1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
26 -----------------------------------------------------------
28 Linux kernel-specific changes:
31 - Use PCI driver interface
36 - Merge Becker version 0.15
38 LK1.1.3 (Andrew Morton)
42 - Merge Becker version 1.03
44 LK1.2.1 (Ion Badulescu <ionut@cs.columbia.edu>)
45 - Support hardware Rx/Tx checksumming
46 - Use the GFP firmware taken from Adaptec's Netware driver
48 LK1.2.2 (Ion Badulescu)
51 LK1.2.3 (Ion Badulescu)
52 - Fix the flaky mdio interface
53 - More compat clean-ups
55 LK1.2.4 (Ion Badulescu)
56 - More 2.2.x initialization fixes
58 LK1.2.5 (Ion Badulescu)
59 - Several fixes from Manfred Spraul
61 LK1.2.6 (Ion Badulescu)
62 - Fixed ifup/ifdown/ifup problem in 2.4.x
64 LK1.2.7 (Ion Badulescu)
66 - Made more functions static and __init
68 LK1.2.8 (Ion Badulescu)
69 - Quell bogus error messages, inform about the Tx threshold
70 - Removed #ifdef CONFIG_PCI, this driver is PCI only
72 LK1.2.9 (Ion Badulescu)
73 - Merged Jeff Garzik's changes from 2.4.4-pre5
74 - Added 2.2.x compatibility stuff required by the above changes
76 LK1.2.9a (Ion Badulescu)
77 - More updates from Jeff Garzik
79 LK1.3.0 (Ion Badulescu)
80 - Merged zerocopy support
82 LK1.3.1 (Ion Badulescu)
83 - Added ethtool support
84 - Added GPIO (media change) interrupt support
86 LK1.3.2 (Ion Badulescu)
87 - Fixed 2.2.x compatibility issues introduced in 1.3.1
88 - Fixed ethtool ioctl returning uninitialized memory
90 LK1.3.3 (Ion Badulescu)
91 - Initialize the TxMode register properly
92 - Don't dereference dev->priv after freeing it
94 LK1.3.4 (Ion Badulescu)
95 - Fixed initialization timing problems
96 - Fixed interrupt mask definitions
99 - ethtool NWAY_RST, GLINK, [GS]MSGLVL support
102 - Sparc64 support and fixes (Ion Badulescu)
103 - Better stats and error handling (Ion Badulescu)
104 - Use new pci_set_mwi() PCI API function (jgarzik)
106 LK1.3.7 (Ion Badulescu)
107 - minimal implementation of tx_timeout()
108 - correctly shutdown the Rx/Tx engines in netdev_close()
109 - added calls to netif_carrier_on/off
110 (patch from Stefan Rompf <srompf@isg.de>)
113 LK1.3.8 (Ion Badulescu)
114 - adjust DMA burst size on sparc64
116 - reworked zerocopy support for 64-bit buffers
117 - working and usable interrupt mitigation/latency
118 - reduced Tx interrupt frequency for lower interrupt overhead
120 LK1.3.9 (Ion Badulescu)
121 - bugfix for mcast filter
122 - enable the right kind of Tx interrupts (TxDMADone, not TxDone)
124 LK1.4.0 (Ion Badulescu)
127 LK1.4.1 (Ion Badulescu)
128 - flush PCI posting buffers after disabling Rx interrupts
129 - put the chip to a D3 slumber on driver unload
130 - added config option to enable/disable NAPI
132 LK1.4.2 (Ion Badulescu)
133 - finally added firmware (GPL'ed by Adaptec)
134 - removed compatibility code for 2.2.x
136 LK1.4.2.1 (Ion Badulescu)
137 - fixed 32/64 bit issues on i386 + CONFIG_HIGHMEM
138 - added 32-bit padding to outgoing skb's, removed previous workaround
140 TODO: - fix forced speed/duplexing code (broken a long time ago, when
141 somebody converted the driver to use the generic MII code)
145 #define DRV_NAME "starfire"
146 #define DRV_VERSION "1.03+LK1.4.2.1"
147 #define DRV_RELDATE "October 3, 2005"
149 #include <linux/config.h>
150 #include <linux/version.h>
151 #include <linux/module.h>
152 #include <linux/kernel.h>
153 #include <linux/pci.h>
154 #include <linux/netdevice.h>
155 #include <linux/etherdevice.h>
156 #include <linux/init.h>
157 #include <linux/delay.h>
158 #include <linux/crc32.h>
159 #include <linux/ethtool.h>
160 #include <linux/mii.h>
161 #include <linux/if_vlan.h>
162 #include <asm/processor.h> /* Processor type for cache alignment. */
163 #include <asm/uaccess.h>
166 #include "starfire_firmware.h"
168 * The current frame processor firmware fails to checksum a fragment
169 * of length 1. If and when this is fixed, the #define below can be removed.
171 #define HAS_BROKEN_FIRMWARE
174 * If using the broken firmware, data must be padded to the next 32-bit boundary.
176 #ifdef HAS_BROKEN_FIRMWARE
177 #define PADDING_MASK 3
181 * Define this if using the driver with the zero-copy patch
185 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
189 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
190 #undef HAVE_NETDEV_POLL
193 /* The user-configurable values.
194 These may be modified when a driver module is loaded.*/
196 /* Used for tuning interrupt latency vs. overhead. */
197 static int intr_latency;
198 static int small_frames;
200 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
201 static int max_interrupt_work = 20;
203 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
204 The Starfire has a 512 element hash table based on the Ethernet CRC. */
205 static int multicast_filter_limit = 512;
206 /* Whether to do TCP/UDP checksums in hardware */
207 static int enable_hw_cksum = 1;
209 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
211 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 * Setting to > 1518 effectively disables this feature.
215 * The ia64 doesn't allow for unaligned loads even of integers being
216 * misaligned on a 2 byte boundary. Thus always force copying of
217 * packets as the starfire doesn't allow for misaligned DMAs ;-(
220 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
221 * at least, having unaligned frames leads to a rather serious performance
224 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
225 static int rx_copybreak = PKT_BUF_SZ;
227 static int rx_copybreak /* = 0 */;
230 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
232 #define DMA_BURST_SIZE 64
234 #define DMA_BURST_SIZE 128
237 /* Used to pass the media type, etc.
238 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
239 The media type is usually passed in 'options[]'.
240 These variables are deprecated, use ethtool instead. -Ion
242 #define MAX_UNITS 8 /* More are supported, limit only on options */
243 static int options[MAX_UNITS] = {0, };
244 static int full_duplex[MAX_UNITS] = {0, };
246 /* Operational parameters that are set at compile time. */
248 /* The "native" ring sizes are either 256 or 2048.
249 However in some modes a descriptor may be marked to wrap the ring earlier.
251 #define RX_RING_SIZE 256
252 #define TX_RING_SIZE 32
253 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
254 #define DONE_Q_SIZE 1024
255 /* All queues must be aligned on a 256-byte boundary */
256 #define QUEUE_ALIGN 256
258 #if RX_RING_SIZE > 256
259 #define RX_Q_ENTRIES Rx2048QEntries
261 #define RX_Q_ENTRIES Rx256QEntries
264 /* Operational parameters that usually are not changed. */
265 /* Time in jiffies before concluding the transmitter is hung. */
266 #define TX_TIMEOUT (2 * HZ)
270 * We need a much better method to determine if dma_addr_t is 64-bit.
272 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
273 /* 64-bit dma_addr_t */
274 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
275 #define netdrv_addr_t u64
276 #define cpu_to_dma(x) cpu_to_le64(x)
277 #define dma_to_cpu(x) le64_to_cpu(x)
278 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
279 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
280 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
281 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
282 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
283 #else /* 32-bit dma_addr_t */
284 #define netdrv_addr_t u32
285 #define cpu_to_dma(x) cpu_to_le32(x)
286 #define dma_to_cpu(x) le32_to_cpu(x)
287 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
288 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
289 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
290 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
291 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
294 #define skb_first_frag_len(skb) skb_headlen(skb)
295 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
297 #ifdef HAVE_NETDEV_POLL
298 #define init_poll(dev) \
300 dev->poll = &netdev_poll; \
301 dev->weight = max_interrupt_work; \
303 #define netdev_rx(dev, ioaddr) \
306 if (netif_rx_schedule_prep(dev)) { \
307 __netif_rx_schedule(dev); \
308 intr_enable = readl(ioaddr + IntrEnable); \
309 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
310 writel(intr_enable, ioaddr + IntrEnable); \
311 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
313 /* Paranoia check */ \
314 intr_enable = readl(ioaddr + IntrEnable); \
315 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
316 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
317 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
318 writel(intr_enable, ioaddr + IntrEnable); \
322 #define netdev_receive_skb(skb) netif_receive_skb(skb)
323 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
324 static int netdev_poll(struct net_device *dev, int *budget);
325 #else /* not HAVE_NETDEV_POLL */
326 #define init_poll(dev)
327 #define netdev_receive_skb(skb) netif_rx(skb)
328 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
329 #define netdev_rx(dev, ioaddr) \
331 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
332 __netdev_rx(dev, "a);\
334 #endif /* not HAVE_NETDEV_POLL */
335 /* end of compatibility code */
338 /* These identify the driver base version and may not be removed. */
339 static char version[] __devinitdata =
340 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
341 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
343 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
344 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
345 MODULE_LICENSE("GPL");
346 MODULE_VERSION(DRV_VERSION);
348 module_param(max_interrupt_work, int, 0);
349 module_param(mtu, int, 0);
350 module_param(debug, int, 0);
351 module_param(rx_copybreak, int, 0);
352 module_param(intr_latency, int, 0);
353 module_param(small_frames, int, 0);
354 module_param_array(options, int, NULL, 0);
355 module_param_array(full_duplex, int, NULL, 0);
356 module_param(enable_hw_cksum, int, 0);
357 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
358 MODULE_PARM_DESC(mtu, "MTU (all boards)");
359 MODULE_PARM_DESC(debug, "Debug level (0-6)");
360 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
361 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
362 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
363 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
364 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
365 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
370 I. Board Compatibility
372 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
374 II. Board-specific settings
376 III. Driver operation
380 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
381 ring sizes are set fixed by the hardware, but may optionally be wrapped
382 earlier by the END bit in the descriptor.
383 This driver uses that hardware queue size for the Rx ring, where a large
384 number of entries has no ill effect beyond increases the potential backlog.
385 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
386 disables the queue layer priority ordering and we have no mechanism to
387 utilize the hardware two-level priority queue. When modifying the
388 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
391 IIIb/c. Transmit/Receive Structure
393 See the Adaptec manual for the many possible structures, and options for
394 each structure. There are far too many to document all of them here.
396 For transmit this driver uses type 0/1 transmit descriptors (depending
397 on the 32/64 bitness of the architecture), and relies on automatic
398 minimum-length padding. It does not use the completion queue
399 consumer index, but instead checks for non-zero status entries.
401 For receive this driver uses type 2/3 receive descriptors. The driver
402 allocates full frame size skbuffs for the Rx ring buffers, so all frames
403 should fit in a single descriptor. The driver does not use the completion
404 queue consumer index, but instead checks for non-zero status entries.
406 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
407 is allocated and the frame is copied to the new skbuff. When the incoming
408 frame is larger, the skbuff is passed directly up the protocol stack.
409 Buffers consumed this way are replaced by newly allocated skbuffs in a later
412 A notable aspect of operation is that unaligned buffers are not permitted by
413 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
414 isn't longword aligned, which may cause problems on some machine
415 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
416 the frame into a new skbuff unconditionally. Copied frames are put into the
417 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
419 IIId. Synchronization
421 The driver runs as two independent, single-threaded flows of control. One
422 is the send-packet routine, which enforces single-threaded use by the
423 dev->tbusy flag. The other thread is the interrupt handler, which is single
424 threaded by the hardware and interrupt handling software.
426 The send packet thread has partial control over the Tx ring and the netif_queue
427 status. If the number of free Tx slots in the ring falls below a certain number
428 (currently hardcoded to 4), it signals the upper layer to stop the queue.
430 The interrupt handler has exclusive control over the Rx ring and records stats
431 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
432 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
433 number of free Tx slow is above the threshold, it signals the upper layer to
440 The Adaptec Starfire manuals, available only from Adaptec.
441 http://www.scyld.com/expert/100mbps.html
442 http://www.scyld.com/expert/NWay.html
446 - StopOnPerr is broken, don't enable
447 - Hardware ethernet padding exposes random data, perform software padding
448 instead (unverified -- works correctly for all the hardware I have)
454 enum chip_capability_flags {CanHaveMII=1, };
460 static struct pci_device_id starfire_pci_tbl[] = {
461 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
464 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
466 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
467 static struct chip_info {
470 } netdrv_tbl[] __devinitdata = {
471 { "Adaptec Starfire 6915", CanHaveMII },
475 /* Offsets to the device registers.
476 Unlike software-only systems, device drivers interact with complex hardware.
477 It's not useful to define symbolic names for every register bit in the
478 device. The name can only partially document the semantics and make
479 the driver longer and more difficult to read.
480 In general, only the important configuration values or bits changed
481 multiple times should be defined symbolically.
483 enum register_offsets {
484 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
485 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
486 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
487 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
488 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
489 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
490 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
492 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
493 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
494 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
495 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
496 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
497 TxMode=0x55000, VlanType=0x55064,
498 PerfFilterTable=0x56000, HashTable=0x56100,
499 TxGfpMem=0x58000, RxGfpMem=0x5a000,
503 * Bits in the interrupt status/mask registers.
504 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
505 * enables all the interrupt sources that are or'ed into those status bits.
507 enum intr_status_bits {
508 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
509 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
510 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
511 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
512 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
513 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
514 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
515 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
516 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
517 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
518 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
519 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
520 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
521 IntrTxGfp=0x02, IntrPCIPad=0x01,
523 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
524 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
525 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
528 /* Bits in the RxFilterMode register. */
530 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
531 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
532 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
536 /* Bits in the TxMode register */
538 MiiSoftReset=0x8000, MIILoopback=0x4000,
539 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
540 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
543 /* Bits in the TxDescCtrl register. */
545 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
546 TxDescSpace128=0x30, TxDescSpace256=0x40,
547 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
548 TxDescType3=0x03, TxDescType4=0x04,
549 TxNoDMACompletion=0x08,
550 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
551 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
552 TxDMABurstSizeShift=8,
555 /* Bits in the RxDescQCtrl register. */
557 RxBufferLenShift=16, RxMinDescrThreshShift=0,
558 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
559 Rx2048QEntries=0x4000, Rx256QEntries=0,
560 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
561 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
562 RxDescSpace4=0x000, RxDescSpace8=0x100,
563 RxDescSpace16=0x200, RxDescSpace32=0x300,
564 RxDescSpace64=0x400, RxDescSpace128=0x500,
568 /* Bits in the RxDMACtrl register. */
569 enum rx_dmactrl_bits {
570 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
571 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
572 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
573 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
574 RxChecksumRejectTCPOnly=0x01000000,
575 RxCompletionQ2Enable=0x800000,
576 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
577 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
578 RxDMAQ2NonIP=0x400000,
579 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
580 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
584 /* Bits in the RxCompletionAddr register */
586 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
587 RxComplProducerWrEn=0x40,
588 RxComplType0=0x00, RxComplType1=0x10,
589 RxComplType2=0x20, RxComplType3=0x30,
590 RxComplThreshShift=0,
593 /* Bits in the TxCompletionAddr register */
595 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
596 TxComplProducerWrEn=0x40,
597 TxComplIntrStatus=0x20,
598 CommonQueueMode=0x10,
599 TxComplThreshShift=0,
602 /* Bits in the GenCtrl register */
604 RxEnable=0x05, TxEnable=0x0a,
605 RxGFPEnable=0x10, TxGFPEnable=0x20,
608 /* Bits in the IntrTimerCtrl register */
609 enum intr_ctrl_bits {
610 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
611 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
612 IntrLatencyMask=0x1f,
615 /* The Rx and Tx buffer descriptors. */
616 struct starfire_rx_desc {
620 RxDescValid=1, RxDescEndRing=2,
623 /* Completion queue entry. */
624 struct short_rx_done_desc {
625 u32 status; /* Low 16 bits is length. */
627 struct basic_rx_done_desc {
628 u32 status; /* Low 16 bits is length. */
632 struct csum_rx_done_desc {
633 u32 status; /* Low 16 bits is length. */
634 u16 csum; /* Partial checksum */
637 struct full_rx_done_desc {
638 u32 status; /* Low 16 bits is length. */
642 u16 csum; /* partial checksum */
645 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
647 typedef struct full_rx_done_desc rx_done_desc;
648 #define RxComplType RxComplType3
649 #else /* not VLAN_SUPPORT */
650 typedef struct csum_rx_done_desc rx_done_desc;
651 #define RxComplType RxComplType2
652 #endif /* not VLAN_SUPPORT */
655 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
658 /* Type 1 Tx descriptor. */
659 struct starfire_tx_desc_1 {
660 u32 status; /* Upper bits are status, lower 16 length. */
664 /* Type 2 Tx descriptor. */
665 struct starfire_tx_desc_2 {
666 u32 status; /* Upper bits are status, lower 16 length. */
672 typedef struct starfire_tx_desc_2 starfire_tx_desc;
673 #define TX_DESC_TYPE TxDescType2
674 #else /* not ADDR_64BITS */
675 typedef struct starfire_tx_desc_1 starfire_tx_desc;
676 #define TX_DESC_TYPE TxDescType1
677 #endif /* not ADDR_64BITS */
678 #define TX_DESC_SPACING TxDescSpaceUnlim
682 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
683 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
685 struct tx_done_desc {
686 u32 status; /* timestamp, index. */
688 u32 intrstatus; /* interrupt status */
692 struct rx_ring_info {
696 struct tx_ring_info {
699 unsigned int used_slots;
703 struct netdev_private {
704 /* Descriptor rings first for alignment. */
705 struct starfire_rx_desc *rx_ring;
706 starfire_tx_desc *tx_ring;
707 dma_addr_t rx_ring_dma;
708 dma_addr_t tx_ring_dma;
709 /* The addresses of rx/tx-in-place skbuffs. */
710 struct rx_ring_info rx_info[RX_RING_SIZE];
711 struct tx_ring_info tx_info[TX_RING_SIZE];
712 /* Pointers to completion queues (full pages). */
713 rx_done_desc *rx_done_q;
714 dma_addr_t rx_done_q_dma;
715 unsigned int rx_done;
716 struct tx_done_desc *tx_done_q;
717 dma_addr_t tx_done_q_dma;
718 unsigned int tx_done;
719 struct net_device_stats stats;
720 struct pci_dev *pci_dev;
722 struct vlan_group *vlgrp;
725 dma_addr_t queue_mem_dma;
726 size_t queue_mem_size;
728 /* Frequently used values: keep some adjacent for cache effect. */
730 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
731 unsigned int cur_tx, dirty_tx, reap_tx;
732 unsigned int rx_buf_sz; /* Based on MTU+slack. */
733 /* These values keep track of the transceiver/media in use. */
734 int speed100; /* Set if speed == 100MBit. */
738 /* MII transceiver section. */
739 struct mii_if_info mii_if; /* MII lib hooks/info */
740 int phy_cnt; /* MII device addresses. */
741 unsigned char phys[PHY_CNT]; /* MII device addresses. */
746 static int mdio_read(struct net_device *dev, int phy_id, int location);
747 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
748 static int netdev_open(struct net_device *dev);
749 static void check_duplex(struct net_device *dev);
750 static void tx_timeout(struct net_device *dev);
751 static void init_ring(struct net_device *dev);
752 static int start_tx(struct sk_buff *skb, struct net_device *dev);
753 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
754 static void netdev_error(struct net_device *dev, int intr_status);
755 static int __netdev_rx(struct net_device *dev, int *quota);
756 static void refill_rx_ring(struct net_device *dev);
757 static void netdev_error(struct net_device *dev, int intr_status);
758 static void set_rx_mode(struct net_device *dev);
759 static struct net_device_stats *get_stats(struct net_device *dev);
760 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
761 static int netdev_close(struct net_device *dev);
762 static void netdev_media_change(struct net_device *dev);
763 static struct ethtool_ops ethtool_ops;
767 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
769 struct netdev_private *np = netdev_priv(dev);
771 spin_lock(&np->lock);
773 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
776 spin_unlock(&np->lock);
779 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
781 struct netdev_private *np = netdev_priv(dev);
783 spin_lock(&np->lock);
785 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
787 spin_unlock(&np->lock);
790 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
792 struct netdev_private *np = netdev_priv(dev);
794 spin_lock(&np->lock);
796 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
798 np->vlgrp->vlan_devices[vid] = NULL;
800 spin_unlock(&np->lock);
802 #endif /* VLAN_SUPPORT */
805 static int __devinit starfire_init_one(struct pci_dev *pdev,
806 const struct pci_device_id *ent)
808 struct netdev_private *np;
809 int i, irq, option, chip_idx = ent->driver_data;
810 struct net_device *dev;
811 static int card_idx = -1;
814 int drv_flags, io_size;
817 /* when built into the kernel, we only print version if device is found */
819 static int printed_version;
820 if (!printed_version++)
826 if (pci_enable_device (pdev))
829 ioaddr = pci_resource_start(pdev, 0);
830 io_size = pci_resource_len(pdev, 0);
831 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
832 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
836 dev = alloc_etherdev(sizeof(*np));
838 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
841 SET_MODULE_OWNER(dev);
842 SET_NETDEV_DEV(dev, &pdev->dev);
846 if (pci_request_regions (pdev, DRV_NAME)) {
847 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
848 goto err_out_free_netdev;
851 /* ioremap is borken in Linux-2.2.x/sparc64 */
852 base = ioremap(ioaddr, io_size);
854 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
855 card_idx, io_size, ioaddr);
856 goto err_out_free_res;
859 pci_set_master(pdev);
861 /* enable MWI -- it vastly improves Rx performance on sparc64 */
865 /* Starfire can do TCP/UDP checksumming */
867 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
868 #endif /* ZEROCOPY */
870 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
871 dev->vlan_rx_register = netdev_vlan_rx_register;
872 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
873 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
874 #endif /* VLAN_RX_KILL_VID */
876 dev->features |= NETIF_F_HIGHDMA;
877 #endif /* ADDR_64BITS */
879 /* Serial EEPROM reads are hidden by the hardware. */
880 for (i = 0; i < 6; i++)
881 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
883 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
885 for (i = 0; i < 0x20; i++)
887 (unsigned int)readb(base + EEPROMCtrl + i),
888 i % 16 != 15 ? " " : "\n");
891 /* Issue soft reset */
892 writel(MiiSoftReset, base + TxMode);
894 writel(0, base + TxMode);
896 /* Reset the chip to erase previous misconfiguration. */
897 writel(1, base + PCIDeviceConfig);
899 while (--boguscnt > 0) {
901 if ((readl(base + PCIDeviceConfig) & 1) == 0)
905 printk("%s: chipset reset never completed!\n", dev->name);
906 /* wait a little longer */
909 dev->base_addr = (unsigned long)base;
912 np = netdev_priv(dev);
914 spin_lock_init(&np->lock);
915 pci_set_drvdata(pdev, dev);
919 np->mii_if.dev = dev;
920 np->mii_if.mdio_read = mdio_read;
921 np->mii_if.mdio_write = mdio_write;
922 np->mii_if.phy_id_mask = 0x1f;
923 np->mii_if.reg_num_mask = 0x1f;
925 drv_flags = netdrv_tbl[chip_idx].drv_flags;
927 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
929 option = dev->mem_start;
931 /* The lower four bits are the media type. */
933 np->mii_if.full_duplex = 1;
935 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
936 np->mii_if.full_duplex = 1;
938 if (np->mii_if.full_duplex)
939 np->mii_if.force_media = 1;
941 np->mii_if.force_media = 0;
944 /* timer resolution is 128 * 0.8us */
945 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
946 Timer10X | EnableIntrMasking;
948 if (small_frames > 0) {
949 np->intr_timer_ctrl |= SmallFrameBypass;
950 switch (small_frames) {
952 np->intr_timer_ctrl |= SmallFrame64;
955 np->intr_timer_ctrl |= SmallFrame128;
958 np->intr_timer_ctrl |= SmallFrame256;
961 np->intr_timer_ctrl |= SmallFrame512;
962 if (small_frames > 512)
963 printk("Adjusting small_frames down to 512\n");
968 /* The chip-specific entries in the device structure. */
969 dev->open = &netdev_open;
970 dev->hard_start_xmit = &start_tx;
971 dev->tx_timeout = tx_timeout;
972 dev->watchdog_timeo = TX_TIMEOUT;
974 dev->stop = &netdev_close;
975 dev->get_stats = &get_stats;
976 dev->set_multicast_list = &set_rx_mode;
977 dev->do_ioctl = &netdev_ioctl;
978 SET_ETHTOOL_OPS(dev, ðtool_ops);
983 if (register_netdev(dev))
984 goto err_out_cleardev;
986 printk(KERN_INFO "%s: %s at %p, ",
987 dev->name, netdrv_tbl[chip_idx].name, base);
988 for (i = 0; i < 5; i++)
989 printk("%2.2x:", dev->dev_addr[i]);
990 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
992 if (drv_flags & CanHaveMII) {
993 int phy, phy_idx = 0;
995 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
996 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
999 while (--boguscnt > 0)
1000 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
1002 if (boguscnt == 0) {
1003 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1006 mii_status = mdio_read(dev, phy, MII_BMSR);
1007 if (mii_status != 0) {
1008 np->phys[phy_idx++] = phy;
1009 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
1010 printk(KERN_INFO "%s: MII PHY found at address %d, status "
1011 "%#4.4x advertising %#4.4x.\n",
1012 dev->name, phy, mii_status, np->mii_if.advertising);
1013 /* there can be only one PHY on-board */
1017 np->phy_cnt = phy_idx;
1018 if (np->phy_cnt > 0)
1019 np->mii_if.phy_id = np->phys[0];
1021 memset(&np->mii_if, 0, sizeof(np->mii_if));
1024 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
1025 dev->name, enable_hw_cksum ? "enabled" : "disabled");
1029 pci_set_drvdata(pdev, NULL);
1032 pci_release_regions (pdev);
1033 err_out_free_netdev:
1039 /* Read the MII Management Data I/O (MDIO) interfaces. */
1040 static int mdio_read(struct net_device *dev, int phy_id, int location)
1042 struct netdev_private *np = netdev_priv(dev);
1043 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1044 int result, boguscnt=1000;
1045 /* ??? Should we add a busy-wait here? */
1047 result = readl(mdio_addr);
1048 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1051 if ((result & 0xffff) == 0xffff)
1053 return result & 0xffff;
1057 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
1059 struct netdev_private *np = netdev_priv(dev);
1060 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1061 writel(value, mdio_addr);
1062 /* The busy-wait will occur before a read. */
1066 static int netdev_open(struct net_device *dev)
1068 struct netdev_private *np = netdev_priv(dev);
1069 void __iomem *ioaddr = np->base;
1071 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
1073 /* Do we ever need to reset the chip??? */
1075 retval = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1079 /* Disable the Rx and Tx, and reset the chip. */
1080 writel(0, ioaddr + GenCtrl);
1081 writel(1, ioaddr + PCIDeviceConfig);
1083 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1084 dev->name, dev->irq);
1086 /* Allocate the various queues. */
1087 if (np->queue_mem == 0) {
1088 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1089 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1090 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1091 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
1092 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
1093 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
1094 if (np->queue_mem == NULL) {
1095 free_irq(dev->irq, dev);
1099 np->tx_done_q = np->queue_mem;
1100 np->tx_done_q_dma = np->queue_mem_dma;
1101 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
1102 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
1103 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
1104 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
1105 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
1106 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
1109 /* Start with no carrier, it gets adjusted later */
1110 netif_carrier_off(dev);
1112 /* Set the size of the Rx buffers. */
1113 writel((np->rx_buf_sz << RxBufferLenShift) |
1114 (0 << RxMinDescrThreshShift) |
1115 RxPrefetchMode | RxVariableQ |
1117 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
1119 ioaddr + RxDescQCtrl);
1121 /* Set up the Rx DMA controller. */
1122 writel(RxChecksumIgnore |
1123 (0 << RxEarlyIntThreshShift) |
1124 (6 << RxHighPrioThreshShift) |
1125 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1126 ioaddr + RxDMACtrl);
1128 /* Set Tx descriptor */
1129 writel((2 << TxHiPriFIFOThreshShift) |
1130 (0 << TxPadLenShift) |
1131 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1132 TX_DESC_Q_ADDR_SIZE |
1133 TX_DESC_SPACING | TX_DESC_TYPE,
1134 ioaddr + TxDescCtrl);
1136 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1137 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1138 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1139 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1140 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1142 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1143 writel(np->rx_done_q_dma |
1145 (0 << RxComplThreshShift),
1146 ioaddr + RxCompletionAddr);
1149 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1151 /* Fill both the Tx SA register and the Rx perfect filter. */
1152 for (i = 0; i < 6; i++)
1153 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1154 /* The first entry is special because it bypasses the VLAN filter.
1156 writew(0, ioaddr + PerfFilterTable);
1157 writew(0, ioaddr + PerfFilterTable + 4);
1158 writew(0, ioaddr + PerfFilterTable + 8);
1159 for (i = 1; i < 16; i++) {
1160 u16 *eaddrs = (u16 *)dev->dev_addr;
1161 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1162 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1163 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1164 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1167 /* Initialize other registers. */
1168 /* Configure the PCI bus bursts and FIFO thresholds. */
1169 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1170 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1172 writel(np->tx_mode, ioaddr + TxMode);
1173 np->tx_threshold = 4;
1174 writel(np->tx_threshold, ioaddr + TxThreshold);
1176 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1178 netif_start_queue(dev);
1181 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1184 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1187 /* Enable GPIO interrupts on link change */
1188 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1190 /* Set the interrupt mask */
1191 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1192 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1193 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1194 ioaddr + IntrEnable);
1195 /* Enable PCI interrupts. */
1196 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1197 ioaddr + PCIDeviceConfig);
1200 /* Set VLAN type to 802.1q */
1201 writel(ETH_P_8021Q, ioaddr + VlanType);
1202 #endif /* VLAN_SUPPORT */
1204 /* Load Rx/Tx firmware into the frame processors */
1205 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1206 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1207 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1208 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1209 if (enable_hw_cksum)
1210 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1211 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1213 /* Enable the Rx and Tx units only. */
1214 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1217 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1224 static void check_duplex(struct net_device *dev)
1226 struct netdev_private *np = netdev_priv(dev);
1228 int silly_count = 1000;
1230 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1231 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1233 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1236 printk("%s: MII reset failed!\n", dev->name);
1240 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1242 if (!np->mii_if.force_media) {
1243 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1245 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1247 reg0 |= BMCR_SPEED100;
1248 if (np->mii_if.full_duplex)
1249 reg0 |= BMCR_FULLDPLX;
1250 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1252 np->speed100 ? "100" : "10",
1253 np->mii_if.full_duplex ? "full" : "half");
1255 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1259 static void tx_timeout(struct net_device *dev)
1261 struct netdev_private *np = netdev_priv(dev);
1262 void __iomem *ioaddr = np->base;
1265 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1266 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1268 /* Perhaps we should reinitialize the hardware here. */
1271 * Stop and restart the interface.
1272 * Cheat and increase the debug level temporarily.
1280 /* Trigger an immediate transmit demand. */
1282 dev->trans_start = jiffies;
1283 np->stats.tx_errors++;
1284 netif_wake_queue(dev);
1288 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1289 static void init_ring(struct net_device *dev)
1291 struct netdev_private *np = netdev_priv(dev);
1294 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1295 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1297 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1299 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1300 for (i = 0; i < RX_RING_SIZE; i++) {
1301 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1302 np->rx_info[i].skb = skb;
1305 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1306 skb->dev = dev; /* Mark as being used by this device. */
1307 /* Grrr, we cannot offset to correctly align the IP header. */
1308 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1310 writew(i - 1, np->base + RxDescQIdx);
1311 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1313 /* Clear the remainder of the Rx buffer ring. */
1314 for ( ; i < RX_RING_SIZE; i++) {
1315 np->rx_ring[i].rxaddr = 0;
1316 np->rx_info[i].skb = NULL;
1317 np->rx_info[i].mapping = 0;
1319 /* Mark the last entry as wrapping the ring. */
1320 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1322 /* Clear the completion rings. */
1323 for (i = 0; i < DONE_Q_SIZE; i++) {
1324 np->rx_done_q[i].status = 0;
1325 np->tx_done_q[i].status = 0;
1328 for (i = 0; i < TX_RING_SIZE; i++)
1329 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1335 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1337 struct netdev_private *np = netdev_priv(dev);
1343 * be cautious here, wrapping the queue has weird semantics
1344 * and we may not have enough slots even when it seems we do.
1346 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1347 netif_stop_queue(dev);
1351 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1352 if (skb->ip_summed == CHECKSUM_HW) {
1353 skb = skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK);
1355 return NETDEV_TX_OK;
1357 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1359 entry = np->cur_tx % TX_RING_SIZE;
1360 for (i = 0; i < skb_num_frags(skb); i++) {
1365 np->tx_info[entry].skb = skb;
1367 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1368 status |= TxRingWrap;
1372 status |= TxDescIntr;
1375 if (skb->ip_summed == CHECKSUM_HW) {
1377 np->stats.tx_compressed++;
1379 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1381 np->tx_info[entry].mapping =
1382 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1384 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1385 status |= this_frag->size;
1386 np->tx_info[entry].mapping =
1387 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1390 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1391 np->tx_ring[entry].status = cpu_to_le32(status);
1393 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1394 dev->name, np->cur_tx, np->dirty_tx,
1397 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1398 np->cur_tx += np->tx_info[entry].used_slots;
1401 np->tx_info[entry].used_slots = 1;
1402 np->cur_tx += np->tx_info[entry].used_slots;
1405 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1406 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1410 /* Non-x86: explicitly flush descriptor cache lines here. */
1411 /* Ensure all descriptors are written back before the transmit is
1415 /* Update the producer index. */
1416 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1418 /* 4 is arbitrary, but should be ok */
1419 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1420 netif_stop_queue(dev);
1422 dev->trans_start = jiffies;
1428 /* The interrupt handler does all of the Rx thread work and cleans up
1429 after the Tx thread. */
1430 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1432 struct net_device *dev = dev_instance;
1433 struct netdev_private *np = netdev_priv(dev);
1434 void __iomem *ioaddr = np->base;
1435 int boguscnt = max_interrupt_work;
1441 u32 intr_status = readl(ioaddr + IntrClear);
1444 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1445 dev->name, intr_status);
1447 if (intr_status == 0 || intr_status == (u32) -1)
1452 if (intr_status & (IntrRxDone | IntrRxEmpty))
1453 netdev_rx(dev, ioaddr);
1455 /* Scavenge the skbuff list based on the Tx-done queue.
1456 There are redundant checks here that may be cleaned up
1457 after the driver has proven to be reliable. */
1458 consumer = readl(ioaddr + TxConsumerIdx);
1460 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1461 dev->name, consumer);
1463 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1465 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1466 dev->name, np->dirty_tx, np->tx_done, tx_status);
1467 if ((tx_status & 0xe0000000) == 0xa0000000) {
1468 np->stats.tx_packets++;
1469 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1470 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1471 struct sk_buff *skb = np->tx_info[entry].skb;
1472 np->tx_info[entry].skb = NULL;
1473 pci_unmap_single(np->pci_dev,
1474 np->tx_info[entry].mapping,
1475 skb_first_frag_len(skb),
1477 np->tx_info[entry].mapping = 0;
1478 np->dirty_tx += np->tx_info[entry].used_slots;
1479 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1482 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1483 pci_unmap_single(np->pci_dev,
1484 np->tx_info[entry].mapping,
1485 skb_shinfo(skb)->frags[i].size,
1492 dev_kfree_skb_irq(skb);
1494 np->tx_done_q[np->tx_done].status = 0;
1495 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1497 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1499 if (netif_queue_stopped(dev) &&
1500 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1501 /* The ring is no longer full, wake the queue. */
1502 netif_wake_queue(dev);
1505 /* Stats overflow */
1506 if (intr_status & IntrStatsMax)
1509 /* Media change interrupt. */
1510 if (intr_status & IntrLinkChange)
1511 netdev_media_change(dev);
1513 /* Abnormal error summary/uncommon events handlers. */
1514 if (intr_status & IntrAbnormalSummary)
1515 netdev_error(dev, intr_status);
1517 if (--boguscnt < 0) {
1519 printk(KERN_WARNING "%s: Too much work at interrupt, "
1521 dev->name, intr_status);
1527 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1528 dev->name, (int) readl(ioaddr + IntrStatus));
1529 return IRQ_RETVAL(handled);
1533 /* This routine is logically part of the interrupt/poll handler, but separated
1534 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1535 static int __netdev_rx(struct net_device *dev, int *quota)
1537 struct netdev_private *np = netdev_priv(dev);
1541 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1542 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1543 struct sk_buff *skb;
1546 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1549 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1550 if (!(desc_status & RxOK)) {
1551 /* There was an error. */
1553 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1554 np->stats.rx_errors++;
1555 if (desc_status & RxFIFOErr)
1556 np->stats.rx_fifo_errors++;
1560 if (*quota <= 0) { /* out of rx quota */
1566 pkt_len = desc_status; /* Implicitly Truncate */
1567 entry = (desc_status >> 16) & 0x7ff;
1570 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1571 /* Check if the packet is long enough to accept without copying
1572 to a minimally-sized skbuff. */
1573 if (pkt_len < rx_copybreak
1574 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1576 skb_reserve(skb, 2); /* 16 byte align the IP header */
1577 pci_dma_sync_single_for_cpu(np->pci_dev,
1578 np->rx_info[entry].mapping,
1579 pkt_len, PCI_DMA_FROMDEVICE);
1580 eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
1581 pci_dma_sync_single_for_device(np->pci_dev,
1582 np->rx_info[entry].mapping,
1583 pkt_len, PCI_DMA_FROMDEVICE);
1584 skb_put(skb, pkt_len);
1586 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1587 skb = np->rx_info[entry].skb;
1588 skb_put(skb, pkt_len);
1589 np->rx_info[entry].skb = NULL;
1590 np->rx_info[entry].mapping = 0;
1592 #ifndef final_version /* Remove after testing. */
1593 /* You will want this info for the initial debug. */
1595 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1596 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1597 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1598 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1599 skb->data[8], skb->data[9], skb->data[10],
1600 skb->data[11], skb->data[12], skb->data[13]);
1603 skb->protocol = eth_type_trans(skb, dev);
1606 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1608 if (le16_to_cpu(desc->status2) & 0x0100) {
1609 skb->ip_summed = CHECKSUM_UNNECESSARY;
1610 np->stats.rx_compressed++;
1613 * This feature doesn't seem to be working, at least
1614 * with the two firmware versions I have. If the GFP sees
1615 * an IP fragment, it either ignores it completely, or reports
1616 * "bad checksum" on it.
1618 * Maybe I missed something -- corrections are welcome.
1619 * Until then, the printk stays. :-) -Ion
1621 else if (le16_to_cpu(desc->status2) & 0x0040) {
1622 skb->ip_summed = CHECKSUM_HW;
1623 skb->csum = le16_to_cpu(desc->csum);
1624 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1627 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1629 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1630 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1631 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1633 #endif /* VLAN_SUPPORT */
1634 netdev_receive_skb(skb);
1635 dev->last_rx = jiffies;
1636 np->stats.rx_packets++;
1641 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1643 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1646 refill_rx_ring(dev);
1648 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1649 retcode, np->rx_done, desc_status);
1654 #ifdef HAVE_NETDEV_POLL
1655 static int netdev_poll(struct net_device *dev, int *budget)
1658 struct netdev_private *np = netdev_priv(dev);
1659 void __iomem *ioaddr = np->base;
1660 int retcode = 0, quota = dev->quota;
1663 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1665 retcode = __netdev_rx(dev, "a);
1666 *budget -= (dev->quota - quota);
1671 intr_status = readl(ioaddr + IntrStatus);
1672 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1674 netif_rx_complete(dev);
1675 intr_status = readl(ioaddr + IntrEnable);
1676 intr_status |= IntrRxDone | IntrRxEmpty;
1677 writel(intr_status, ioaddr + IntrEnable);
1681 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", retcode);
1683 /* Restart Rx engine if stopped. */
1686 #endif /* HAVE_NETDEV_POLL */
1689 static void refill_rx_ring(struct net_device *dev)
1691 struct netdev_private *np = netdev_priv(dev);
1692 struct sk_buff *skb;
1695 /* Refill the Rx ring buffers. */
1696 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1697 entry = np->dirty_rx % RX_RING_SIZE;
1698 if (np->rx_info[entry].skb == NULL) {
1699 skb = dev_alloc_skb(np->rx_buf_sz);
1700 np->rx_info[entry].skb = skb;
1702 break; /* Better luck next round. */
1703 np->rx_info[entry].mapping =
1704 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1705 skb->dev = dev; /* Mark as being used by this device. */
1706 np->rx_ring[entry].rxaddr =
1707 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1709 if (entry == RX_RING_SIZE - 1)
1710 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1713 writew(entry, np->base + RxDescQIdx);
1717 static void netdev_media_change(struct net_device *dev)
1719 struct netdev_private *np = netdev_priv(dev);
1720 void __iomem *ioaddr = np->base;
1721 u16 reg0, reg1, reg4, reg5;
1723 u32 new_intr_timer_ctrl;
1725 /* reset status first */
1726 mdio_read(dev, np->phys[0], MII_BMCR);
1727 mdio_read(dev, np->phys[0], MII_BMSR);
1729 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1730 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1732 if (reg1 & BMSR_LSTATUS) {
1734 if (reg0 & BMCR_ANENABLE) {
1735 /* autonegotiation is enabled */
1736 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1737 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1738 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1740 np->mii_if.full_duplex = 1;
1741 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1743 np->mii_if.full_duplex = 0;
1744 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1746 np->mii_if.full_duplex = 1;
1749 np->mii_if.full_duplex = 0;
1752 /* autonegotiation is disabled */
1753 if (reg0 & BMCR_SPEED100)
1757 if (reg0 & BMCR_FULLDPLX)
1758 np->mii_if.full_duplex = 1;
1760 np->mii_if.full_duplex = 0;
1762 netif_carrier_on(dev);
1763 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1765 np->speed100 ? "100" : "10",
1766 np->mii_if.full_duplex ? "full" : "half");
1768 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1769 if (np->mii_if.full_duplex)
1770 new_tx_mode |= FullDuplex;
1771 if (np->tx_mode != new_tx_mode) {
1772 np->tx_mode = new_tx_mode;
1773 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1775 writel(np->tx_mode, ioaddr + TxMode);
1778 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1780 new_intr_timer_ctrl |= Timer10X;
1781 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1782 np->intr_timer_ctrl = new_intr_timer_ctrl;
1783 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1786 netif_carrier_off(dev);
1787 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1792 static void netdev_error(struct net_device *dev, int intr_status)
1794 struct netdev_private *np = netdev_priv(dev);
1796 /* Came close to underrunning the Tx FIFO, increase threshold. */
1797 if (intr_status & IntrTxDataLow) {
1798 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1799 writel(++np->tx_threshold, np->base + TxThreshold);
1800 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1801 dev->name, np->tx_threshold * 16);
1803 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1805 if (intr_status & IntrRxGFPDead) {
1806 np->stats.rx_fifo_errors++;
1807 np->stats.rx_errors++;
1809 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1810 np->stats.tx_fifo_errors++;
1811 np->stats.tx_errors++;
1813 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1814 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1815 dev->name, intr_status);
1819 static struct net_device_stats *get_stats(struct net_device *dev)
1821 struct netdev_private *np = netdev_priv(dev);
1822 void __iomem *ioaddr = np->base;
1824 /* This adapter architecture needs no SMP locks. */
1825 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1826 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1827 np->stats.tx_packets = readl(ioaddr + 0x57000);
1828 np->stats.tx_aborted_errors =
1829 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1830 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1831 np->stats.collisions =
1832 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1834 /* The chip only need report frame silently dropped. */
1835 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1836 writew(0, ioaddr + RxDMAStatus);
1837 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1838 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1839 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1840 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1846 static void set_rx_mode(struct net_device *dev)
1848 struct netdev_private *np = netdev_priv(dev);
1849 void __iomem *ioaddr = np->base;
1850 u32 rx_mode = MinVLANPrio;
1851 struct dev_mc_list *mclist;
1855 rx_mode |= VlanMode;
1858 void __iomem *filter_addr = ioaddr + HashTable + 8;
1859 for (i = 0; i < VLAN_VID_MASK; i++) {
1860 if (np->vlgrp->vlan_devices[i]) {
1861 if (vlan_count >= 32)
1863 writew(cpu_to_be16(i), filter_addr);
1868 if (i == VLAN_VID_MASK) {
1869 rx_mode |= PerfectFilterVlan;
1870 while (vlan_count < 32) {
1871 writew(0, filter_addr);
1877 #endif /* VLAN_SUPPORT */
1879 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1880 rx_mode |= AcceptAll;
1881 } else if ((dev->mc_count > multicast_filter_limit)
1882 || (dev->flags & IFF_ALLMULTI)) {
1883 /* Too many to match, or accept all multicasts. */
1884 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1885 } else if (dev->mc_count <= 14) {
1886 /* Use the 16 element perfect filter, skip first two entries. */
1887 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1889 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1890 i++, mclist = mclist->next) {
1891 eaddrs = (u16 *)mclist->dmi_addr;
1892 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1893 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1894 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1896 eaddrs = (u16 *)dev->dev_addr;
1898 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1899 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1900 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1902 rx_mode |= AcceptBroadcast|PerfectFilter;
1904 /* Must use a multicast hash table. */
1905 void __iomem *filter_addr;
1907 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1909 memset(mc_filter, 0, sizeof(mc_filter));
1910 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1911 i++, mclist = mclist->next) {
1912 /* The chip uses the upper 9 CRC bits
1913 as index into the hash table */
1914 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1915 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1917 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1919 /* Clear the perfect filter list, skip first two entries. */
1920 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1921 eaddrs = (u16 *)dev->dev_addr;
1922 for (i = 2; i < 16; i++) {
1923 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1924 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1925 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1927 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1928 writew(mc_filter[i], filter_addr);
1929 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1931 writel(rx_mode, ioaddr + RxFilterMode);
1934 static int check_if_running(struct net_device *dev)
1936 if (!netif_running(dev))
1941 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1943 struct netdev_private *np = netdev_priv(dev);
1944 strcpy(info->driver, DRV_NAME);
1945 strcpy(info->version, DRV_VERSION);
1946 strcpy(info->bus_info, pci_name(np->pci_dev));
1949 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1951 struct netdev_private *np = netdev_priv(dev);
1952 spin_lock_irq(&np->lock);
1953 mii_ethtool_gset(&np->mii_if, ecmd);
1954 spin_unlock_irq(&np->lock);
1958 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1960 struct netdev_private *np = netdev_priv(dev);
1962 spin_lock_irq(&np->lock);
1963 res = mii_ethtool_sset(&np->mii_if, ecmd);
1964 spin_unlock_irq(&np->lock);
1969 static int nway_reset(struct net_device *dev)
1971 struct netdev_private *np = netdev_priv(dev);
1972 return mii_nway_restart(&np->mii_if);
1975 static u32 get_link(struct net_device *dev)
1977 struct netdev_private *np = netdev_priv(dev);
1978 return mii_link_ok(&np->mii_if);
1981 static u32 get_msglevel(struct net_device *dev)
1986 static void set_msglevel(struct net_device *dev, u32 val)
1991 static struct ethtool_ops ethtool_ops = {
1992 .begin = check_if_running,
1993 .get_drvinfo = get_drvinfo,
1994 .get_settings = get_settings,
1995 .set_settings = set_settings,
1996 .nway_reset = nway_reset,
1997 .get_link = get_link,
1998 .get_msglevel = get_msglevel,
1999 .set_msglevel = set_msglevel,
2002 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2004 struct netdev_private *np = netdev_priv(dev);
2005 struct mii_ioctl_data *data = if_mii(rq);
2008 if (!netif_running(dev))
2011 spin_lock_irq(&np->lock);
2012 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
2013 spin_unlock_irq(&np->lock);
2015 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
2021 static int netdev_close(struct net_device *dev)
2023 struct netdev_private *np = netdev_priv(dev);
2024 void __iomem *ioaddr = np->base;
2027 netif_stop_queue(dev);
2030 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
2031 dev->name, (int) readl(ioaddr + IntrStatus));
2032 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
2033 dev->name, np->cur_tx, np->dirty_tx,
2034 np->cur_rx, np->dirty_rx);
2037 /* Disable interrupts by clearing the interrupt mask. */
2038 writel(0, ioaddr + IntrEnable);
2040 /* Stop the chip's Tx and Rx processes. */
2041 writel(0, ioaddr + GenCtrl);
2042 readl(ioaddr + GenCtrl);
2045 printk(KERN_DEBUG" Tx ring at %#llx:\n",
2046 (long long) np->tx_ring_dma);
2047 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
2048 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
2049 i, le32_to_cpu(np->tx_ring[i].status),
2050 (long long) dma_to_cpu(np->tx_ring[i].addr),
2051 le32_to_cpu(np->tx_done_q[i].status));
2052 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
2053 (long long) np->rx_ring_dma, np->rx_done_q);
2055 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
2056 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
2057 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
2061 free_irq(dev->irq, dev);
2063 /* Free all the skbuffs in the Rx queue. */
2064 for (i = 0; i < RX_RING_SIZE; i++) {
2065 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
2066 if (np->rx_info[i].skb != NULL) {
2067 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
2068 dev_kfree_skb(np->rx_info[i].skb);
2070 np->rx_info[i].skb = NULL;
2071 np->rx_info[i].mapping = 0;
2073 for (i = 0; i < TX_RING_SIZE; i++) {
2074 struct sk_buff *skb = np->tx_info[i].skb;
2077 pci_unmap_single(np->pci_dev,
2078 np->tx_info[i].mapping,
2079 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
2080 np->tx_info[i].mapping = 0;
2082 np->tx_info[i].skb = NULL;
2089 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2091 struct net_device *dev = pci_get_drvdata(pdev);
2092 struct netdev_private *np = netdev_priv(dev);
2097 unregister_netdev(dev);
2100 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2103 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2104 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2105 pci_disable_device(pdev);
2108 pci_release_regions(pdev);
2110 pci_set_drvdata(pdev, NULL);
2111 free_netdev(dev); /* Will also free np!! */
2115 static struct pci_driver starfire_driver = {
2117 .probe = starfire_init_one,
2118 .remove = __devexit_p(starfire_remove_one),
2119 .id_table = starfire_pci_tbl,
2123 static int __init starfire_init (void)
2125 /* when a module, this is printed whether or not devices are found in probe */
2128 #ifdef HAVE_NETDEV_POLL
2129 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2131 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2135 /* we can do this test only at run-time... sigh */
2136 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2137 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2141 return pci_module_init (&starfire_driver);
2145 static void __exit starfire_cleanup (void)
2147 pci_unregister_driver (&starfire_driver);
2151 module_init(starfire_init);
2152 module_exit(starfire_cleanup);