_addr;
5275 nic_t *sp = dev->priv;
5277 mac_info_t *mac_control;
5278 struct config_param *config;
5280 mac_control = &sp->mac_control;
5281 config = &sp->config;
5283 if (!TASKLET_IN_USE) {
5284 for (i = 0; i < config->rx_ring_num; i++) {
5285 ret = fill_rx_buffers(sp, i);
5286 if (ret == -ENOMEM) {
5287 DBG_PRINT(ERR_DBG, "%s: Out of ",
5289 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5291 } else if (ret == -EFILL) {
5293 "%s: Rx Ring %d is full\n",
5298 clear_bit(0, (&sp->tasklet_status));
5303 * s2io_set_link - Set the LInk status
5304 * @data: long pointer to device private structue
5305 * Description: Sets the link status for the adapter
5308 static void s2io_set_link(unsigned long data)
5310 nic_t *nic = (nic_t *) data;
5311 struct net_device *dev = nic->dev;
5312 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5316 if (test_and_set_bit(0, &(nic->link_state))) {
5317 /* The card is being reset, no point doing anything */
5321 subid = nic->pdev->subsystem_device;
5322 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5324 * Allow a small delay for the NICs self initiated
5325 * cleanup to complete.
5330 val64 = readq(&bar0->adapter_status);
5331 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5332 if (LINK_IS_UP(val64)) {
5333 val64 = readq(&bar0->adapter_control);
5334 val64 |= ADAPTER_CNTL_EN;
5335 writeq(val64, &bar0->adapter_control);
5336 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5338 val64 = readq(&bar0->gpio_control);
5339 val64 |= GPIO_CTRL_GPIO_0;
5340 writeq(val64, &bar0->gpio_control);
5341 val64 = readq(&bar0->gpio_control);
5343 val64 |= ADAPTER_LED_ON;
5344 writeq(val64, &bar0->adapter_control);
5346 if (s2io_link_fault_indication(nic) ==
5347 MAC_RMAC_ERR_TIMER) {
5348 val64 = readq(&bar0->adapter_status);
5349 if (!LINK_IS_UP(val64)) {
5350 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5351 DBG_PRINT(ERR_DBG, " Link down");
5352 DBG_PRINT(ERR_DBG, "after ");
5353 DBG_PRINT(ERR_DBG, "enabling ");
5354 DBG_PRINT(ERR_DBG, "device \n");
5357 if (nic->device_enabled_once == FALSE) {
5358 nic->device_enabled_once = TRUE;
5360 s2io_link(nic, LINK_UP);
5362 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5364 val64 = readq(&bar0->gpio_control);
5365 val64 &= ~GPIO_CTRL_GPIO_0;
5366 writeq(val64, &bar0->gpio_control);
5367 val64 = readq(&bar0->gpio_control);
5369 s2io_link(nic, LINK_DOWN);
5371 } else { /* NIC is not Quiescent. */
5372 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5373 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5374 netif_stop_queue(dev);
5376 clear_bit(0, &(nic->link_state));
5379 static void s2io_card_down(nic_t * sp)
5382 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5383 unsigned long flags;
5384 register u64 val64 = 0;
5386 del_timer_sync(&sp->alarm_timer);
5387 /* If s2io_set_link task is executing, wait till it completes. */
5388 while (test_and_set_bit(0, &(sp->link_state))) {
5391 atomic_set(&sp->card_state, CARD_DOWN);
5393 /* disable Tx and Rx traffic on the NIC */
5397 tasklet_kill(&sp->task);
5399 /* Check if the device is Quiescent and then Reset the NIC */
5401 val64 = readq(&bar0->adapter_status);
5402 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
5410 "s2io_close:Device not Quiescent ");
5411 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
5412 (unsigned long long) val64);
5418 /* Waiting till all Interrupt handlers are complete */
5422 if (!atomic_read(&sp->isr_cnt))
5427 spin_lock_irqsave(&sp->tx_lock, flags);
5428 /* Free all Tx buffers */
5429 free_tx_buffers(sp);
5430 spin_unlock_irqrestore(&sp->tx_lock, flags);
5432 /* Free all Rx buffers */
5433 spin_lock_irqsave(&sp->rx_lock, flags);
5434 free_rx_buffers(sp);
5435 spin_unlock_irqrestore(&sp->rx_lock, flags);
5437 clear_bit(0, &(sp->link_state));
5440 static int s2io_card_up(nic_t * sp)
5443 mac_info_t *mac_control;
5444 struct config_param *config;
5445 struct net_device *dev = (struct net_device *) sp->dev;
5447 /* Initialize the H/W I/O registers */
5448 if (init_nic(sp) != 0) {
5449 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
5454 if (sp->intr_type == MSI)
5455 ret = s2io_enable_msi(sp);
5456 else if (sp->intr_type == MSI_X)
5457 ret = s2io_enable_msi_x(sp);
5459 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
5460 sp->intr_type = INTA;
5464 * Initializing the Rx buffers. For now we are considering only 1
5465 * Rx ring and initializing buffers into 30 Rx blocks
5467 mac_control = &sp->mac_control;
5468 config = &sp->config;
5470 for (i = 0; i < config->rx_ring_num; i++) {
5471 if ((ret = fill_rx_buffers(sp, i))) {
5472 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
5475 free_rx_buffers(sp);
5478 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
5479 atomic_read(&sp->rx_bufs_left[i]));
5482 /* Setting its receive mode */
5483 s2io_set_multicast(dev);
5485 /* Enable tasklet for the device */
5486 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
5488 /* Enable Rx Traffic and interrupts on the NIC */
5489 if (start_nic(sp)) {
5490 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
5491 tasklet_kill(&sp->task);
5493 free_irq(dev->irq, dev);
5494 free_rx_buffers(sp);
5498 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
5500 atomic_set(&sp->card_state, CARD_UP);
5505 * s2io_restart_nic - Resets the NIC.
5506 * @data : long pointer to the device private structure
5508 * This function is scheduled to be run by the s2io_tx_watchdog
5509 * function after 0.5 secs to reset the NIC. The idea is to reduce
5510 * the run time of the watch dog routine which is run holding a
5514 static void s2io_restart_nic(unsigned long data)
5516 struct net_device *dev = (struct net_device *) data;
5517 nic_t *sp = dev->priv;
5520 if (s2io_card_up(sp)) {
5521 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5524 netif_wake_queue(dev);
5525 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
5531 * s2io_tx_watchdog - Watchdog for transmit side.
5532 * @dev : Pointer to net device structure
5534 * This function is triggered if the Tx Queue is stopped
5535 * for a pre-defined amount of time when the Interface is still up.
5536 * If the Interface is jammed in such a situation, the hardware is
5537 * reset (by s2io_close) and restarted again (by s2io_open) to
5538 * overcome any problem that might have been caused in the hardware.
5543 static void s2io_tx_watchdog(struct net_device *dev)
5545 nic_t *sp = dev->priv;
5547 if (netif_carrier_ok(dev)) {
5548 schedule_work(&sp->rst_timer_task);
5553 * rx_osm_handler - To perform some OS related operations on SKB.
5554 * @sp: private member of the device structure,pointer to s2io_nic structure.
5555 * @skb : the socket buffer pointer.
5556 * @len : length of the packet
5557 * @cksum : FCS checksum of the frame.
5558 * @ring_no : the ring from which this RxD was extracted.
5560 * This function is called by the Tx interrupt serivce routine to perform
5561 * some OS related operations on the SKB before passing it to the upper
5562 * layers. It mainly checks if the checksum is OK, if so adds it to the
5563 * SKBs cksum variable, increments the Rx packet count and passes the SKB
5564 * to the upper layer. If the checksum is wrong, it increments the Rx
5565 * packet error count, frees the SKB and returns error.
5567 * SUCCESS on success and -1 on failure.
5569 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
5571 nic_t *sp = ring_data->nic;
5572 struct net_device *dev = (struct net_device *) sp->dev;
5573 struct sk_buff *skb = (struct sk_buff *)
5574 ((unsigned long) rxdp->Host_Control);
5575 int ring_no = ring_data->ring_no;
5576 u16 l3_csum, l4_csum;
5579 if (rxdp->Control_1 & RXD_T_CODE) {
5580 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5581 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
5584 sp->stats.rx_crc_errors++;
5585 atomic_dec(&sp->rx_bufs_left[ring_no]);
5586 rxdp->Host_Control = 0;
5590 /* Updating statistics */
5591 rxdp->Host_Control = 0;
5593 sp->stats.rx_packets++;
5594 if (sp->rxd_mode == RXD_MODE_1) {
5595 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
5597 sp->stats.rx_bytes += len;
5600 } else if (sp->rxd_mode >= RXD_MODE_3A) {
5601 int get_block = ring_data->rx_curr_get_info.block_index;
5602 int get_off = ring_data->rx_curr_get_info.offset;
5603 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
5604 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
5605 unsigned char *buff = skb_push(skb, buf0_len);
5607 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
5608 sp->stats.rx_bytes += buf0_len + buf2_len;
5609 memcpy(buff, ba->ba_0, buf0_len);
5611 if (sp->rxd_mode == RXD_MODE_3A) {
5612 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
5614 skb_put(skb, buf1_len);
5615 skb->len += buf2_len;
5616 skb->data_len += buf2_len;
5617 skb->truesize += buf2_len;
5618 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
5619 sp->stats.rx_bytes += buf1_len;
5622 skb_put(skb, buf2_len);
5625 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5627 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
5628 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5629 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
5631 * NIC verifies if the Checksum of the received
5632 * frame is Ok or not and accordingly returns
5633 * a flag in the RxD.
5635 skb->ip_summed = CHECKSUM_UNNECESSARY;
5638 * Packet with erroneous checksum, let the
5639 * upper layers deal with it.
5641 skb->ip_summed = CHECKSUM_NONE;
5644 skb->ip_summed = CHECKSUM_NONE;
5647 skb->protocol = eth_type_trans(skb, dev);
5648 #ifdef CONFIG_S2IO_NAPI
5649 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5650 /* Queueing the vlan frame to the upper layer */
5651 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5652 RXD_GET_VLAN_TAG(rxdp->Control_2));
5654 netif_receive_skb(skb);
5657 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5658 /* Queueing the vlan frame to the upper layer */
5659 vlan_hwaccel_rx(skb, sp->vlgrp,
5660 RXD_GET_VLAN_TAG(rxdp->Control_2));
5665 dev->last_rx = jiffies;
5666 atomic_dec(&sp->rx_bufs_left[ring_no]);
5671 * s2io_link - stops/starts the Tx queue.
5672 * @sp : private member of the device structure, which is a pointer to the
5673 * s2io_nic structure.
5674 * @link : inidicates whether link is UP/DOWN.
5676 * This function stops/starts the Tx queue depending on whether the link
5677 * status of the NIC is is down or up. This is called by the Alarm
5678 * interrupt handler whenever a link change interrupt comes up.
5683 void s2io_link(nic_t * sp, int link)
5685 struct net_device *dev = (struct net_device *) sp->dev;
5687 if (link != sp->last_link_state) {
5688 if (link == LINK_DOWN) {
5689 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5690 netif_carrier_off(dev);
5692 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5693 netif_carrier_on(dev);
5696 sp->last_link_state = link;
5700 * get_xena_rev_id - to identify revision ID of xena.
5701 * @pdev : PCI Dev structure
5703 * Function to identify the Revision ID of xena.
5705 * returns the revision ID of the device.
5708 int get_xena_rev_id(struct pci_dev *pdev)
5712 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5717 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5718 * @sp : private member of the device structure, which is a pointer to the
5719 * s2io_nic structure.
5721 * This function initializes a few of the PCI and PCI-X configuration registers
5722 * with recommended values.
5727 static void s2io_init_pci(nic_t * sp)
5729 u16 pci_cmd = 0, pcix_cmd = 0;
5731 /* Enable Data Parity Error Recovery in PCI-X command register. */
5732 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5734 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5736 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5739 /* Set the PErr Response bit in PCI command register. */
5740 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5741 pci_write_config_word(sp->pdev, PCI_COMMAND,
5742 (pci_cmd | PCI_COMMAND_PARITY));
5743 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5745 /* Forcibly disabling relaxed ordering capability of the card. */
5747 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5749 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5753 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5754 MODULE_LICENSE("GPL");
5755 MODULE_VERSION(DRV_VERSION);
5757 module_param(tx_fifo_num, int, 0);
5758 module_param(rx_ring_num, int, 0);
5759 module_param(rx_ring_mode, int, 0);
5760 module_param_array(tx_fifo_len, uint, NULL, 0);
5761 module_param_array(rx_ring_sz, uint, NULL, 0);
5762 module_param_array(rts_frm_len, uint, NULL, 0);
5763 module_param(use_continuous_tx_intrs, int, 1);
5764 module_param(rmac_pause_time, int, 0);
5765 module_param(mc_pause_threshold_q0q3, int, 0);
5766 module_param(mc_pause_threshold_q4q7, int, 0);
5767 module_param(shared_splits, int, 0);
5768 module_param(tmac_util_period, int, 0);
5769 module_param(rmac_util_period, int, 0);
5770 module_param(bimodal, bool, 0);
5771 module_param(l3l4hdr_size, int , 0);
5772 #ifndef CONFIG_S2IO_NAPI
5773 module_param(indicate_max_pkts, int, 0);
5775 module_param(rxsync_frequency, int, 0);
5776 module_param(intr_type, int, 0);
5779 * s2io_init_nic - Initialization of the adapter .
5780 * @pdev : structure containing the PCI related information of the device.
5781 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5783 * The function initializes an adapter identified by the pci_dec structure.
5784 * All OS related initialization including memory and device structure and
5785 * initlaization of the device private variable is done. Also the swapper
5786 * control register is initialized to enable read and write into the I/O
5787 * registers of the device.
5789 * returns 0 on success and negative on failure.
5792 static int __devinit
5793 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5796 struct net_device *dev;
5798 int dma_flag = FALSE;
5799 u32 mac_up, mac_down;
5800 u64 val64 = 0, tmp64 = 0;
5801 XENA_dev_config_t __iomem *bar0 = NULL;
5803 mac_info_t *mac_control;
5804 struct config_param *config;
5806 u8 dev_intr_type = intr_type;
5808 #ifdef CONFIG_S2IO_NAPI
5809 if (dev_intr_type != INTA) {
5810 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5811 is enabled. Defaulting to INTA\n");
5812 dev_intr_type = INTA;
5815 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5818 if ((ret = pci_enable_device(pdev))) {
5820 "s2io_init_nic: pci_enable_device failed\n");
5824 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5825 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5827 if (pci_set_consistent_dma_mask
5828 (pdev, DMA_64BIT_MASK)) {
5830 "Unable to obtain 64bit DMA for \
5831 consistent allocations\n");
5832 pci_disable_device(pdev);
5835 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
5836 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5838 pci_disable_device(pdev);
5842 if ((dev_intr_type == MSI_X) &&
5843 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
5844 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
5845 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
5846 Defaulting to INTA\n");
5847 dev_intr_type = INTA;
5849 if (dev_intr_type != MSI_X) {
5850 if (pci_request_regions(pdev, s2io_driver_name)) {
5851 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5852 pci_disable_device(pdev);
5857 if (!(request_mem_region(pci_resource_start(pdev, 0),
5858 pci_resource_len(pdev, 0), s2io_driver_name))) {
5859 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
5860 pci_disable_device(pdev);
5863 if (!(request_mem_region(pci_resource_start(pdev, 2),
5864 pci_resource_len(pdev, 2), s2io_driver_name))) {
5865 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
5866 release_mem_region(pci_resource_start(pdev, 0),
5867 pci_resource_len(pdev, 0));
5868 pci_disable_device(pdev);
5873 dev = alloc_etherdev(sizeof(nic_t));
5875 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5876 pci_disable_device(pdev);
5877 pci_release_regions(pdev);
5881 pci_set_master(pdev);
5882 pci_set_drvdata(pdev, dev);
5883 SET_MODULE_OWNER(dev);
5884 SET_NETDEV_DEV(dev, &pdev->dev);
5886 /* Private member variable initialized to s2io NIC structure */
5888 memset(sp, 0, sizeof(nic_t));
5891 sp->high_dma_flag = dma_flag;
5892 sp->device_enabled_once = FALSE;
5893 if (rx_ring_mode == 1)
5894 sp->rxd_mode = RXD_MODE_1;
5895 if (rx_ring_mode == 2)
5896 sp->rxd_mode = RXD_MODE_3B;
5897 if (rx_ring_mode == 3)
5898 sp->rxd_mode = RXD_MODE_3A;
5900 sp->intr_type = dev_intr_type;
5902 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5903 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5904 sp->device_type = XFRAME_II_DEVICE;
5906 sp->device_type = XFRAME_I_DEVICE;
5909 /* Initialize some PCI/PCI-X fields of the NIC. */
5913 * Setting the device configuration parameters.
5914 * Most of these parameters can be specified by the user during
5915 * module insertion as they are module loadable parameters. If
5916 * these parameters are not not specified during load time, they
5917 * are initialized with default values.
5919 mac_control = &sp->mac_control;
5920 config = &sp->config;
5922 /* Tx side parameters. */
5923 if (tx_fifo_len[0] == 0)
5924 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
5925 config->tx_fifo_num = tx_fifo_num;
5926 for (i = 0; i < MAX_TX_FIFOS; i++) {
5927 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5928 config->tx_cfg[i].fifo_priority = i;
5931 /* mapping the QoS priority to the configured fifos */
5932 for (i = 0; i < MAX_TX_FIFOS; i++)
5933 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5935 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5936 for (i = 0; i < config->tx_fifo_num; i++) {
5937 config->tx_cfg[i].f_no_snoop =
5938 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5939 if (config->tx_cfg[i].fifo_len < 65) {
5940 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5944 config->max_txds = MAX_SKB_FRAGS + 1;
5946 /* Rx side parameters. */
5947 if (rx_ring_sz[0] == 0)
5948 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
5949 config->rx_ring_num = rx_ring_num;
5950 for (i = 0; i < MAX_RX_RINGS; i++) {
5951 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
5952 (rxd_count[sp->rxd_mode] + 1);
5953 config->rx_cfg[i].ring_priority = i;
5956 for (i = 0; i < rx_ring_num; i++) {
5957 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5958 config->rx_cfg[i].f_no_snoop =
5959 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5962 /* Setting Mac Control parameters */
5963 mac_control->rmac_pause_time = rmac_pause_time;
5964 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
5965 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
5968 /* Initialize Ring buffer parameters. */
5969 for (i = 0; i < config->rx_ring_num; i++)
5970 atomic_set(&sp->rx_bufs_left[i], 0);
5972 /* Initialize the number of ISRs currently running */
5973 atomic_set(&sp->isr_cnt, 0);
5975 /* initialize the shared memory used by the NIC and the host */
5976 if (init_shared_mem(sp)) {
5977 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
5980 goto mem_alloc_failed;
5983 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
5984 pci_resource_len(pdev, 0));
5986 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
5989 goto bar0_remap_failed;
5992 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
5993 pci_resource_len(pdev, 2));
5995 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
5998 goto bar1_remap_failed;
6001 dev->irq = pdev->irq;
6002 dev->base_addr = (unsigned long) sp->bar0;
6004 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6005 for (j = 0; j < MAX_TX_FIFOS; j++) {
6006 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6007 (sp->bar1 + (j * 0x00020000));
6010 /* Driver entry points */
6011 dev->open = &s2io_open;
6012 dev->stop = &s2io_close;
6013 dev->hard_start_xmit = &s2io_xmit;
6014 dev->get_stats = &s2io_get_stats;
6015 dev->set_multicast_list = &s2io_set_multicast;
6016 dev->do_ioctl = &s2io_ioctl;
6017 dev->change_mtu = &s2io_change_mtu;
6018 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6019 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6020 dev->vlan_rx_register = s2io_vlan_rx_register;
6021 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6024 * will use eth_mac_addr() for dev->set_mac_address
6025 * mac address will be set every time dev->open() is called
6027 #if defined(CONFIG_S2IO_NAPI)
6028 dev->poll = s2io_poll;
6032 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6033 if (sp->high_dma_flag == TRUE)
6034 dev->features |= NETIF_F_HIGHDMA;
6036 dev->features |= NETIF_F_TSO;
6039 dev->tx_timeout = &s2io_tx_watchdog;
6040 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6041 INIT_WORK(&sp->rst_timer_task,
6042 (void (*)(void *)) s2io_restart_nic, dev);
6043 INIT_WORK(&sp->set_link_task,
6044 (void (*)(void *)) s2io_set_link, sp);
6046 pci_save_state(sp->pdev);
6048 /* Setting swapper control on the NIC, for proper reset operation */
6049 if (s2io_set_swapper(sp)) {
6050 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6053 goto set_swap_failed;
6056 /* Verify if the Herc works on the slot its placed into */
6057 if (sp->device_type & XFRAME_II_DEVICE) {
6058 mode = s2io_verify_pci_mode(sp);
6060 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6061 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6063 goto set_swap_failed;
6067 /* Not needed for Herc */
6068 if (sp->device_type & XFRAME_I_DEVICE) {
6070 * Fix for all "FFs" MAC address problems observed on
6073 fix_mac_address(sp);
6078 * MAC address initialization.
6079 * For now only one mac address will be read and used.
6082 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6083 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6084 writeq(val64, &bar0->rmac_addr_cmd_mem);
6085 wait_for_cmd_complete(sp);
6087 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6088 mac_down = (u32) tmp64;
6089 mac_up = (u32) (tmp64 >> 32);
6091 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6093 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6094 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6095 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6096 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6097 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6098 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6100 /* Set the factory defined MAC address initially */
6101 dev->addr_len = ETH_ALEN;
6102 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6105 * Initialize the tasklet status and link state flags
6106 * and the card state parameter
6108 atomic_set(&(sp->card_state), 0);
6109 sp->tasklet_status = 0;
6112 /* Initialize spinlocks */
6113 spin_lock_init(&sp->tx_lock);
6114 #ifndef CONFIG_S2IO_NAPI
6115 spin_lock_init(&sp->put_lock);
6117 spin_lock_init(&sp->rx_lock);
6120 * SXE-002: Configure link and activity LED to init state
6123 subid = sp->pdev->subsystem_device;
6124 if ((subid & 0xFF) >= 0x07) {
6125 val64 = readq(&bar0->gpio_control);
6126 val64 |= 0x0000800000000000ULL;
6127 writeq(val64, &bar0->gpio_control);
6128 val64 = 0x0411040400000000ULL;
6129 writeq(val64, (void __iomem *) bar0 + 0x2700);
6130 val64 = readq(&bar0->gpio_control);
6133 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
6135 if (register_netdev(dev)) {
6136 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6138 goto register_failed;
6141 if (sp->device_type & XFRAME_II_DEVICE) {
6142 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
6144 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6145 get_xena_rev_id(sp->pdev),
6146 s2io_driver_version);
6147 switch(sp->intr_type) {
6149 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6152 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6155 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6159 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6160 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6161 sp->def_mac_addr[0].mac_addr[0],
6162 sp->def_mac_addr[0].mac_addr[1],
6163 sp->def_mac_addr[0].mac_addr[2],
6164 sp->def_mac_addr[0].mac_addr[3],
6165 sp->def_mac_addr[0].mac_addr[4],
6166 sp->def_mac_addr[0].mac_addr[5]);
6167 mode = s2io_print_pci_mode(sp);
6169 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
6171 goto set_swap_failed;
6174 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6176 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6177 get_xena_rev_id(sp->pdev),
6178 s2io_driver_version);
6179 switch(sp->intr_type) {
6181 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6184 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6187 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6190 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6191 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6192 sp->def_mac_addr[0].mac_addr[0],
6193 sp->def_mac_addr[0].mac_addr[1],
6194 sp->def_mac_addr[0].mac_addr[2],
6195 sp->def_mac_addr[0].mac_addr[3],
6196 sp->def_mac_addr[0].mac_addr[4],
6197 sp->def_mac_addr[0].mac_addr[5]);
6199 if (sp->rxd_mode == RXD_MODE_3B)
6200 DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
6201 "enabled\n",dev->name);
6202 if (sp->rxd_mode == RXD_MODE_3A)
6203 DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
6204 "enabled\n",dev->name);
6206 /* Initialize device name */
6207 strcpy(sp->name, dev->name);
6208 if (sp->device_type & XFRAME_II_DEVICE)
6209 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6211 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
6213 /* Initialize bimodal Interrupts */
6214 sp->config.bimodal = bimodal;
6215 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6216 sp->config.bimodal = 0;
6217 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6222 * Make Link state as off at this point, when the Link change
6223 * interrupt comes the state will be automatically changed to
6226 netif_carrier_off(dev);
6237 free_shared_mem(sp);
6238 pci_disable_device(pdev);
6239 if (dev_intr_type != MSI_X)
6240 pci_release_regions(pdev);
6242 release_mem_region(pci_resource_start(pdev, 0),
6243 pci_resource_len(pdev, 0));
6244 release_mem_region(pci_resource_start(pdev, 2),
6245 pci_resource_len(pdev, 2));
6247 pci_set_drvdata(pdev, NULL);
6254 * s2io_rem_nic - Free the PCI device
6255 * @pdev: structure containing the PCI related information of the device.
6256 * Description: This function is called by the Pci subsystem to release a
6257 * PCI device and free up all resource held up by the device. This could
6258 * be in response to a Hot plug event or when the driver is to be removed
6262 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
6264 struct net_device *dev =
6265 (struct net_device *) pci_get_drvdata(pdev);
6269 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
6274 unregister_netdev(dev);
6276 free_shared_mem(sp);
6279 pci_disable_device(pdev);
6280 if (sp->intr_type != MSI_X)
6281 pci_release_regions(pdev);
6283 release_mem_region(pci_resource_start(pdev, 0),
6284 pci_resource_len(pdev, 0));
6285 release_mem_region(pci_resource_start(pdev, 2),
6286 pci_resource_len(pdev, 2));
6288 pci_set_drvdata(pdev, NULL);
6293 * s2io_starter - Entry point for the driver
6294 * Description: This function is the entry point for the driver. It verifies
6295 * the module loadable parameters and initializes PCI configuration space.
6298 int __init s2io_starter(void)
6300 return pci_module_init(&s2io_driver);
6304 * s2io_closer - Cleanup routine for the driver
6305 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
6308 void s2io_closer(void)
6310 pci_unregister_driver(&s2io_driver);
6311 DBG_PRINT(INIT_DBG, "cleanup done\n");
6314 module_init(s2io_starter);
6315 module_exit(s2io_closer);