2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.11"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
60 #define LINK_HZ (HZ/2)
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
109 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
111 static int skge_get_regs_len(struct net_device *dev)
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
121 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
124 const struct skge_port *skge = netdev_priv(dev);
125 const void __iomem *io = skge->hw->regs;
128 memset(p, 0, regs->len);
129 memcpy_fromio(p, io, B3_RAM_ADDR);
131 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
132 regs->len - B3_RI_WTO_R1);
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static u32 wol_supported(const struct skge_hw *hw)
138 if (hw->chip_id == CHIP_ID_GENESIS)
141 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
144 return WAKE_MAGIC | WAKE_PHY;
147 static u32 pci_wake_enabled(struct pci_dev *dev)
149 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
152 /* If device doesn't support PM Capabilities, but request is to disable
153 * wake events, it's a nop; otherwise fail */
157 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
159 value &= PCI_PM_CAP_PME_MASK;
160 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
165 static void skge_wol_init(struct skge_port *skge)
167 struct skge_hw *hw = skge->hw;
168 int port = skge->port;
171 skge_write16(hw, B0_CTST, CS_RST_CLR);
172 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
175 skge_write8(hw, B0_POWER_CTRL,
176 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
178 /* WA code for COMA mode -- clear PHY reset */
179 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
180 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
181 u32 reg = skge_read32(hw, B2_GP_IO);
184 skge_write32(hw, B2_GP_IO, reg);
187 skge_write32(hw, SK_REG(port, GPHY_CTRL),
189 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 GPC_ANEG_1 | GPC_RST_SET);
192 skge_write32(hw, SK_REG(port, GPHY_CTRL),
194 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
195 GPC_ANEG_1 | GPC_RST_CLR);
197 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
199 /* Force to 10/100 skge_reset will re-enable on resume */
200 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
201 PHY_AN_100FULL | PHY_AN_100HALF |
202 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
204 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
205 gm_phy_write(hw, port, PHY_MARV_CTRL,
206 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
207 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
210 /* Set GMAC to no flow control and auto update for speed/duplex */
211 gma_write16(hw, port, GM_GP_CTRL,
212 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
213 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
215 /* Set WOL address */
216 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
217 skge->netdev->dev_addr, ETH_ALEN);
219 /* Turn on appropriate WOL control bits */
220 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
222 if (skge->wol & WAKE_PHY)
223 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
225 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
227 if (skge->wol & WAKE_MAGIC)
228 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
230 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
232 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
233 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
236 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
239 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
241 struct skge_port *skge = netdev_priv(dev);
243 wol->supported = wol_supported(skge->hw);
244 wol->wolopts = skge->wol;
247 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
249 struct skge_port *skge = netdev_priv(dev);
250 struct skge_hw *hw = skge->hw;
252 if (wol->wolopts & ~wol_supported(hw))
255 skge->wol = wol->wolopts;
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
262 static u32 skge_supported_modes(const struct skge_hw *hw)
267 supported = SUPPORTED_10baseT_Half
268 | SUPPORTED_10baseT_Full
269 | SUPPORTED_100baseT_Half
270 | SUPPORTED_100baseT_Full
271 | SUPPORTED_1000baseT_Half
272 | SUPPORTED_1000baseT_Full
273 | SUPPORTED_Autoneg| SUPPORTED_TP;
275 if (hw->chip_id == CHIP_ID_GENESIS)
276 supported &= ~(SUPPORTED_10baseT_Half
277 | SUPPORTED_10baseT_Full
278 | SUPPORTED_100baseT_Half
279 | SUPPORTED_100baseT_Full);
281 else if (hw->chip_id == CHIP_ID_YUKON)
282 supported &= ~SUPPORTED_1000baseT_Half;
284 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
285 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
290 static int skge_get_settings(struct net_device *dev,
291 struct ethtool_cmd *ecmd)
293 struct skge_port *skge = netdev_priv(dev);
294 struct skge_hw *hw = skge->hw;
296 ecmd->transceiver = XCVR_INTERNAL;
297 ecmd->supported = skge_supported_modes(hw);
300 ecmd->port = PORT_TP;
301 ecmd->phy_address = hw->phy_addr;
303 ecmd->port = PORT_FIBRE;
305 ecmd->advertising = skge->advertising;
306 ecmd->autoneg = skge->autoneg;
307 ecmd->speed = skge->speed;
308 ecmd->duplex = skge->duplex;
312 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
314 struct skge_port *skge = netdev_priv(dev);
315 const struct skge_hw *hw = skge->hw;
316 u32 supported = skge_supported_modes(hw);
318 if (ecmd->autoneg == AUTONEG_ENABLE) {
319 ecmd->advertising = supported;
325 switch (ecmd->speed) {
327 if (ecmd->duplex == DUPLEX_FULL)
328 setting = SUPPORTED_1000baseT_Full;
329 else if (ecmd->duplex == DUPLEX_HALF)
330 setting = SUPPORTED_1000baseT_Half;
335 if (ecmd->duplex == DUPLEX_FULL)
336 setting = SUPPORTED_100baseT_Full;
337 else if (ecmd->duplex == DUPLEX_HALF)
338 setting = SUPPORTED_100baseT_Half;
344 if (ecmd->duplex == DUPLEX_FULL)
345 setting = SUPPORTED_10baseT_Full;
346 else if (ecmd->duplex == DUPLEX_HALF)
347 setting = SUPPORTED_10baseT_Half;
355 if ((setting & supported) == 0)
358 skge->speed = ecmd->speed;
359 skge->duplex = ecmd->duplex;
362 skge->autoneg = ecmd->autoneg;
363 skge->advertising = ecmd->advertising;
365 if (netif_running(dev))
366 skge_phy_reset(skge);
371 static void skge_get_drvinfo(struct net_device *dev,
372 struct ethtool_drvinfo *info)
374 struct skge_port *skge = netdev_priv(dev);
376 strcpy(info->driver, DRV_NAME);
377 strcpy(info->version, DRV_VERSION);
378 strcpy(info->fw_version, "N/A");
379 strcpy(info->bus_info, pci_name(skge->hw->pdev));
382 static const struct skge_stat {
383 char name[ETH_GSTRING_LEN];
387 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
388 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
390 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
391 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
392 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
393 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
394 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
395 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
396 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
397 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
399 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
400 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
401 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
402 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
403 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
404 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
406 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
407 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
408 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
409 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
410 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
413 static int skge_get_sset_count(struct net_device *dev, int sset)
417 return ARRAY_SIZE(skge_stats);
423 static void skge_get_ethtool_stats(struct net_device *dev,
424 struct ethtool_stats *stats, u64 *data)
426 struct skge_port *skge = netdev_priv(dev);
428 if (skge->hw->chip_id == CHIP_ID_GENESIS)
429 genesis_get_stats(skge, data);
431 yukon_get_stats(skge, data);
434 /* Use hardware MIB variables for critical path statistics and
435 * transmit feedback not reported at interrupt.
436 * Other errors are accounted for in interrupt handler.
438 static struct net_device_stats *skge_get_stats(struct net_device *dev)
440 struct skge_port *skge = netdev_priv(dev);
441 u64 data[ARRAY_SIZE(skge_stats)];
443 if (skge->hw->chip_id == CHIP_ID_GENESIS)
444 genesis_get_stats(skge, data);
446 yukon_get_stats(skge, data);
448 skge->net_stats.tx_bytes = data[0];
449 skge->net_stats.rx_bytes = data[1];
450 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
451 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
452 skge->net_stats.multicast = data[3] + data[5];
453 skge->net_stats.collisions = data[10];
454 skge->net_stats.tx_aborted_errors = data[12];
456 return &skge->net_stats;
459 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
465 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
466 memcpy(data + i * ETH_GSTRING_LEN,
467 skge_stats[i].name, ETH_GSTRING_LEN);
472 static void skge_get_ring_param(struct net_device *dev,
473 struct ethtool_ringparam *p)
475 struct skge_port *skge = netdev_priv(dev);
477 p->rx_max_pending = MAX_RX_RING_SIZE;
478 p->tx_max_pending = MAX_TX_RING_SIZE;
479 p->rx_mini_max_pending = 0;
480 p->rx_jumbo_max_pending = 0;
482 p->rx_pending = skge->rx_ring.count;
483 p->tx_pending = skge->tx_ring.count;
484 p->rx_mini_pending = 0;
485 p->rx_jumbo_pending = 0;
488 static int skge_set_ring_param(struct net_device *dev,
489 struct ethtool_ringparam *p)
491 struct skge_port *skge = netdev_priv(dev);
494 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
495 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
498 skge->rx_ring.count = p->rx_pending;
499 skge->tx_ring.count = p->tx_pending;
501 if (netif_running(dev)) {
511 static u32 skge_get_msglevel(struct net_device *netdev)
513 struct skge_port *skge = netdev_priv(netdev);
514 return skge->msg_enable;
517 static void skge_set_msglevel(struct net_device *netdev, u32 value)
519 struct skge_port *skge = netdev_priv(netdev);
520 skge->msg_enable = value;
523 static int skge_nway_reset(struct net_device *dev)
525 struct skge_port *skge = netdev_priv(dev);
527 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
530 skge_phy_reset(skge);
534 static int skge_set_sg(struct net_device *dev, u32 data)
536 struct skge_port *skge = netdev_priv(dev);
537 struct skge_hw *hw = skge->hw;
539 if (hw->chip_id == CHIP_ID_GENESIS && data)
541 return ethtool_op_set_sg(dev, data);
544 static int skge_set_tx_csum(struct net_device *dev, u32 data)
546 struct skge_port *skge = netdev_priv(dev);
547 struct skge_hw *hw = skge->hw;
549 if (hw->chip_id == CHIP_ID_GENESIS && data)
552 return ethtool_op_set_tx_csum(dev, data);
555 static u32 skge_get_rx_csum(struct net_device *dev)
557 struct skge_port *skge = netdev_priv(dev);
559 return skge->rx_csum;
562 /* Only Yukon supports checksum offload. */
563 static int skge_set_rx_csum(struct net_device *dev, u32 data)
565 struct skge_port *skge = netdev_priv(dev);
567 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
570 skge->rx_csum = data;
574 static void skge_get_pauseparam(struct net_device *dev,
575 struct ethtool_pauseparam *ecmd)
577 struct skge_port *skge = netdev_priv(dev);
579 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
580 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
581 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
583 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
586 static int skge_set_pauseparam(struct net_device *dev,
587 struct ethtool_pauseparam *ecmd)
589 struct skge_port *skge = netdev_priv(dev);
590 struct ethtool_pauseparam old;
592 skge_get_pauseparam(dev, &old);
594 if (ecmd->autoneg != old.autoneg)
595 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
597 if (ecmd->rx_pause && ecmd->tx_pause)
598 skge->flow_control = FLOW_MODE_SYMMETRIC;
599 else if (ecmd->rx_pause && !ecmd->tx_pause)
600 skge->flow_control = FLOW_MODE_SYM_OR_REM;
601 else if (!ecmd->rx_pause && ecmd->tx_pause)
602 skge->flow_control = FLOW_MODE_LOC_SEND;
604 skge->flow_control = FLOW_MODE_NONE;
607 if (netif_running(dev))
608 skge_phy_reset(skge);
613 /* Chip internal frequency for clock calculations */
614 static inline u32 hwkhz(const struct skge_hw *hw)
616 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
619 /* Chip HZ to microseconds */
620 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
622 return (ticks * 1000) / hwkhz(hw);
625 /* Microseconds to chip HZ */
626 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
628 return hwkhz(hw) * usec / 1000;
631 static int skge_get_coalesce(struct net_device *dev,
632 struct ethtool_coalesce *ecmd)
634 struct skge_port *skge = netdev_priv(dev);
635 struct skge_hw *hw = skge->hw;
636 int port = skge->port;
638 ecmd->rx_coalesce_usecs = 0;
639 ecmd->tx_coalesce_usecs = 0;
641 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
642 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
643 u32 msk = skge_read32(hw, B2_IRQM_MSK);
645 if (msk & rxirqmask[port])
646 ecmd->rx_coalesce_usecs = delay;
647 if (msk & txirqmask[port])
648 ecmd->tx_coalesce_usecs = delay;
654 /* Note: interrupt timer is per board, but can turn on/off per port */
655 static int skge_set_coalesce(struct net_device *dev,
656 struct ethtool_coalesce *ecmd)
658 struct skge_port *skge = netdev_priv(dev);
659 struct skge_hw *hw = skge->hw;
660 int port = skge->port;
661 u32 msk = skge_read32(hw, B2_IRQM_MSK);
664 if (ecmd->rx_coalesce_usecs == 0)
665 msk &= ~rxirqmask[port];
666 else if (ecmd->rx_coalesce_usecs < 25 ||
667 ecmd->rx_coalesce_usecs > 33333)
670 msk |= rxirqmask[port];
671 delay = ecmd->rx_coalesce_usecs;
674 if (ecmd->tx_coalesce_usecs == 0)
675 msk &= ~txirqmask[port];
676 else if (ecmd->tx_coalesce_usecs < 25 ||
677 ecmd->tx_coalesce_usecs > 33333)
680 msk |= txirqmask[port];
681 delay = min(delay, ecmd->rx_coalesce_usecs);
684 skge_write32(hw, B2_IRQM_MSK, msk);
686 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
688 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
689 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
694 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
695 static void skge_led(struct skge_port *skge, enum led_mode mode)
697 struct skge_hw *hw = skge->hw;
698 int port = skge->port;
700 spin_lock_bh(&hw->phy_lock);
701 if (hw->chip_id == CHIP_ID_GENESIS) {
704 if (hw->phy_type == SK_PHY_BCOM)
705 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
707 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
708 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
710 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
711 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
716 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
717 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
719 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
720 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
725 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
726 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
727 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
729 if (hw->phy_type == SK_PHY_BCOM)
730 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
732 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
733 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
734 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
741 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
742 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743 PHY_M_LED_MO_DUP(MO_LED_OFF) |
744 PHY_M_LED_MO_10(MO_LED_OFF) |
745 PHY_M_LED_MO_100(MO_LED_OFF) |
746 PHY_M_LED_MO_1000(MO_LED_OFF) |
747 PHY_M_LED_MO_RX(MO_LED_OFF));
750 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
751 PHY_M_LED_PULS_DUR(PULS_170MS) |
752 PHY_M_LED_BLINK_RT(BLINK_84MS) |
756 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
757 PHY_M_LED_MO_RX(MO_LED_OFF) |
758 (skge->speed == SPEED_100 ?
759 PHY_M_LED_MO_100(MO_LED_ON) : 0));
762 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
763 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
764 PHY_M_LED_MO_DUP(MO_LED_ON) |
765 PHY_M_LED_MO_10(MO_LED_ON) |
766 PHY_M_LED_MO_100(MO_LED_ON) |
767 PHY_M_LED_MO_1000(MO_LED_ON) |
768 PHY_M_LED_MO_RX(MO_LED_ON));
771 spin_unlock_bh(&hw->phy_lock);
774 /* blink LED's for finding board */
775 static int skge_phys_id(struct net_device *dev, u32 data)
777 struct skge_port *skge = netdev_priv(dev);
779 enum led_mode mode = LED_MODE_TST;
781 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
782 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
787 skge_led(skge, mode);
788 mode ^= LED_MODE_TST;
790 if (msleep_interruptible(BLINK_MS))
795 /* back to regular LED state */
796 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
801 static const struct ethtool_ops skge_ethtool_ops = {
802 .get_settings = skge_get_settings,
803 .set_settings = skge_set_settings,
804 .get_drvinfo = skge_get_drvinfo,
805 .get_regs_len = skge_get_regs_len,
806 .get_regs = skge_get_regs,
807 .get_wol = skge_get_wol,
808 .set_wol = skge_set_wol,
809 .get_msglevel = skge_get_msglevel,
810 .set_msglevel = skge_set_msglevel,
811 .nway_reset = skge_nway_reset,
812 .get_link = ethtool_op_get_link,
813 .get_ringparam = skge_get_ring_param,
814 .set_ringparam = skge_set_ring_param,
815 .get_pauseparam = skge_get_pauseparam,
816 .set_pauseparam = skge_set_pauseparam,
817 .get_coalesce = skge_get_coalesce,
818 .set_coalesce = skge_set_coalesce,
819 .set_sg = skge_set_sg,
820 .set_tx_csum = skge_set_tx_csum,
821 .get_rx_csum = skge_get_rx_csum,
822 .set_rx_csum = skge_set_rx_csum,
823 .get_strings = skge_get_strings,
824 .phys_id = skge_phys_id,
825 .get_sset_count = skge_get_sset_count,
826 .get_ethtool_stats = skge_get_ethtool_stats,
830 * Allocate ring elements and chain them together
831 * One-to-one association of board descriptors with ring elements
833 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
835 struct skge_tx_desc *d;
836 struct skge_element *e;
839 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
843 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
845 if (i == ring->count - 1) {
846 e->next = ring->start;
847 d->next_offset = base;
850 d->next_offset = base + (i+1) * sizeof(*d);
853 ring->to_use = ring->to_clean = ring->start;
858 /* Allocate and setup a new buffer for receiving */
859 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
860 struct sk_buff *skb, unsigned int bufsize)
862 struct skge_rx_desc *rd = e->desc;
865 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
869 rd->dma_hi = map >> 32;
871 rd->csum1_start = ETH_HLEN;
872 rd->csum2_start = ETH_HLEN;
878 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
879 pci_unmap_addr_set(e, mapaddr, map);
880 pci_unmap_len_set(e, maplen, bufsize);
883 /* Resume receiving using existing skb,
884 * Note: DMA address is not changed by chip.
885 * MTU not changed while receiver active.
887 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
889 struct skge_rx_desc *rd = e->desc;
892 rd->csum2_start = ETH_HLEN;
896 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
900 /* Free all buffers in receive ring, assumes receiver stopped */
901 static void skge_rx_clean(struct skge_port *skge)
903 struct skge_hw *hw = skge->hw;
904 struct skge_ring *ring = &skge->rx_ring;
905 struct skge_element *e;
909 struct skge_rx_desc *rd = e->desc;
912 pci_unmap_single(hw->pdev,
913 pci_unmap_addr(e, mapaddr),
914 pci_unmap_len(e, maplen),
916 dev_kfree_skb(e->skb);
919 } while ((e = e->next) != ring->start);
923 /* Allocate buffers for receive ring
924 * For receive: to_clean is next received frame.
926 static int skge_rx_fill(struct net_device *dev)
928 struct skge_port *skge = netdev_priv(dev);
929 struct skge_ring *ring = &skge->rx_ring;
930 struct skge_element *e;
936 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
941 skb_reserve(skb, NET_IP_ALIGN);
942 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
943 } while ( (e = e->next) != ring->start);
945 ring->to_clean = ring->start;
949 static const char *skge_pause(enum pause_status status)
954 case FLOW_STAT_REM_SEND:
956 case FLOW_STAT_LOC_SEND:
958 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
961 return "indeterminated";
966 static void skge_link_up(struct skge_port *skge)
968 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
969 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
971 netif_carrier_on(skge->netdev);
972 netif_wake_queue(skge->netdev);
974 if (netif_msg_link(skge)) {
976 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
977 skge->netdev->name, skge->speed,
978 skge->duplex == DUPLEX_FULL ? "full" : "half",
979 skge_pause(skge->flow_status));
983 static void skge_link_down(struct skge_port *skge)
985 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
986 netif_carrier_off(skge->netdev);
987 netif_stop_queue(skge->netdev);
989 if (netif_msg_link(skge))
990 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
994 static void xm_link_down(struct skge_hw *hw, int port)
996 struct net_device *dev = hw->dev[port];
997 struct skge_port *skge = netdev_priv(dev);
1000 if (hw->phy_type == SK_PHY_XMAC) {
1001 msk = xm_read16(hw, port, XM_IMSK);
1002 msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
1003 xm_write16(hw, port, XM_IMSK, msk);
1006 cmd = xm_read16(hw, port, XM_MMU_CMD);
1007 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1008 xm_write16(hw, port, XM_MMU_CMD, cmd);
1009 /* dummy read to ensure writing */
1010 (void) xm_read16(hw, port, XM_MMU_CMD);
1012 if (netif_carrier_ok(dev))
1013 skge_link_down(skge);
1016 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1020 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1021 *val = xm_read16(hw, port, XM_PHY_DATA);
1023 if (hw->phy_type == SK_PHY_XMAC)
1026 for (i = 0; i < PHY_RETRIES; i++) {
1027 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1034 *val = xm_read16(hw, port, XM_PHY_DATA);
1039 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1042 if (__xm_phy_read(hw, port, reg, &v))
1043 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1044 hw->dev[port]->name);
1048 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1052 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1053 for (i = 0; i < PHY_RETRIES; i++) {
1054 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1061 xm_write16(hw, port, XM_PHY_DATA, val);
1062 for (i = 0; i < PHY_RETRIES; i++) {
1063 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1070 static void genesis_init(struct skge_hw *hw)
1072 /* set blink source counter */
1073 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1074 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1076 /* configure mac arbiter */
1077 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1079 /* configure mac arbiter timeout values */
1080 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1081 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1082 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1083 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1085 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1086 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1087 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1088 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1090 /* configure packet arbiter timeout */
1091 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1092 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1093 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1094 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1095 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1098 static void genesis_reset(struct skge_hw *hw, int port)
1100 const u8 zero[8] = { 0 };
1102 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1104 /* reset the statistics module */
1105 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1106 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1107 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1108 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1109 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1111 /* disable Broadcom PHY IRQ */
1112 if (hw->phy_type == SK_PHY_BCOM)
1113 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1115 xm_outhash(hw, port, XM_HSM, zero);
1119 /* Convert mode to MII values */
1120 static const u16 phy_pause_map[] = {
1121 [FLOW_MODE_NONE] = 0,
1122 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1123 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1124 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1127 /* special defines for FIBER (88E1011S only) */
1128 static const u16 fiber_pause_map[] = {
1129 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1130 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1131 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1132 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1136 /* Check status of Broadcom phy link */
1137 static void bcom_check_link(struct skge_hw *hw, int port)
1139 struct net_device *dev = hw->dev[port];
1140 struct skge_port *skge = netdev_priv(dev);
1143 /* read twice because of latch */
1144 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1145 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1147 if ((status & PHY_ST_LSYNC) == 0) {
1148 xm_link_down(hw, port);
1152 if (skge->autoneg == AUTONEG_ENABLE) {
1155 if (!(status & PHY_ST_AN_OVER))
1158 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1159 if (lpa & PHY_B_AN_RF) {
1160 printk(KERN_NOTICE PFX "%s: remote fault\n",
1165 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1167 /* Check Duplex mismatch */
1168 switch (aux & PHY_B_AS_AN_RES_MSK) {
1169 case PHY_B_RES_1000FD:
1170 skge->duplex = DUPLEX_FULL;
1172 case PHY_B_RES_1000HD:
1173 skge->duplex = DUPLEX_HALF;
1176 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1181 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1182 switch (aux & PHY_B_AS_PAUSE_MSK) {
1183 case PHY_B_AS_PAUSE_MSK:
1184 skge->flow_status = FLOW_STAT_SYMMETRIC;
1187 skge->flow_status = FLOW_STAT_REM_SEND;
1190 skge->flow_status = FLOW_STAT_LOC_SEND;
1193 skge->flow_status = FLOW_STAT_NONE;
1195 skge->speed = SPEED_1000;
1198 if (!netif_carrier_ok(dev))
1199 genesis_link_up(skge);
1202 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1203 * Phy on for 100 or 10Mbit operation
1205 static void bcom_phy_init(struct skge_port *skge)
1207 struct skge_hw *hw = skge->hw;
1208 int port = skge->port;
1210 u16 id1, r, ext, ctl;
1212 /* magic workaround patterns for Broadcom */
1213 static const struct {
1217 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1218 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1219 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1220 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1222 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1223 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1226 /* read Id from external PHY (all have the same address) */
1227 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1229 /* Optimize MDIO transfer by suppressing preamble. */
1230 r = xm_read16(hw, port, XM_MMU_CMD);
1232 xm_write16(hw, port, XM_MMU_CMD,r);
1235 case PHY_BCOM_ID1_C0:
1237 * Workaround BCOM Errata for the C0 type.
1238 * Write magic patterns to reserved registers.
1240 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1241 xm_phy_write(hw, port,
1242 C0hack[i].reg, C0hack[i].val);
1245 case PHY_BCOM_ID1_A1:
1247 * Workaround BCOM Errata for the A1 type.
1248 * Write magic patterns to reserved registers.
1250 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1251 xm_phy_write(hw, port,
1252 A1hack[i].reg, A1hack[i].val);
1257 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1258 * Disable Power Management after reset.
1260 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1261 r |= PHY_B_AC_DIS_PM;
1262 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1265 xm_read16(hw, port, XM_ISRC);
1267 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1268 ctl = PHY_CT_SP1000; /* always 1000mbit */
1270 if (skge->autoneg == AUTONEG_ENABLE) {
1272 * Workaround BCOM Errata #1 for the C5 type.
1273 * 1000Base-T Link Acquisition Failure in Slave Mode
1274 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1276 u16 adv = PHY_B_1000C_RD;
1277 if (skge->advertising & ADVERTISED_1000baseT_Half)
1278 adv |= PHY_B_1000C_AHD;
1279 if (skge->advertising & ADVERTISED_1000baseT_Full)
1280 adv |= PHY_B_1000C_AFD;
1281 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1283 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1285 if (skge->duplex == DUPLEX_FULL)
1286 ctl |= PHY_CT_DUP_MD;
1287 /* Force to slave */
1288 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1291 /* Set autonegotiation pause parameters */
1292 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1293 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1295 /* Handle Jumbo frames */
1296 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1297 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1298 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1300 ext |= PHY_B_PEC_HIGH_LA;
1304 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1305 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1307 /* Use link status change interrupt */
1308 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1311 static void xm_phy_init(struct skge_port *skge)
1313 struct skge_hw *hw = skge->hw;
1314 int port = skge->port;
1317 if (skge->autoneg == AUTONEG_ENABLE) {
1318 if (skge->advertising & ADVERTISED_1000baseT_Half)
1319 ctrl |= PHY_X_AN_HD;
1320 if (skge->advertising & ADVERTISED_1000baseT_Full)
1321 ctrl |= PHY_X_AN_FD;
1323 ctrl |= fiber_pause_map[skge->flow_control];
1325 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1327 /* Restart Auto-negotiation */
1328 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1330 /* Set DuplexMode in Config register */
1331 if (skge->duplex == DUPLEX_FULL)
1332 ctrl |= PHY_CT_DUP_MD;
1334 * Do NOT enable Auto-negotiation here. This would hold
1335 * the link down because no IDLEs are transmitted
1339 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1341 /* Poll PHY for status changes */
1342 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1345 static void xm_check_link(struct net_device *dev)
1347 struct skge_port *skge = netdev_priv(dev);
1348 struct skge_hw *hw = skge->hw;
1349 int port = skge->port;
1352 /* read twice because of latch */
1353 (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
1354 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1356 if ((status & PHY_ST_LSYNC) == 0) {
1357 xm_link_down(hw, port);
1361 if (skge->autoneg == AUTONEG_ENABLE) {
1364 if (!(status & PHY_ST_AN_OVER))
1367 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1368 if (lpa & PHY_B_AN_RF) {
1369 printk(KERN_NOTICE PFX "%s: remote fault\n",
1374 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1376 /* Check Duplex mismatch */
1377 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1379 skge->duplex = DUPLEX_FULL;
1382 skge->duplex = DUPLEX_HALF;
1385 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1390 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1391 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1392 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1393 (lpa & PHY_X_P_SYM_MD))
1394 skge->flow_status = FLOW_STAT_SYMMETRIC;
1395 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1396 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1397 /* Enable PAUSE receive, disable PAUSE transmit */
1398 skge->flow_status = FLOW_STAT_REM_SEND;
1399 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1400 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1401 /* Disable PAUSE receive, enable PAUSE transmit */
1402 skge->flow_status = FLOW_STAT_LOC_SEND;
1404 skge->flow_status = FLOW_STAT_NONE;
1406 skge->speed = SPEED_1000;
1409 if (!netif_carrier_ok(dev))
1410 genesis_link_up(skge);
1413 /* Poll to check for link coming up.
1414 * Since internal PHY is wired to a level triggered pin, can't
1415 * get an interrupt when carrier is detected.
1417 static void xm_link_timer(unsigned long arg)
1419 struct skge_port *skge = (struct skge_port *) arg;
1420 struct net_device *dev = skge->netdev;
1421 struct skge_hw *hw = skge->hw;
1422 int port = skge->port;
1424 if (!netif_running(dev))
1427 if (netif_carrier_ok(dev)) {
1428 xm_read16(hw, port, XM_ISRC);
1429 if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
1432 if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1434 xm_read16(hw, port, XM_ISRC);
1435 if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1439 spin_lock(&hw->phy_lock);
1441 spin_unlock(&hw->phy_lock);
1444 if (netif_running(dev))
1445 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1448 static void genesis_mac_init(struct skge_hw *hw, int port)
1450 struct net_device *dev = hw->dev[port];
1451 struct skge_port *skge = netdev_priv(dev);
1452 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1455 const u8 zero[6] = { 0 };
1457 for (i = 0; i < 10; i++) {
1458 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1460 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1465 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1468 /* Unreset the XMAC. */
1469 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1472 * Perform additional initialization for external PHYs,
1473 * namely for the 1000baseTX cards that use the XMAC's
1476 if (hw->phy_type != SK_PHY_XMAC) {
1477 /* Take external Phy out of reset */
1478 r = skge_read32(hw, B2_GP_IO);
1480 r |= GP_DIR_0|GP_IO_0;
1482 r |= GP_DIR_2|GP_IO_2;
1484 skge_write32(hw, B2_GP_IO, r);
1486 /* Enable GMII interface */
1487 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1491 switch(hw->phy_type) {
1496 bcom_phy_init(skge);
1497 bcom_check_link(hw, port);
1500 /* Set Station Address */
1501 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1503 /* We don't use match addresses so clear */
1504 for (i = 1; i < 16; i++)
1505 xm_outaddr(hw, port, XM_EXM(i), zero);
1507 /* Clear MIB counters */
1508 xm_write16(hw, port, XM_STAT_CMD,
1509 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1510 /* Clear two times according to Errata #3 */
1511 xm_write16(hw, port, XM_STAT_CMD,
1512 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1514 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1515 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1517 /* We don't need the FCS appended to the packet. */
1518 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1520 r |= XM_RX_BIG_PK_OK;
1522 if (skge->duplex == DUPLEX_HALF) {
1524 * If in manual half duplex mode the other side might be in
1525 * full duplex mode, so ignore if a carrier extension is not seen
1526 * on frames received
1528 r |= XM_RX_DIS_CEXT;
1530 xm_write16(hw, port, XM_RX_CMD, r);
1533 /* We want short frames padded to 60 bytes. */
1534 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1537 * Bump up the transmit threshold. This helps hold off transmit
1538 * underruns when we're blasting traffic from both ports at once.
1540 xm_write16(hw, port, XM_TX_THR, 512);
1543 * Enable the reception of all error frames. This is is
1544 * a necessary evil due to the design of the XMAC. The
1545 * XMAC's receive FIFO is only 8K in size, however jumbo
1546 * frames can be up to 9000 bytes in length. When bad
1547 * frame filtering is enabled, the XMAC's RX FIFO operates
1548 * in 'store and forward' mode. For this to work, the
1549 * entire frame has to fit into the FIFO, but that means
1550 * that jumbo frames larger than 8192 bytes will be
1551 * truncated. Disabling all bad frame filtering causes
1552 * the RX FIFO to operate in streaming mode, in which
1553 * case the XMAC will start transferring frames out of the
1554 * RX FIFO as soon as the FIFO threshold is reached.
1556 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1560 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1561 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1562 * and 'Octets Rx OK Hi Cnt Ov'.
1564 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1567 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1568 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1569 * and 'Octets Tx OK Hi Cnt Ov'.
1571 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1573 /* Configure MAC arbiter */
1574 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1576 /* configure timeout values */
1577 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1578 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1579 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1580 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1582 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1583 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1584 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1585 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1587 /* Configure Rx MAC FIFO */
1588 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1589 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1590 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1592 /* Configure Tx MAC FIFO */
1593 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1594 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1595 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1598 /* Enable frame flushing if jumbo frames used */
1599 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1601 /* enable timeout timers if normal frames */
1602 skge_write16(hw, B3_PA_CTRL,
1603 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1607 static void genesis_stop(struct skge_port *skge)
1609 struct skge_hw *hw = skge->hw;
1610 int port = skge->port;
1613 genesis_reset(hw, port);
1615 /* Clear Tx packet arbiter timeout IRQ */
1616 skge_write16(hw, B3_PA_CTRL,
1617 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1620 * If the transfer sticks at the MAC the STOP command will not
1621 * terminate if we don't flush the XMAC's transmit FIFO !
1623 xm_write32(hw, port, XM_MODE,
1624 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1628 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1630 /* For external PHYs there must be special handling */
1631 if (hw->phy_type != SK_PHY_XMAC) {
1632 reg = skge_read32(hw, B2_GP_IO);
1640 skge_write32(hw, B2_GP_IO, reg);
1641 skge_read32(hw, B2_GP_IO);
1644 xm_write16(hw, port, XM_MMU_CMD,
1645 xm_read16(hw, port, XM_MMU_CMD)
1646 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1648 xm_read16(hw, port, XM_MMU_CMD);
1652 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1654 struct skge_hw *hw = skge->hw;
1655 int port = skge->port;
1657 unsigned long timeout = jiffies + HZ;
1659 xm_write16(hw, port,
1660 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1662 /* wait for update to complete */
1663 while (xm_read16(hw, port, XM_STAT_CMD)
1664 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1665 if (time_after(jiffies, timeout))
1670 /* special case for 64 bit octet counter */
1671 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1672 | xm_read32(hw, port, XM_TXO_OK_LO);
1673 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1674 | xm_read32(hw, port, XM_RXO_OK_LO);
1676 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1677 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1680 static void genesis_mac_intr(struct skge_hw *hw, int port)
1682 struct skge_port *skge = netdev_priv(hw->dev[port]);
1683 u16 status = xm_read16(hw, port, XM_ISRC);
1685 if (netif_msg_intr(skge))
1686 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1687 skge->netdev->name, status);
1689 if (hw->phy_type == SK_PHY_XMAC &&
1690 (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
1691 xm_link_down(hw, port);
1693 if (status & XM_IS_TXF_UR) {
1694 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1695 ++skge->net_stats.tx_fifo_errors;
1697 if (status & XM_IS_RXF_OV) {
1698 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1699 ++skge->net_stats.rx_fifo_errors;
1703 static void genesis_link_up(struct skge_port *skge)
1705 struct skge_hw *hw = skge->hw;
1706 int port = skge->port;
1710 cmd = xm_read16(hw, port, XM_MMU_CMD);
1713 * enabling pause frame reception is required for 1000BT
1714 * because the XMAC is not reset if the link is going down
1716 if (skge->flow_status == FLOW_STAT_NONE ||
1717 skge->flow_status == FLOW_STAT_LOC_SEND)
1718 /* Disable Pause Frame Reception */
1719 cmd |= XM_MMU_IGN_PF;
1721 /* Enable Pause Frame Reception */
1722 cmd &= ~XM_MMU_IGN_PF;
1724 xm_write16(hw, port, XM_MMU_CMD, cmd);
1726 mode = xm_read32(hw, port, XM_MODE);
1727 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1728 skge->flow_status == FLOW_STAT_LOC_SEND) {
1730 * Configure Pause Frame Generation
1731 * Use internal and external Pause Frame Generation.
1732 * Sending pause frames is edge triggered.
1733 * Send a Pause frame with the maximum pause time if
1734 * internal oder external FIFO full condition occurs.
1735 * Send a zero pause time frame to re-start transmission.
1737 /* XM_PAUSE_DA = '010000C28001' (default) */
1738 /* XM_MAC_PTIME = 0xffff (maximum) */
1739 /* remember this value is defined in big endian (!) */
1740 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1742 mode |= XM_PAUSE_MODE;
1743 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1746 * disable pause frame generation is required for 1000BT
1747 * because the XMAC is not reset if the link is going down
1749 /* Disable Pause Mode in Mode Register */
1750 mode &= ~XM_PAUSE_MODE;
1752 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1755 xm_write32(hw, port, XM_MODE, mode);
1757 if (hw->phy_type != SK_PHY_XMAC)
1758 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1760 xm_write16(hw, port, XM_IMSK, msk);
1761 xm_read16(hw, port, XM_ISRC);
1763 /* get MMU Command Reg. */
1764 cmd = xm_read16(hw, port, XM_MMU_CMD);
1765 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1766 cmd |= XM_MMU_GMII_FD;
1769 * Workaround BCOM Errata (#10523) for all BCom Phys
1770 * Enable Power Management after link up
1772 if (hw->phy_type == SK_PHY_BCOM) {
1773 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1774 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1775 & ~PHY_B_AC_DIS_PM);
1776 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1780 xm_write16(hw, port, XM_MMU_CMD,
1781 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1786 static inline void bcom_phy_intr(struct skge_port *skge)
1788 struct skge_hw *hw = skge->hw;
1789 int port = skge->port;
1792 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1793 if (netif_msg_intr(skge))
1794 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1795 skge->netdev->name, isrc);
1797 if (isrc & PHY_B_IS_PSE)
1798 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1799 hw->dev[port]->name);
1801 /* Workaround BCom Errata:
1802 * enable and disable loopback mode if "NO HCD" occurs.
1804 if (isrc & PHY_B_IS_NO_HDCL) {
1805 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1806 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1807 ctrl | PHY_CT_LOOP);
1808 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1809 ctrl & ~PHY_CT_LOOP);
1812 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1813 bcom_check_link(hw, port);
1817 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1821 gma_write16(hw, port, GM_SMI_DATA, val);
1822 gma_write16(hw, port, GM_SMI_CTRL,
1823 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1824 for (i = 0; i < PHY_RETRIES; i++) {
1827 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1831 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1832 hw->dev[port]->name);
1836 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1840 gma_write16(hw, port, GM_SMI_CTRL,
1841 GM_SMI_CT_PHY_AD(hw->phy_addr)
1842 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1844 for (i = 0; i < PHY_RETRIES; i++) {
1846 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1852 *val = gma_read16(hw, port, GM_SMI_DATA);
1856 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1859 if (__gm_phy_read(hw, port, reg, &v))
1860 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1861 hw->dev[port]->name);
1865 /* Marvell Phy Initialization */
1866 static void yukon_init(struct skge_hw *hw, int port)
1868 struct skge_port *skge = netdev_priv(hw->dev[port]);
1869 u16 ctrl, ct1000, adv;
1871 if (skge->autoneg == AUTONEG_ENABLE) {
1872 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1874 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1875 PHY_M_EC_MAC_S_MSK);
1876 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1878 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1880 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1883 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1884 if (skge->autoneg == AUTONEG_DISABLE)
1885 ctrl &= ~PHY_CT_ANE;
1887 ctrl |= PHY_CT_RESET;
1888 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1894 if (skge->autoneg == AUTONEG_ENABLE) {
1896 if (skge->advertising & ADVERTISED_1000baseT_Full)
1897 ct1000 |= PHY_M_1000C_AFD;
1898 if (skge->advertising & ADVERTISED_1000baseT_Half)
1899 ct1000 |= PHY_M_1000C_AHD;
1900 if (skge->advertising & ADVERTISED_100baseT_Full)
1901 adv |= PHY_M_AN_100_FD;
1902 if (skge->advertising & ADVERTISED_100baseT_Half)
1903 adv |= PHY_M_AN_100_HD;
1904 if (skge->advertising & ADVERTISED_10baseT_Full)
1905 adv |= PHY_M_AN_10_FD;
1906 if (skge->advertising & ADVERTISED_10baseT_Half)
1907 adv |= PHY_M_AN_10_HD;
1909 /* Set Flow-control capabilities */
1910 adv |= phy_pause_map[skge->flow_control];
1912 if (skge->advertising & ADVERTISED_1000baseT_Full)
1913 adv |= PHY_M_AN_1000X_AFD;
1914 if (skge->advertising & ADVERTISED_1000baseT_Half)
1915 adv |= PHY_M_AN_1000X_AHD;
1917 adv |= fiber_pause_map[skge->flow_control];
1920 /* Restart Auto-negotiation */
1921 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1923 /* forced speed/duplex settings */
1924 ct1000 = PHY_M_1000C_MSE;
1926 if (skge->duplex == DUPLEX_FULL)
1927 ctrl |= PHY_CT_DUP_MD;
1929 switch (skge->speed) {
1931 ctrl |= PHY_CT_SP1000;
1934 ctrl |= PHY_CT_SP100;
1938 ctrl |= PHY_CT_RESET;
1941 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1943 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1944 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1946 /* Enable phy interrupt on autonegotiation complete (or link up) */
1947 if (skge->autoneg == AUTONEG_ENABLE)
1948 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1950 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1953 static void yukon_reset(struct skge_hw *hw, int port)
1955 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1956 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1957 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1958 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1959 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1961 gma_write16(hw, port, GM_RX_CTRL,
1962 gma_read16(hw, port, GM_RX_CTRL)
1963 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1966 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1967 static int is_yukon_lite_a0(struct skge_hw *hw)
1972 if (hw->chip_id != CHIP_ID_YUKON)
1975 reg = skge_read32(hw, B2_FAR);
1976 skge_write8(hw, B2_FAR + 3, 0xff);
1977 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1978 skge_write32(hw, B2_FAR, reg);
1982 static void yukon_mac_init(struct skge_hw *hw, int port)
1984 struct skge_port *skge = netdev_priv(hw->dev[port]);
1987 const u8 *addr = hw->dev[port]->dev_addr;
1989 /* WA code for COMA mode -- set PHY reset */
1990 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1991 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1992 reg = skge_read32(hw, B2_GP_IO);
1993 reg |= GP_DIR_9 | GP_IO_9;
1994 skge_write32(hw, B2_GP_IO, reg);
1998 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1999 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2001 /* WA code for COMA mode -- clear PHY reset */
2002 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2003 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2004 reg = skge_read32(hw, B2_GP_IO);
2007 skge_write32(hw, B2_GP_IO, reg);
2010 /* Set hardware config mode */
2011 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2012 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2013 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2015 /* Clear GMC reset */
2016 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2017 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2018 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2020 if (skge->autoneg == AUTONEG_DISABLE) {
2021 reg = GM_GPCR_AU_ALL_DIS;
2022 gma_write16(hw, port, GM_GP_CTRL,
2023 gma_read16(hw, port, GM_GP_CTRL) | reg);
2025 switch (skge->speed) {
2027 reg &= ~GM_GPCR_SPEED_100;
2028 reg |= GM_GPCR_SPEED_1000;
2031 reg &= ~GM_GPCR_SPEED_1000;
2032 reg |= GM_GPCR_SPEED_100;
2035 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2039 if (skge->duplex == DUPLEX_FULL)
2040 reg |= GM_GPCR_DUP_FULL;
2042 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2044 switch (skge->flow_control) {
2045 case FLOW_MODE_NONE:
2046 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2047 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2049 case FLOW_MODE_LOC_SEND:
2050 /* disable Rx flow-control */
2051 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2053 case FLOW_MODE_SYMMETRIC:
2054 case FLOW_MODE_SYM_OR_REM:
2055 /* enable Tx & Rx flow-control */
2059 gma_write16(hw, port, GM_GP_CTRL, reg);
2060 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2062 yukon_init(hw, port);
2065 reg = gma_read16(hw, port, GM_PHY_ADDR);
2066 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2068 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2069 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2070 gma_write16(hw, port, GM_PHY_ADDR, reg);
2072 /* transmit control */
2073 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2075 /* receive control reg: unicast + multicast + no FCS */
2076 gma_write16(hw, port, GM_RX_CTRL,
2077 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2079 /* transmit flow control */
2080 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2082 /* transmit parameter */
2083 gma_write16(hw, port, GM_TX_PARAM,
2084 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2085 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2086 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2088 /* serial mode register */
2089 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2090 if (hw->dev[port]->mtu > 1500)
2091 reg |= GM_SMOD_JUMBO_ENA;
2093 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2095 /* physical address: used for pause frames */
2096 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2097 /* virtual address for data */
2098 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2100 /* enable interrupt mask for counter overflows */
2101 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2102 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2103 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2105 /* Initialize Mac Fifo */
2107 /* Configure Rx MAC FIFO */
2108 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2109 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2111 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2112 if (is_yukon_lite_a0(hw))
2113 reg &= ~GMF_RX_F_FL_ON;
2115 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2116 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2118 * because Pause Packet Truncation in GMAC is not working
2119 * we have to increase the Flush Threshold to 64 bytes
2120 * in order to flush pause packets in Rx FIFO on Yukon-1
2122 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2124 /* Configure Tx MAC FIFO */
2125 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2126 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2129 /* Go into power down mode */
2130 static void yukon_suspend(struct skge_hw *hw, int port)
2134 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2135 ctrl |= PHY_M_PC_POL_R_DIS;
2136 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2138 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2139 ctrl |= PHY_CT_RESET;
2140 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2142 /* switch IEEE compatible power down mode on */
2143 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2144 ctrl |= PHY_CT_PDOWN;
2145 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2148 static void yukon_stop(struct skge_port *skge)
2150 struct skge_hw *hw = skge->hw;
2151 int port = skge->port;
2153 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2154 yukon_reset(hw, port);
2156 gma_write16(hw, port, GM_GP_CTRL,
2157 gma_read16(hw, port, GM_GP_CTRL)
2158 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2159 gma_read16(hw, port, GM_GP_CTRL);
2161 yukon_suspend(hw, port);
2163 /* set GPHY Control reset */
2164 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2165 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2168 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2170 struct skge_hw *hw = skge->hw;
2171 int port = skge->port;
2174 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2175 | gma_read32(hw, port, GM_TXO_OK_LO);
2176 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2177 | gma_read32(hw, port, GM_RXO_OK_LO);
2179 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2180 data[i] = gma_read32(hw, port,
2181 skge_stats[i].gma_offset);
2184 static void yukon_mac_intr(struct skge_hw *hw, int port)
2186 struct net_device *dev = hw->dev[port];
2187 struct skge_port *skge = netdev_priv(dev);
2188 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2190 if (netif_msg_intr(skge))
2191 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2194 if (status & GM_IS_RX_FF_OR) {
2195 ++skge->net_stats.rx_fifo_errors;
2196 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2199 if (status & GM_IS_TX_FF_UR) {
2200 ++skge->net_stats.tx_fifo_errors;
2201 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2206 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2208 switch (aux & PHY_M_PS_SPEED_MSK) {
2209 case PHY_M_PS_SPEED_1000:
2211 case PHY_M_PS_SPEED_100:
2218 static void yukon_link_up(struct skge_port *skge)
2220 struct skge_hw *hw = skge->hw;
2221 int port = skge->port;
2224 /* Enable Transmit FIFO Underrun */
2225 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2227 reg = gma_read16(hw, port, GM_GP_CTRL);
2228 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2229 reg |= GM_GPCR_DUP_FULL;
2232 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2233 gma_write16(hw, port, GM_GP_CTRL, reg);
2235 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2239 static void yukon_link_down(struct skge_port *skge)
2241 struct skge_hw *hw = skge->hw;
2242 int port = skge->port;
2245 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2246 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2247 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2249 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2250 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2251 ctrl |= PHY_M_AN_ASP;
2252 /* restore Asymmetric Pause bit */
2253 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2256 skge_link_down(skge);
2258 yukon_init(hw, port);
2261 static void yukon_phy_intr(struct skge_port *skge)
2263 struct skge_hw *hw = skge->hw;
2264 int port = skge->port;
2265 const char *reason = NULL;
2266 u16 istatus, phystat;
2268 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2269 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2271 if (netif_msg_intr(skge))
2272 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2273 skge->netdev->name, istatus, phystat);
2275 if (istatus & PHY_M_IS_AN_COMPL) {
2276 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2278 reason = "remote fault";
2282 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2283 reason = "master/slave fault";
2287 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2288 reason = "speed/duplex";
2292 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2293 ? DUPLEX_FULL : DUPLEX_HALF;
2294 skge->speed = yukon_speed(hw, phystat);
2296 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2297 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2298 case PHY_M_PS_PAUSE_MSK:
2299 skge->flow_status = FLOW_STAT_SYMMETRIC;
2301 case PHY_M_PS_RX_P_EN:
2302 skge->flow_status = FLOW_STAT_REM_SEND;
2304 case PHY_M_PS_TX_P_EN:
2305 skge->flow_status = FLOW_STAT_LOC_SEND;
2308 skge->flow_status = FLOW_STAT_NONE;
2311 if (skge->flow_status == FLOW_STAT_NONE ||
2312 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2313 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2315 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2316 yukon_link_up(skge);
2320 if (istatus & PHY_M_IS_LSP_CHANGE)
2321 skge->speed = yukon_speed(hw, phystat);
2323 if (istatus & PHY_M_IS_DUP_CHANGE)
2324 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2325 if (istatus & PHY_M_IS_LST_CHANGE) {
2326 if (phystat & PHY_M_PS_LINK_UP)
2327 yukon_link_up(skge);
2329 yukon_link_down(skge);
2333 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2334 skge->netdev->name, reason);
2336 /* XXX restart autonegotiation? */
2339 static void skge_phy_reset(struct skge_port *skge)
2341 struct skge_hw *hw = skge->hw;
2342 int port = skge->port;
2343 struct net_device *dev = hw->dev[port];
2345 netif_stop_queue(skge->netdev);
2346 netif_carrier_off(skge->netdev);
2348 spin_lock_bh(&hw->phy_lock);
2349 if (hw->chip_id == CHIP_ID_GENESIS) {
2350 genesis_reset(hw, port);
2351 genesis_mac_init(hw, port);
2353 yukon_reset(hw, port);
2354 yukon_init(hw, port);
2356 spin_unlock_bh(&hw->phy_lock);
2358 dev->set_multicast_list(dev);
2361 /* Basic MII support */
2362 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2364 struct mii_ioctl_data *data = if_mii(ifr);
2365 struct skge_port *skge = netdev_priv(dev);
2366 struct skge_hw *hw = skge->hw;
2367 int err = -EOPNOTSUPP;
2369 if (!netif_running(dev))
2370 return -ENODEV; /* Phy still in reset */
2374 data->phy_id = hw->phy_addr;
2379 spin_lock_bh(&hw->phy_lock);
2380 if (hw->chip_id == CHIP_ID_GENESIS)
2381 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2383 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2384 spin_unlock_bh(&hw->phy_lock);
2385 data->val_out = val;
2390 if (!capable(CAP_NET_ADMIN))
2393 spin_lock_bh(&hw->phy_lock);
2394 if (hw->chip_id == CHIP_ID_GENESIS)
2395 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2398 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2400 spin_unlock_bh(&hw->phy_lock);
2406 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2412 end = start + len - 1;
2414 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2415 skge_write32(hw, RB_ADDR(q, RB_START), start);
2416 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2417 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2418 skge_write32(hw, RB_ADDR(q, RB_END), end);
2420 if (q == Q_R1 || q == Q_R2) {
2421 /* Set thresholds on receive queue's */
2422 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2424 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2427 /* Enable store & forward on Tx queue's because
2428 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2430 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2433 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2436 /* Setup Bus Memory Interface */
2437 static void skge_qset(struct skge_port *skge, u16 q,
2438 const struct skge_element *e)
2440 struct skge_hw *hw = skge->hw;
2441 u32 watermark = 0x600;
2442 u64 base = skge->dma + (e->desc - skge->mem);
2444 /* optimization to reduce window on 32bit/33mhz */
2445 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2448 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2449 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2450 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2451 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2454 static int skge_up(struct net_device *dev)
2456 struct skge_port *skge = netdev_priv(dev);
2457 struct skge_hw *hw = skge->hw;
2458 int port = skge->port;
2459 u32 chunk, ram_addr;
2460 size_t rx_size, tx_size;
2463 if (!is_valid_ether_addr(dev->dev_addr))
2466 if (netif_msg_ifup(skge))
2467 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2469 if (dev->mtu > RX_BUF_SIZE)
2470 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2472 skge->rx_buf_size = RX_BUF_SIZE;
2475 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2476 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2477 skge->mem_size = tx_size + rx_size;
2478 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2482 BUG_ON(skge->dma & 7);
2484 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2485 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2490 memset(skge->mem, 0, skge->mem_size);
2492 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2496 err = skge_rx_fill(dev);
2500 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2501 skge->dma + rx_size);
2505 /* Initialize MAC */
2506 spin_lock_bh(&hw->phy_lock);
2507 if (hw->chip_id == CHIP_ID_GENESIS)
2508 genesis_mac_init(hw, port);
2510 yukon_mac_init(hw, port);
2511 spin_unlock_bh(&hw->phy_lock);
2513 /* Configure RAMbuffers */
2514 chunk = hw->ram_size / ((hw->ports + 1)*2);
2515 ram_addr = hw->ram_offset + 2 * chunk * port;
2517 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2518 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2520 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2521 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2522 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2524 /* Start receiver BMU */
2526 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2527 skge_led(skge, LED_MODE_ON);
2529 spin_lock_irq(&hw->hw_lock);
2530 hw->intr_mask |= portmask[port];
2531 skge_write32(hw, B0_IMSK, hw->intr_mask);
2532 spin_unlock_irq(&hw->hw_lock);
2534 napi_enable(&skge->napi);
2538 skge_rx_clean(skge);
2539 kfree(skge->rx_ring.start);
2541 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2547 static int skge_down(struct net_device *dev)
2549 struct skge_port *skge = netdev_priv(dev);
2550 struct skge_hw *hw = skge->hw;
2551 int port = skge->port;
2553 if (skge->mem == NULL)
2556 if (netif_msg_ifdown(skge))
2557 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2559 netif_stop_queue(dev);
2561 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2562 del_timer_sync(&skge->link_timer);
2564 napi_disable(&skge->napi);
2565 netif_carrier_off(dev);
2567 spin_lock_irq(&hw->hw_lock);
2568 hw->intr_mask &= ~portmask[port];
2569 skge_write32(hw, B0_IMSK, hw->intr_mask);
2570 spin_unlock_irq(&hw->hw_lock);
2572 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2573 if (hw->chip_id == CHIP_ID_GENESIS)
2578 /* Stop transmitter */
2579 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2580 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2581 RB_RST_SET|RB_DIS_OP_MD);
2584 /* Disable Force Sync bit and Enable Alloc bit */
2585 skge_write8(hw, SK_REG(port, TXA_CTRL),
2586 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2588 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2589 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2590 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2592 /* Reset PCI FIFO */
2593 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2594 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2596 /* Reset the RAM Buffer async Tx queue */
2597 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2599 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2600 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2601 RB_RST_SET|RB_DIS_OP_MD);
2602 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2604 if (hw->chip_id == CHIP_ID_GENESIS) {
2605 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2606 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2608 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2609 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2612 skge_led(skge, LED_MODE_OFF);
2614 netif_tx_lock_bh(dev);
2616 netif_tx_unlock_bh(dev);
2618 skge_rx_clean(skge);
2620 kfree(skge->rx_ring.start);
2621 kfree(skge->tx_ring.start);
2622 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2627 static inline int skge_avail(const struct skge_ring *ring)
2630 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2631 + (ring->to_clean - ring->to_use) - 1;
2634 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2636 struct skge_port *skge = netdev_priv(dev);
2637 struct skge_hw *hw = skge->hw;
2638 struct skge_element *e;
2639 struct skge_tx_desc *td;
2644 if (skb_padto(skb, ETH_ZLEN))
2645 return NETDEV_TX_OK;
2647 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2648 return NETDEV_TX_BUSY;
2650 e = skge->tx_ring.to_use;
2652 BUG_ON(td->control & BMU_OWN);
2654 len = skb_headlen(skb);
2655 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2656 pci_unmap_addr_set(e, mapaddr, map);
2657 pci_unmap_len_set(e, maplen, len);
2660 td->dma_hi = map >> 32;
2662 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2663 const int offset = skb_transport_offset(skb);
2665 /* This seems backwards, but it is what the sk98lin
2666 * does. Looks like hardware is wrong?
2668 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2669 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2670 control = BMU_TCP_CHECK;
2672 control = BMU_UDP_CHECK;
2675 td->csum_start = offset;
2676 td->csum_write = offset + skb->csum_offset;
2678 control = BMU_CHECK;
2680 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2681 control |= BMU_EOF| BMU_IRQ_EOF;
2683 struct skge_tx_desc *tf = td;
2685 control |= BMU_STFWD;
2686 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2687 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2689 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2690 frag->size, PCI_DMA_TODEVICE);
2695 BUG_ON(tf->control & BMU_OWN);
2698 tf->dma_hi = (u64) map >> 32;
2699 pci_unmap_addr_set(e, mapaddr, map);
2700 pci_unmap_len_set(e, maplen, frag->size);
2702 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2704 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2706 /* Make sure all the descriptors written */
2708 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2711 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2713 if (unlikely(netif_msg_tx_queued(skge)))
2714 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2715 dev->name, e - skge->tx_ring.start, skb->len);
2717 skge->tx_ring.to_use = e->next;
2720 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2721 pr_debug("%s: transmit queue full\n", dev->name);
2722 netif_stop_queue(dev);
2725 dev->trans_start = jiffies;
2727 return NETDEV_TX_OK;
2731 /* Free resources associated with this reing element */
2732 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2735 struct pci_dev *pdev = skge->hw->pdev;
2737 /* skb header vs. fragment */
2738 if (control & BMU_STF)
2739 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2740 pci_unmap_len(e, maplen),
2743 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2744 pci_unmap_len(e, maplen),
2747 if (control & BMU_EOF) {
2748 if (unlikely(netif_msg_tx_done(skge)))
2749 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2750 skge->netdev->name, e - skge->tx_ring.start);
2752 dev_kfree_skb(e->skb);
2756 /* Free all buffers in transmit ring */
2757 static void skge_tx_clean(struct net_device *dev)
2759 struct skge_port *skge = netdev_priv(dev);
2760 struct skge_element *e;
2762 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2763 struct skge_tx_desc *td = e->desc;
2764 skge_tx_free(skge, e, td->control);
2768 skge->tx_ring.to_clean = e;
2769 netif_wake_queue(dev);
2772 static void skge_tx_timeout(struct net_device *dev)
2774 struct skge_port *skge = netdev_priv(dev);
2776 if (netif_msg_timer(skge))
2777 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2779 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2783 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2787 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2790 if (!netif_running(dev)) {
2806 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2808 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2812 crc = ether_crc_le(ETH_ALEN, addr);
2814 filter[bit/8] |= 1 << (bit%8);
2817 static void genesis_set_multicast(struct net_device *dev)
2819 struct skge_port *skge = netdev_priv(dev);
2820 struct skge_hw *hw = skge->hw;
2821 int port = skge->port;
2822 int i, count = dev->mc_count;
2823 struct dev_mc_list *list = dev->mc_list;
2827 mode = xm_read32(hw, port, XM_MODE);
2828 mode |= XM_MD_ENA_HASH;
2829 if (dev->flags & IFF_PROMISC)
2830 mode |= XM_MD_ENA_PROM;
2832 mode &= ~XM_MD_ENA_PROM;
2834 if (dev->flags & IFF_ALLMULTI)
2835 memset(filter, 0xff, sizeof(filter));
2837 memset(filter, 0, sizeof(filter));
2839 if (skge->flow_status == FLOW_STAT_REM_SEND
2840 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2841 genesis_add_filter(filter, pause_mc_addr);
2843 for (i = 0; list && i < count; i++, list = list->next)
2844 genesis_add_filter(filter, list->dmi_addr);
2847 xm_write32(hw, port, XM_MODE, mode);
2848 xm_outhash(hw, port, XM_HSM, filter);
2851 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2853 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2854 filter[bit/8] |= 1 << (bit%8);
2857 static void yukon_set_multicast(struct net_device *dev)
2859 struct skge_port *skge = netdev_priv(dev);
2860 struct skge_hw *hw = skge->hw;
2861 int port = skge->port;
2862 struct dev_mc_list *list = dev->mc_list;
2863 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
2864 || skge->flow_status == FLOW_STAT_SYMMETRIC);
2868 memset(filter, 0, sizeof(filter));
2870 reg = gma_read16(hw, port, GM_RX_CTRL);
2871 reg |= GM_RXCR_UCF_ENA;
2873 if (dev->flags & IFF_PROMISC) /* promiscuous */
2874 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2875 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2876 memset(filter, 0xff, sizeof(filter));
2877 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
2878 reg &= ~GM_RXCR_MCF_ENA;
2881 reg |= GM_RXCR_MCF_ENA;
2884 yukon_add_filter(filter, pause_mc_addr);
2886 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
2887 yukon_add_filter(filter, list->dmi_addr);
2891 gma_write16(hw, port, GM_MC_ADDR_H1,
2892 (u16)filter[0] | ((u16)filter[1] << 8));
2893 gma_write16(hw, port, GM_MC_ADDR_H2,
2894 (u16)filter[2] | ((u16)filter[3] << 8));
2895 gma_write16(hw, port, GM_MC_ADDR_H3,
2896 (u16)filter[4] | ((u16)filter[5] << 8));
2897 gma_write16(hw, port, GM_MC_ADDR_H4,
2898 (u16)filter[6] | ((u16)filter[7] << 8));
2900 gma_write16(hw, port, GM_RX_CTRL, reg);
2903 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2905 if (hw->chip_id == CHIP_ID_GENESIS)
2906 return status >> XMR_FS_LEN_SHIFT;
2908 return status >> GMR_FS_LEN_SHIFT;
2911 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2913 if (hw->chip_id == CHIP_ID_GENESIS)
2914 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2916 return (status & GMR_FS_ANY_ERR) ||
2917 (status & GMR_FS_RX_OK) == 0;
2921 /* Get receive buffer from descriptor.
2922 * Handles copy of small buffers and reallocation failures
2924 static struct sk_buff *skge_rx_get(struct net_device *dev,
2925 struct skge_element *e,
2926 u32 control, u32 status, u16 csum)
2928 struct skge_port *skge = netdev_priv(dev);
2929 struct sk_buff *skb;
2930 u16 len = control & BMU_BBC;
2932 if (unlikely(netif_msg_rx_status(skge)))
2933 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2934 dev->name, e - skge->rx_ring.start,
2937 if (len > skge->rx_buf_size)
2940 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2943 if (bad_phy_status(skge->hw, status))
2946 if (phy_length(skge->hw, status) != len)
2949 if (len < RX_COPY_THRESHOLD) {
2950 skb = netdev_alloc_skb(dev, len + 2);
2954 skb_reserve(skb, 2);
2955 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2956 pci_unmap_addr(e, mapaddr),
2957 len, PCI_DMA_FROMDEVICE);
2958 skb_copy_from_linear_data(e->skb, skb->data, len);
2959 pci_dma_sync_single_for_device(skge->hw->pdev,
2960 pci_unmap_addr(e, mapaddr),
2961 len, PCI_DMA_FROMDEVICE);
2962 skge_rx_reuse(e, skge->rx_buf_size);
2964 struct sk_buff *nskb;
2965 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2969 skb_reserve(nskb, NET_IP_ALIGN);
2970 pci_unmap_single(skge->hw->pdev,
2971 pci_unmap_addr(e, mapaddr),
2972 pci_unmap_len(e, maplen),
2973 PCI_DMA_FROMDEVICE);
2975 prefetch(skb->data);
2976 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2980 if (skge->rx_csum) {
2982 skb->ip_summed = CHECKSUM_COMPLETE;
2985 skb->protocol = eth_type_trans(skb, dev);
2990 if (netif_msg_rx_err(skge))
2991 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2992 dev->name, e - skge->rx_ring.start,
2995 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2996 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2997 skge->net_stats.rx_length_errors++;
2998 if (status & XMR_FS_FRA_ERR)
2999 skge->net_stats.rx_frame_errors++;
3000 if (status & XMR_FS_FCS_ERR)
3001 skge->net_stats.rx_crc_errors++;
3003 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3004 skge->net_stats.rx_length_errors++;
3005 if (status & GMR_FS_FRAGMENT)
3006 skge->net_stats.rx_frame_errors++;
3007 if (status & GMR_FS_CRC_ERR)
3008 skge->net_stats.rx_crc_errors++;
3012 skge_rx_reuse(e, skge->rx_buf_size);
3016 /* Free all buffers in Tx ring which are no longer owned by device */
3017 static void skge_tx_done(struct net_device *dev)
3019 struct skge_port *skge = netdev_priv(dev);
3020 struct skge_ring *ring = &skge->tx_ring;
3021 struct skge_element *e;
3023 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3025 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3026 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3028 if (control & BMU_OWN)
3031 skge_tx_free(skge, e, control);
3033 skge->tx_ring.to_clean = e;
3035 /* Can run lockless until we need to synchronize to restart queue. */
3038 if (unlikely(netif_queue_stopped(dev) &&
3039 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3041 if (unlikely(netif_queue_stopped(dev) &&
3042 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3043 netif_wake_queue(dev);
3046 netif_tx_unlock(dev);
3050 static int skge_poll(struct napi_struct *napi, int to_do)
3052 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3053 struct net_device *dev = skge->netdev;
3054 struct skge_hw *hw = skge->hw;
3055 struct skge_ring *ring = &skge->rx_ring;
3056 struct skge_element *e;
3061 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3063 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3064 struct skge_rx_desc *rd = e->desc;
3065 struct sk_buff *skb;
3069 control = rd->control;
3070 if (control & BMU_OWN)
3073 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3075 dev->last_rx = jiffies;
3076 netif_receive_skb(skb);
3083 /* restart receiver */
3085 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3087 if (work_done < to_do) {
3088 spin_lock_irq(&hw->hw_lock);
3089 __netif_rx_complete(dev, napi);
3090 hw->intr_mask |= napimask[skge->port];
3091 skge_write32(hw, B0_IMSK, hw->intr_mask);
3092 skge_read32(hw, B0_IMSK);
3093 spin_unlock_irq(&hw->hw_lock);
3099 /* Parity errors seem to happen when Genesis is connected to a switch
3100 * with no other ports present. Heartbeat error??
3102 static void skge_mac_parity(struct skge_hw *hw, int port)
3104 struct net_device *dev = hw->dev[port];
3107 struct skge_port *skge = netdev_priv(dev);
3108 ++skge->net_stats.tx_heartbeat_errors;
3111 if (hw->chip_id == CHIP_ID_GENESIS)
3112 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3115 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3116 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3117 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3118 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3121 static void skge_mac_intr(struct skge_hw *hw, int port)
3123 if (hw->chip_id == CHIP_ID_GENESIS)
3124 genesis_mac_intr(hw, port);
3126 yukon_mac_intr(hw, port);
3129 /* Handle device specific framing and timeout interrupts */
3130 static void skge_error_irq(struct skge_hw *hw)
3132 struct pci_dev *pdev = hw->pdev;
3133 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3135 if (hw->chip_id == CHIP_ID_GENESIS) {
3136 /* clear xmac errors */
3137 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3138 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3139 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3140 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3142 /* Timestamp (unused) overflow */
3143 if (hwstatus & IS_IRQ_TIST_OV)
3144 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3147 if (hwstatus & IS_RAM_RD_PAR) {
3148 dev_err(&pdev->dev, "Ram read data parity error\n");
3149 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3152 if (hwstatus & IS_RAM_WR_PAR) {
3153 dev_err(&pdev->dev, "Ram write data parity error\n");
3154 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3157 if (hwstatus & IS_M1_PAR_ERR)
3158 skge_mac_parity(hw, 0);
3160 if (hwstatus & IS_M2_PAR_ERR)
3161 skge_mac_parity(hw, 1);
3163 if (hwstatus & IS_R1_PAR_ERR) {
3164 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3166 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3169 if (hwstatus & IS_R2_PAR_ERR) {
3170 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3172 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3175 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3176 u16 pci_status, pci_cmd;
3178 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3179 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3181 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3182 pci_cmd, pci_status);
3184 /* Write the error bits back to clear them. */
3185 pci_status &= PCI_STATUS_ERROR_BITS;
3186 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3187 pci_write_config_word(pdev, PCI_COMMAND,
3188 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3189 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3190 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3192 /* if error still set then just ignore it */
3193 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3194 if (hwstatus & IS_IRQ_STAT) {
3195 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3196 hw->intr_mask &= ~IS_HW_ERR;
3202 * Interrupt from PHY are handled in tasklet (softirq)
3203 * because accessing phy registers requires spin wait which might
3204 * cause excess interrupt latency.
3206 static void skge_extirq(unsigned long arg)
3208 struct skge_hw *hw = (struct skge_hw *) arg;
3211 for (port = 0; port < hw->ports; port++) {
3212 struct net_device *dev = hw->dev[port];
3214 if (netif_running(dev)) {
3215 struct skge_port *skge = netdev_priv(dev);
3217 spin_lock(&hw->phy_lock);
3218 if (hw->chip_id != CHIP_ID_GENESIS)
3219 yukon_phy_intr(skge);
3220 else if (hw->phy_type == SK_PHY_BCOM)
3221 bcom_phy_intr(skge);
3222 spin_unlock(&hw->phy_lock);
3226 spin_lock_irq(&hw->hw_lock);
3227 hw->intr_mask |= IS_EXT_REG;
3228 skge_write32(hw, B0_IMSK, hw->intr_mask);
3229 skge_read32(hw, B0_IMSK);
3230 spin_unlock_irq(&hw->hw_lock);
3233 static irqreturn_t skge_intr(int irq, void *dev_id)
3235 struct skge_hw *hw = dev_id;
3239 spin_lock(&hw->hw_lock);
3240 /* Reading this register masks IRQ */
3241 status = skge_read32(hw, B0_SP_ISRC);
3242 if (status == 0 || status == ~0)
3246 status &= hw->intr_mask;
3247 if (status & IS_EXT_REG) {
3248 hw->intr_mask &= ~IS_EXT_REG;
3249 tasklet_schedule(&hw->phy_task);
3252 if (status & (IS_XA1_F|IS_R1_F)) {
3253 struct skge_port *skge = netdev_priv(hw->dev[0]);
3254 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3255 netif_rx_schedule(hw->dev[0], &skge->napi);
3258 if (status & IS_PA_TO_TX1)
3259 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3261 if (status & IS_PA_TO_RX1) {
3262 struct skge_port *skge = netdev_priv(hw->dev[0]);
3264 ++skge->net_stats.rx_over_errors;
3265 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3269 if (status & IS_MAC1)
3270 skge_mac_intr(hw, 0);
3273 struct skge_port *skge = netdev_priv(hw->dev[1]);
3275 if (status & (IS_XA2_F|IS_R2_F)) {
3276 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3277 netif_rx_schedule(hw->dev[1], &skge->napi);
3280 if (status & IS_PA_TO_RX2) {
3281 ++skge->net_stats.rx_over_errors;
3282 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3285 if (status & IS_PA_TO_TX2)
3286 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3288 if (status & IS_MAC2)
3289 skge_mac_intr(hw, 1);
3292 if (status & IS_HW_ERR)
3295 skge_write32(hw, B0_IMSK, hw->intr_mask);
3296 skge_read32(hw, B0_IMSK);
3298 spin_unlock(&hw->hw_lock);
3300 return IRQ_RETVAL(handled);
3303 #ifdef CONFIG_NET_POLL_CONTROLLER
3304 static void skge_netpoll(struct net_device *dev)
3306 struct skge_port *skge = netdev_priv(dev);
3308 disable_irq(dev->irq);
3309 skge_intr(dev->irq, skge->hw);
3310 enable_irq(dev->irq);
3314 static int skge_set_mac_address(struct net_device *dev, void *p)
3316 struct skge_port *skge = netdev_priv(dev);
3317 struct skge_hw *hw = skge->hw;
3318 unsigned port = skge->port;
3319 const struct sockaddr *addr = p;
3322 if (!is_valid_ether_addr(addr->sa_data))
3323 return -EADDRNOTAVAIL;
3325 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3327 if (!netif_running(dev)) {
3328 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3329 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3332 spin_lock_bh(&hw->phy_lock);
3333 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3334 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3336 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3337 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3339 if (hw->chip_id == CHIP_ID_GENESIS)
3340 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3342 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3343 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3346 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3347 spin_unlock_bh(&hw->phy_lock);
3353 static const struct {
3357 { CHIP_ID_GENESIS, "Genesis" },
3358 { CHIP_ID_YUKON, "Yukon" },
3359 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3360 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3363 static const char *skge_board_name(const struct skge_hw *hw)
3366 static char buf[16];
3368 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3369 if (skge_chips[i].id == hw->chip_id)
3370 return skge_chips[i].name;
3372 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3378 * Setup the board data structure, but don't bring up
3381 static int skge_reset(struct skge_hw *hw)
3384 u16 ctst, pci_status;
3385 u8 t8, mac_cfg, pmd_type;
3388 ctst = skge_read16(hw, B0_CTST);
3391 skge_write8(hw, B0_CTST, CS_RST_SET);
3392 skge_write8(hw, B0_CTST, CS_RST_CLR);
3394 /* clear PCI errors, if any */
3395 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3396 skge_write8(hw, B2_TST_CTRL2, 0);
3398 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3399 pci_write_config_word(hw->pdev, PCI_STATUS,
3400 pci_status | PCI_STATUS_ERROR_BITS);
3401 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3402 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3404 /* restore CLK_RUN bits (for Yukon-Lite) */
3405 skge_write16(hw, B0_CTST,
3406 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3408 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3409 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3410 pmd_type = skge_read8(hw, B2_PMD_TYP);
3411 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3413 switch (hw->chip_id) {
3414 case CHIP_ID_GENESIS:
3415 switch (hw->phy_type) {
3417 hw->phy_addr = PHY_ADDR_XMAC;
3420 hw->phy_addr = PHY_ADDR_BCOM;
3423 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3430 case CHIP_ID_YUKON_LITE:
3431 case CHIP_ID_YUKON_LP:
3432 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3435 hw->phy_addr = PHY_ADDR_MARV;
3439 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3444 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3445 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3446 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3448 /* read the adapters RAM size */
3449 t8 = skge_read8(hw, B2_E_0);
3450 if (hw->chip_id == CHIP_ID_GENESIS) {
3452 /* special case: 4 x 64k x 36, offset = 0x80000 */
3453 hw->ram_size = 0x100000;
3454 hw->ram_offset = 0x80000;
3456 hw->ram_size = t8 * 512;
3459 hw->ram_size = 0x20000;
3461 hw->ram_size = t8 * 4096;
3463 hw->intr_mask = IS_HW_ERR;
3465 /* Use PHY IRQ for all but fiber based Genesis board */
3466 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3467 hw->intr_mask |= IS_EXT_REG;
3469 if (hw->chip_id == CHIP_ID_GENESIS)
3472 /* switch power to VCC (WA for VAUX problem) */
3473 skge_write8(hw, B0_POWER_CTRL,
3474 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3476 /* avoid boards with stuck Hardware error bits */
3477 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3478 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3479 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3480 hw->intr_mask &= ~IS_HW_ERR;
3483 /* Clear PHY COMA */
3484 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3485 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3486 reg &= ~PCI_PHY_COMA;
3487 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3488 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3491 for (i = 0; i < hw->ports; i++) {
3492 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3493 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3497 /* turn off hardware timer (unused) */
3498 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3499 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3500 skge_write8(hw, B0_LED, LED_STAT_ON);
3502 /* enable the Tx Arbiters */
3503 for (i = 0; i < hw->ports; i++)
3504 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3506 /* Initialize ram interface */
3507 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3509 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3510 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3511 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3512 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3513 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3514 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3515 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3516 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3517 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3518 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3519 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3520 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3522 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3524 /* Set interrupt moderation for Transmit only
3525 * Receive interrupts avoided by NAPI
3527 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3528 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3529 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3531 skge_write32(hw, B0_IMSK, hw->intr_mask);
3533 for (i = 0; i < hw->ports; i++) {
3534 if (hw->chip_id == CHIP_ID_GENESIS)
3535 genesis_reset(hw, i);
3543 /* Initialize network device */
3544 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3547 struct skge_port *skge;
3548 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3551 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3555 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3556 dev->open = skge_up;
3557 dev->stop = skge_down;
3558 dev->do_ioctl = skge_ioctl;
3559 dev->hard_start_xmit = skge_xmit_frame;
3560 dev->get_stats = skge_get_stats;
3561 if (hw->chip_id == CHIP_ID_GENESIS)
3562 dev->set_multicast_list = genesis_set_multicast;
3564 dev->set_multicast_list = yukon_set_multicast;
3566 dev->set_mac_address = skge_set_mac_address;
3567 dev->change_mtu = skge_change_mtu;
3568 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3569 dev->tx_timeout = skge_tx_timeout;
3570 dev->watchdog_timeo = TX_WATCHDOG;
3571 #ifdef CONFIG_NET_POLL_CONTROLLER
3572 dev->poll_controller = skge_netpoll;
3574 dev->irq = hw->pdev->irq;
3577 dev->features |= NETIF_F_HIGHDMA;
3579 skge = netdev_priv(dev);
3580 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3583 skge->msg_enable = netif_msg_init(debug, default_msg);
3585 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3586 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3588 /* Auto speed and flow control */
3589 skge->autoneg = AUTONEG_ENABLE;
3590 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3593 skge->advertising = skge_supported_modes(hw);
3595 if (pci_wake_enabled(hw->pdev))
3596 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3598 hw->dev[port] = dev;
3602 /* Only used for Genesis XMAC */
3603 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3605 if (hw->chip_id != CHIP_ID_GENESIS) {
3606 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3610 /* read the mac address */
3611 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3612 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3614 /* device is off until link detection */
3615 netif_carrier_off(dev);
3616 netif_stop_queue(dev);
3621 static void __devinit skge_show_addr(struct net_device *dev)
3623 const struct skge_port *skge = netdev_priv(dev);
3624 DECLARE_MAC_BUF(mac);
3626 if (netif_msg_probe(skge))
3627 printk(KERN_INFO PFX "%s: addr %s\n",
3628 dev->name, print_mac(mac, dev->dev_addr));
3631 static int __devinit skge_probe(struct pci_dev *pdev,
3632 const struct pci_device_id *ent)
3634 struct net_device *dev, *dev1;
3636 int err, using_dac = 0;
3638 err = pci_enable_device(pdev);
3640 dev_err(&pdev->dev, "cannot enable PCI device\n");
3644 err = pci_request_regions(pdev, DRV_NAME);
3646 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3647 goto err_out_disable_pdev;
3650 pci_set_master(pdev);
3652 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3654 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3655 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3657 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3661 dev_err(&pdev->dev, "no usable DMA configuration\n");
3662 goto err_out_free_regions;
3666 /* byte swap descriptors in hardware */
3670 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3671 reg |= PCI_REV_DESC;
3672 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3677 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3679 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3680 goto err_out_free_regions;
3684 spin_lock_init(&hw->hw_lock);
3685 spin_lock_init(&hw->phy_lock);
3686 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3688 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3690 dev_err(&pdev->dev, "cannot map device registers\n");
3691 goto err_out_free_hw;
3694 err = skge_reset(hw);
3696 goto err_out_iounmap;
3698 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3699 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3700 skge_board_name(hw), hw->chip_rev);
3702 dev = skge_devinit(hw, 0, using_dac);
3704 goto err_out_led_off;
3706 /* Some motherboards are broken and has zero in ROM. */
3707 if (!is_valid_ether_addr(dev->dev_addr))
3708 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3710 err = register_netdev(dev);
3712 dev_err(&pdev->dev, "cannot register net device\n");
3713 goto err_out_free_netdev;
3716 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3718 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3719 dev->name, pdev->irq);
3720 goto err_out_unregister;
3722 skge_show_addr(dev);
3724 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3725 if (register_netdev(dev1) == 0)
3726 skge_show_addr(dev1);
3728 /* Failure to register second port need not be fatal */
3729 dev_warn(&pdev->dev, "register of second port failed\n");
3734 pci_set_drvdata(pdev, hw);
3739 unregister_netdev(dev);
3740 err_out_free_netdev:
3743 skge_write16(hw, B0_LED, LED_STAT_OFF);
3748 err_out_free_regions:
3749 pci_release_regions(pdev);
3750 err_out_disable_pdev:
3751 pci_disable_device(pdev);
3752 pci_set_drvdata(pdev, NULL);
3757 static void __devexit skge_remove(struct pci_dev *pdev)
3759 struct skge_hw *hw = pci_get_drvdata(pdev);
3760 struct net_device *dev0, *dev1;
3765 flush_scheduled_work();
3767 if ((dev1 = hw->dev[1]))
3768 unregister_netdev(dev1);
3770 unregister_netdev(dev0);
3772 tasklet_disable(&hw->phy_task);
3774 spin_lock_irq(&hw->hw_lock);
3776 skge_write32(hw, B0_IMSK, 0);
3777 skge_read32(hw, B0_IMSK);
3778 spin_unlock_irq(&hw->hw_lock);
3780 skge_write16(hw, B0_LED, LED_STAT_OFF);
3781 skge_write8(hw, B0_CTST, CS_RST_SET);
3783 free_irq(pdev->irq, hw);
3784 pci_release_regions(pdev);
3785 pci_disable_device(pdev);
3792 pci_set_drvdata(pdev, NULL);
3796 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3798 struct skge_hw *hw = pci_get_drvdata(pdev);
3799 int i, err, wol = 0;
3804 err = pci_save_state(pdev);
3808 for (i = 0; i < hw->ports; i++) {
3809 struct net_device *dev = hw->dev[i];
3810 struct skge_port *skge = netdev_priv(dev);
3812 if (netif_running(dev))
3815 skge_wol_init(skge);
3820 skge_write32(hw, B0_IMSK, 0);
3821 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3822 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3827 static int skge_resume(struct pci_dev *pdev)
3829 struct skge_hw *hw = pci_get_drvdata(pdev);
3835 err = pci_set_power_state(pdev, PCI_D0);
3839 err = pci_restore_state(pdev);
3843 pci_enable_wake(pdev, PCI_D0, 0);
3845 err = skge_reset(hw);
3849 for (i = 0; i < hw->ports; i++) {
3850 struct net_device *dev = hw->dev[i];
3852 if (netif_running(dev)) {
3856 printk(KERN_ERR PFX "%s: could not up: %d\n",
3868 static void skge_shutdown(struct pci_dev *pdev)
3870 struct skge_hw *hw = pci_get_drvdata(pdev);
3876 for (i = 0; i < hw->ports; i++) {
3877 struct net_device *dev = hw->dev[i];
3878 struct skge_port *skge = netdev_priv(dev);
3881 skge_wol_init(skge);
3885 pci_enable_wake(pdev, PCI_D3hot, wol);
3886 pci_enable_wake(pdev, PCI_D3cold, wol);
3888 pci_disable_device(pdev);
3889 pci_set_power_state(pdev, PCI_D3hot);
3893 static struct pci_driver skge_driver = {
3895 .id_table = skge_id_table,
3896 .probe = skge_probe,
3897 .remove = __devexit_p(skge_remove),
3899 .suspend = skge_suspend,
3900 .resume = skge_resume,
3902 .shutdown = skge_shutdown,
3905 static int __init skge_init_module(void)
3907 return pci_register_driver(&skge_driver);
3910 static void __exit skge_cleanup_module(void)
3912 pci_unregister_driver(&skge_driver);
3915 module_init(skge_init_module);
3916 module_exit(skge_cleanup_module);