1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
50 static int rx_copybreak;
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
78 /* Operational parameters that usually are not changed. */
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
111 /* These identify the driver base version and may not be removed. */
112 static char version[] __devinitdata =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
115 /* This driver was written to use PCI memory space. Some early versions
116 of the Rhine may only work correctly with I/O space accesses. */
117 #ifdef CONFIG_VIA_RHINE_MMIO
122 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
123 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
124 MODULE_LICENSE("GPL");
126 module_param(max_interrupt_work, int, 0);
127 module_param(debug, int, 0);
128 module_param(rx_copybreak, int, 0);
129 module_param(avoid_D3, bool, 0);
130 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
131 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
132 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
133 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
138 I. Board Compatibility
140 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
143 II. Board-specific settings
145 Boards with this chip are functional only in a bus-master PCI slot.
147 Many operational settings are loaded from the EEPROM to the Config word at
148 offset 0x78. For most of these settings, this driver assumes that they are
150 If this driver is compiled to use PCI memory space operations the EEPROM
151 must be configured to enable memory ops.
153 III. Driver operation
157 This driver uses two statically allocated fixed-size descriptor lists
158 formed into rings by a branch from the final descriptor to the beginning of
159 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
161 IIIb/c. Transmit/Receive Structure
163 This driver attempts to use a zero-copy receive and transmit scheme.
165 Alas, all data buffers are required to start on a 32 bit boundary, so
166 the driver must often copy transmit packets into bounce buffers.
168 The driver allocates full frame size skbuffs for the Rx ring buffers at
169 open() time and passes the skb->data field to the chip as receive data
170 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
171 a fresh skbuff is allocated and the frame is copied to the new skbuff.
172 When the incoming frame is larger, the skbuff is passed directly up the
173 protocol stack. Buffers consumed this way are replaced by newly allocated
174 skbuffs in the last phase of rhine_rx().
176 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
177 using a full-sized skbuff for small frames vs. the copying costs of larger
178 frames. New boards are typically used in generously configured machines
179 and the underfilled buffers have negligible impact compared to the benefit of
180 a single allocation size, so the default value of zero results in never
181 copying packets. When copying is done, the cost is usually mitigated by using
182 a combined copy/checksum routine. Copying also preloads the cache, which is
183 most useful with small frames.
185 Since the VIA chips are only able to transfer data to buffers on 32 bit
186 boundaries, the IP header at offset 14 in an ethernet frame isn't
187 longword aligned for further processing. Copying these unaligned buffers
188 has the beneficial effect of 16-byte aligning the IP header.
190 IIId. Synchronization
192 The driver runs as two independent, single-threaded flows of control. One
193 is the send-packet routine, which enforces single-threaded use by the
194 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
195 which is single threaded by the hardware and interrupt handling software.
197 The send packet thread has partial control over the Tx ring. It locks the
198 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
199 the ring is not available it stops the transmit queue by
200 calling netif_stop_queue.
202 The interrupt handler has exclusive control over the Rx ring and records stats
203 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
204 empty by incrementing the dirty_tx mark. If at least half of the entries in
205 the Rx ring are available the transmit queue is woken up if it was stopped.
211 Preliminary VT86C100A manual from http://www.via.com.tw/
212 http://www.scyld.com/expert/100mbps.html
213 http://www.scyld.com/expert/NWay.html
214 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
220 The VT86C100A manual is not reliable information.
221 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
222 in significant performance degradation for bounce buffer copies on transmit
223 and unaligned IP headers on receive.
224 The chip does not pad to minimum transmit length.
229 /* This table drives the PCI probe routines. It's mostly boilerplate in all
230 of the drivers, and will likely be provided by some future kernel.
231 Note the matching code -- the first table entry matchs all 56** cards but
232 second only the 1234 card.
239 VT8231 = 0x50, /* Integrated MAC */
240 VT8233 = 0x60, /* Integrated MAC */
241 VT8235 = 0x74, /* Integrated MAC */
242 VT8237 = 0x78, /* Integrated MAC */
249 VT6105M = 0x90, /* Management adapter */
253 rqWOL = 0x0001, /* Wake-On-LAN support */
254 rqForceReset = 0x0002,
255 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
256 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
257 rqRhineI = 0x0100, /* See comment below */
260 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
261 * MMIO as well as for the collision counter and the Tx FIFO underflow
262 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
265 /* Beware of PCI posted writes */
266 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
268 static const struct pci_device_id rhine_pci_tbl[] = {
269 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
270 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
271 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
272 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
273 { } /* terminate list */
275 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
278 /* Offsets to the device registers. */
279 enum register_offsets {
280 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 IntrStatus=0x0C, IntrEnable=0x0E,
283 MulticastFilter0=0x10, MulticastFilter1=0x14,
284 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
285 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
286 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
287 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
288 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
289 StickyHW=0x83, IntrStatus2=0x84,
290 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
291 WOLcrClr1=0xA6, WOLcgClr=0xA7,
292 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
295 /* Bits in ConfigD */
297 BackOptional=0x01, BackModify=0x02,
298 BackCaptureEffect=0x04, BackRandom=0x08
302 /* Registers we check that mmio and reg are the same. */
303 static const int mmio_verify_registers[] = {
304 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
309 /* Bits in the interrupt status/mask registers. */
310 enum intr_status_bits {
311 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
312 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
315 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
316 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
319 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
320 IntrTxErrSummary=0x082218,
323 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
332 /* The Rx and Tx buffer descriptors. */
335 __le32 desc_length; /* Chain flag, Buffer/frame length */
341 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
346 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
347 #define TXDESC 0x00e08000
349 enum rx_status_bits {
350 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
353 /* Bits in *_desc.*_status */
354 enum desc_status_bits {
358 /* Bits in ChipCmd. */
360 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
361 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
362 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
363 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
366 struct rhine_private {
367 /* Descriptor rings */
368 struct rx_desc *rx_ring;
369 struct tx_desc *tx_ring;
370 dma_addr_t rx_ring_dma;
371 dma_addr_t tx_ring_dma;
373 /* The addresses of receive-in-place skbuffs. */
374 struct sk_buff *rx_skbuff[RX_RING_SIZE];
375 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
377 /* The saved address of a sent-in-place packet/buffer, for later free(). */
378 struct sk_buff *tx_skbuff[TX_RING_SIZE];
379 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
381 /* Tx bounce buffers (Rhine-I only) */
382 unsigned char *tx_buf[TX_RING_SIZE];
383 unsigned char *tx_bufs;
384 dma_addr_t tx_bufs_dma;
386 struct pci_dev *pdev;
388 struct net_device *dev;
389 struct napi_struct napi;
390 struct net_device_stats stats;
393 /* Frequently used values: keep some adjacent for cache effect. */
395 struct rx_desc *rx_head_desc;
396 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
397 unsigned int cur_tx, dirty_tx;
398 unsigned int rx_buf_sz; /* Based on MTU+slack. */
401 u8 tx_thresh, rx_thresh;
403 struct mii_if_info mii_if;
407 static int mdio_read(struct net_device *dev, int phy_id, int location);
408 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409 static int rhine_open(struct net_device *dev);
410 static void rhine_tx_timeout(struct net_device *dev);
411 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
412 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
413 static void rhine_tx(struct net_device *dev);
414 static int rhine_rx(struct net_device *dev, int limit);
415 static void rhine_error(struct net_device *dev, int intr_status);
416 static void rhine_set_rx_mode(struct net_device *dev);
417 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
418 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
419 static const struct ethtool_ops netdev_ethtool_ops;
420 static int rhine_close(struct net_device *dev);
421 static void rhine_shutdown (struct pci_dev *pdev);
423 #define RHINE_WAIT_FOR(condition) do { \
425 while (!(condition) && --i) \
427 if (debug > 1 && i < 512) \
428 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
429 DRV_NAME, 1024-i, __func__, __LINE__); \
432 static inline u32 get_intr_status(struct net_device *dev)
434 struct rhine_private *rp = netdev_priv(dev);
435 void __iomem *ioaddr = rp->base;
438 intr_status = ioread16(ioaddr + IntrStatus);
439 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
440 if (rp->quirks & rqStatusWBRace)
441 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
446 * Get power related registers into sane state.
447 * Notify user about past WOL event.
449 static void rhine_power_init(struct net_device *dev)
451 struct rhine_private *rp = netdev_priv(dev);
452 void __iomem *ioaddr = rp->base;
455 if (rp->quirks & rqWOL) {
456 /* Make sure chip is in power state D0 */
457 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
459 /* Disable "force PME-enable" */
460 iowrite8(0x80, ioaddr + WOLcgClr);
462 /* Clear power-event config bits (WOL) */
463 iowrite8(0xFF, ioaddr + WOLcrClr);
464 /* More recent cards can manage two additional patterns */
465 if (rp->quirks & rq6patterns)
466 iowrite8(0x03, ioaddr + WOLcrClr1);
468 /* Save power-event status bits */
469 wolstat = ioread8(ioaddr + PwrcsrSet);
470 if (rp->quirks & rq6patterns)
471 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
473 /* Clear power-event status bits */
474 iowrite8(0xFF, ioaddr + PwrcsrClr);
475 if (rp->quirks & rq6patterns)
476 iowrite8(0x03, ioaddr + PwrcsrClr1);
482 reason = "Magic packet";
485 reason = "Link went up";
488 reason = "Link went down";
491 reason = "Unicast packet";
494 reason = "Multicast/broadcast packet";
499 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
505 static void rhine_chip_reset(struct net_device *dev)
507 struct rhine_private *rp = netdev_priv(dev);
508 void __iomem *ioaddr = rp->base;
510 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
513 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
514 printk(KERN_INFO "%s: Reset not complete yet. "
515 "Trying harder.\n", DRV_NAME);
518 if (rp->quirks & rqForceReset)
519 iowrite8(0x40, ioaddr + MiscCmd);
521 /* Reset can take somewhat longer (rare) */
522 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
526 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
527 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
528 "failed" : "succeeded");
532 static void enable_mmio(long pioaddr, u32 quirks)
535 if (quirks & rqRhineI) {
536 /* More recent docs say that this bit is reserved ... */
537 n = inb(pioaddr + ConfigA) | 0x20;
538 outb(n, pioaddr + ConfigA);
540 n = inb(pioaddr + ConfigD) | 0x80;
541 outb(n, pioaddr + ConfigD);
547 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
548 * (plus 0x6C for Rhine-I/II)
550 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
552 struct rhine_private *rp = netdev_priv(dev);
553 void __iomem *ioaddr = rp->base;
555 outb(0x20, pioaddr + MACRegEEcsr);
556 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
560 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
561 * MMIO. If reloading EEPROM was done first this could be avoided, but
562 * it is not known if that still works with the "win98-reboot" problem.
564 enable_mmio(pioaddr, rp->quirks);
567 /* Turn off EEPROM-controlled wake-up (magic packet) */
568 if (rp->quirks & rqWOL)
569 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
573 #ifdef CONFIG_NET_POLL_CONTROLLER
574 static void rhine_poll(struct net_device *dev)
576 disable_irq(dev->irq);
577 rhine_interrupt(dev->irq, (void *)dev);
578 enable_irq(dev->irq);
582 static int rhine_napipoll(struct napi_struct *napi, int budget)
584 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
585 struct net_device *dev = rp->dev;
586 void __iomem *ioaddr = rp->base;
589 work_done = rhine_rx(dev, budget);
591 if (work_done < budget) {
594 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
595 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
596 IntrTxDone | IntrTxError | IntrTxUnderrun |
597 IntrPCIErr | IntrStatsMax | IntrLinkChange,
598 ioaddr + IntrEnable);
603 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
605 struct rhine_private *rp = netdev_priv(dev);
607 /* Reset the chip to erase previous misconfiguration. */
608 rhine_chip_reset(dev);
610 /* Rhine-I needs extra time to recuperate before EEPROM reload */
611 if (rp->quirks & rqRhineI)
614 /* Reload EEPROM controlled bytes cleared by soft reset */
615 rhine_reload_eeprom(pioaddr, dev);
618 static const struct net_device_ops rhine_netdev_ops = {
619 .ndo_open = rhine_open,
620 .ndo_stop = rhine_close,
621 .ndo_start_xmit = rhine_start_tx,
622 .ndo_get_stats = rhine_get_stats,
623 .ndo_set_multicast_list = rhine_set_rx_mode,
624 .ndo_validate_addr = eth_validate_addr,
625 .ndo_set_mac_address = eth_mac_addr,
626 .ndo_do_ioctl = netdev_ioctl,
627 .ndo_tx_timeout = rhine_tx_timeout,
628 #ifdef CONFIG_NET_POLL_CONTROLLER
629 .ndo_poll_controller = rhine_poll,
633 static int __devinit rhine_init_one(struct pci_dev *pdev,
634 const struct pci_device_id *ent)
636 struct net_device *dev;
637 struct rhine_private *rp;
642 void __iomem *ioaddr;
651 /* when built into the kernel, we only print version if device is found */
653 static int printed_version;
654 if (!printed_version++)
662 if (pdev->revision < VTunknown0) {
666 else if (pdev->revision >= VT6102) {
667 quirks = rqWOL | rqForceReset;
668 if (pdev->revision < VT6105) {
670 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
673 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
674 if (pdev->revision >= VT6105_B0)
675 quirks |= rq6patterns;
676 if (pdev->revision < VT6105M)
679 name = "Rhine III (Management Adapter)";
683 rc = pci_enable_device(pdev);
687 /* this should always be supported */
688 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
690 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
696 if ((pci_resource_len(pdev, 0) < io_size) ||
697 (pci_resource_len(pdev, 1) < io_size)) {
699 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
703 pioaddr = pci_resource_start(pdev, 0);
704 memaddr = pci_resource_start(pdev, 1);
706 pci_set_master(pdev);
708 dev = alloc_etherdev(sizeof(struct rhine_private));
711 printk(KERN_ERR "alloc_etherdev failed\n");
714 SET_NETDEV_DEV(dev, &pdev->dev);
716 rp = netdev_priv(dev);
719 rp->pioaddr = pioaddr;
722 rc = pci_request_regions(pdev, DRV_NAME);
724 goto err_out_free_netdev;
726 ioaddr = pci_iomap(pdev, bar, io_size);
729 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
730 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
731 goto err_out_free_res;
735 enable_mmio(pioaddr, quirks);
737 /* Check that selected MMIO registers match the PIO ones */
739 while (mmio_verify_registers[i]) {
740 int reg = mmio_verify_registers[i++];
741 unsigned char a = inb(pioaddr+reg);
742 unsigned char b = readb(ioaddr+reg);
745 printk(KERN_ERR "MMIO do not match PIO [%02x] "
746 "(%02x != %02x)\n", reg, a, b);
750 #endif /* USE_MMIO */
752 dev->base_addr = (unsigned long)ioaddr;
755 /* Get chip registers into a sane state */
756 rhine_power_init(dev);
757 rhine_hw_init(dev, pioaddr);
759 for (i = 0; i < 6; i++)
760 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
761 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
763 if (!is_valid_ether_addr(dev->perm_addr)) {
765 printk(KERN_ERR "Invalid MAC address\n");
769 /* For Rhine-I/II, phy_id is loaded from EEPROM */
771 phy_id = ioread8(ioaddr + 0x6C);
773 dev->irq = pdev->irq;
775 spin_lock_init(&rp->lock);
776 rp->mii_if.dev = dev;
777 rp->mii_if.mdio_read = mdio_read;
778 rp->mii_if.mdio_write = mdio_write;
779 rp->mii_if.phy_id_mask = 0x1f;
780 rp->mii_if.reg_num_mask = 0x1f;
782 /* The chip-specific entries in the device structure. */
783 dev->netdev_ops = &rhine_netdev_ops;
784 dev->ethtool_ops = &netdev_ethtool_ops,
785 dev->watchdog_timeo = TX_TIMEOUT;
787 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
789 if (rp->quirks & rqRhineI)
790 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
792 /* dev->name not defined before register_netdev()! */
793 rc = register_netdev(dev);
797 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
804 dev->dev_addr, pdev->irq);
806 pci_set_drvdata(pdev, dev);
810 int mii_status = mdio_read(dev, phy_id, 1);
811 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
812 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
813 if (mii_status != 0xffff && mii_status != 0x0000) {
814 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
815 printk(KERN_INFO "%s: MII PHY found at address "
816 "%d, status 0x%4.4x advertising %4.4x "
817 "Link %4.4x.\n", dev->name, phy_id,
818 mii_status, rp->mii_if.advertising,
819 mdio_read(dev, phy_id, 5));
821 /* set IFF_RUNNING */
822 if (mii_status & BMSR_LSTATUS)
823 netif_carrier_on(dev);
825 netif_carrier_off(dev);
829 rp->mii_if.phy_id = phy_id;
830 if (debug > 1 && avoid_D3)
831 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
837 pci_iounmap(pdev, ioaddr);
839 pci_release_regions(pdev);
846 static int alloc_ring(struct net_device* dev)
848 struct rhine_private *rp = netdev_priv(dev);
852 ring = pci_alloc_consistent(rp->pdev,
853 RX_RING_SIZE * sizeof(struct rx_desc) +
854 TX_RING_SIZE * sizeof(struct tx_desc),
857 printk(KERN_ERR "Could not allocate DMA memory.\n");
860 if (rp->quirks & rqRhineI) {
861 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
862 PKT_BUF_SZ * TX_RING_SIZE,
864 if (rp->tx_bufs == NULL) {
865 pci_free_consistent(rp->pdev,
866 RX_RING_SIZE * sizeof(struct rx_desc) +
867 TX_RING_SIZE * sizeof(struct tx_desc),
874 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
875 rp->rx_ring_dma = ring_dma;
876 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
881 static void free_ring(struct net_device* dev)
883 struct rhine_private *rp = netdev_priv(dev);
885 pci_free_consistent(rp->pdev,
886 RX_RING_SIZE * sizeof(struct rx_desc) +
887 TX_RING_SIZE * sizeof(struct tx_desc),
888 rp->rx_ring, rp->rx_ring_dma);
892 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
893 rp->tx_bufs, rp->tx_bufs_dma);
899 static void alloc_rbufs(struct net_device *dev)
901 struct rhine_private *rp = netdev_priv(dev);
905 rp->dirty_rx = rp->cur_rx = 0;
907 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
908 rp->rx_head_desc = &rp->rx_ring[0];
909 next = rp->rx_ring_dma;
911 /* Init the ring entries */
912 for (i = 0; i < RX_RING_SIZE; i++) {
913 rp->rx_ring[i].rx_status = 0;
914 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
915 next += sizeof(struct rx_desc);
916 rp->rx_ring[i].next_desc = cpu_to_le32(next);
917 rp->rx_skbuff[i] = NULL;
919 /* Mark the last entry as wrapping the ring. */
920 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
922 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
923 for (i = 0; i < RX_RING_SIZE; i++) {
924 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
925 rp->rx_skbuff[i] = skb;
928 skb->dev = dev; /* Mark as being used by this device. */
930 rp->rx_skbuff_dma[i] =
931 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
934 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
935 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
937 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
940 static void free_rbufs(struct net_device* dev)
942 struct rhine_private *rp = netdev_priv(dev);
945 /* Free all the skbuffs in the Rx queue. */
946 for (i = 0; i < RX_RING_SIZE; i++) {
947 rp->rx_ring[i].rx_status = 0;
948 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
949 if (rp->rx_skbuff[i]) {
950 pci_unmap_single(rp->pdev,
951 rp->rx_skbuff_dma[i],
952 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
953 dev_kfree_skb(rp->rx_skbuff[i]);
955 rp->rx_skbuff[i] = NULL;
959 static void alloc_tbufs(struct net_device* dev)
961 struct rhine_private *rp = netdev_priv(dev);
965 rp->dirty_tx = rp->cur_tx = 0;
966 next = rp->tx_ring_dma;
967 for (i = 0; i < TX_RING_SIZE; i++) {
968 rp->tx_skbuff[i] = NULL;
969 rp->tx_ring[i].tx_status = 0;
970 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
971 next += sizeof(struct tx_desc);
972 rp->tx_ring[i].next_desc = cpu_to_le32(next);
973 if (rp->quirks & rqRhineI)
974 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
976 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
980 static void free_tbufs(struct net_device* dev)
982 struct rhine_private *rp = netdev_priv(dev);
985 for (i = 0; i < TX_RING_SIZE; i++) {
986 rp->tx_ring[i].tx_status = 0;
987 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
988 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
989 if (rp->tx_skbuff[i]) {
990 if (rp->tx_skbuff_dma[i]) {
991 pci_unmap_single(rp->pdev,
992 rp->tx_skbuff_dma[i],
993 rp->tx_skbuff[i]->len,
996 dev_kfree_skb(rp->tx_skbuff[i]);
998 rp->tx_skbuff[i] = NULL;
999 rp->tx_buf[i] = NULL;
1003 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1005 struct rhine_private *rp = netdev_priv(dev);
1006 void __iomem *ioaddr = rp->base;
1008 mii_check_media(&rp->mii_if, debug, init_media);
1010 if (rp->mii_if.full_duplex)
1011 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1014 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1017 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1018 rp->mii_if.force_media, netif_carrier_ok(dev));
1021 /* Called after status of force_media possibly changed */
1022 static void rhine_set_carrier(struct mii_if_info *mii)
1024 if (mii->force_media) {
1025 /* autoneg is off: Link is always assumed to be up */
1026 if (!netif_carrier_ok(mii->dev))
1027 netif_carrier_on(mii->dev);
1029 else /* Let MMI library update carrier status */
1030 rhine_check_media(mii->dev, 0);
1032 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1033 mii->dev->name, mii->force_media,
1034 netif_carrier_ok(mii->dev));
1037 static void init_registers(struct net_device *dev)
1039 struct rhine_private *rp = netdev_priv(dev);
1040 void __iomem *ioaddr = rp->base;
1043 for (i = 0; i < 6; i++)
1044 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1046 /* Initialize other registers. */
1047 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1048 /* Configure initial FIFO thresholds. */
1049 iowrite8(0x20, ioaddr + TxConfig);
1050 rp->tx_thresh = 0x20;
1051 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1053 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1054 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1056 rhine_set_rx_mode(dev);
1058 napi_enable(&rp->napi);
1060 /* Enable interrupts by setting the interrupt mask. */
1061 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1062 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1063 IntrTxDone | IntrTxError | IntrTxUnderrun |
1064 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1065 ioaddr + IntrEnable);
1067 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1069 rhine_check_media(dev, 1);
1072 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1073 static void rhine_enable_linkmon(void __iomem *ioaddr)
1075 iowrite8(0, ioaddr + MIICmd);
1076 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1077 iowrite8(0x80, ioaddr + MIICmd);
1079 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1081 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1084 /* Disable MII link status auto-polling (required for MDIO access) */
1085 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1087 iowrite8(0, ioaddr + MIICmd);
1089 if (quirks & rqRhineI) {
1090 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1092 /* Can be called from ISR. Evil. */
1095 /* 0x80 must be set immediately before turning it off */
1096 iowrite8(0x80, ioaddr + MIICmd);
1098 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1100 /* Heh. Now clear 0x80 again. */
1101 iowrite8(0, ioaddr + MIICmd);
1104 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1107 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1109 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1111 struct rhine_private *rp = netdev_priv(dev);
1112 void __iomem *ioaddr = rp->base;
1115 rhine_disable_linkmon(ioaddr, rp->quirks);
1117 /* rhine_disable_linkmon already cleared MIICmd */
1118 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1119 iowrite8(regnum, ioaddr + MIIRegAddr);
1120 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1121 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1122 result = ioread16(ioaddr + MIIData);
1124 rhine_enable_linkmon(ioaddr);
1128 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1130 struct rhine_private *rp = netdev_priv(dev);
1131 void __iomem *ioaddr = rp->base;
1133 rhine_disable_linkmon(ioaddr, rp->quirks);
1135 /* rhine_disable_linkmon already cleared MIICmd */
1136 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1137 iowrite8(regnum, ioaddr + MIIRegAddr);
1138 iowrite16(value, ioaddr + MIIData);
1139 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1140 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1142 rhine_enable_linkmon(ioaddr);
1145 static int rhine_open(struct net_device *dev)
1147 struct rhine_private *rp = netdev_priv(dev);
1148 void __iomem *ioaddr = rp->base;
1151 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1157 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1158 dev->name, rp->pdev->irq);
1160 rc = alloc_ring(dev);
1162 free_irq(rp->pdev->irq, dev);
1167 rhine_chip_reset(dev);
1168 init_registers(dev);
1170 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1171 "MII status: %4.4x.\n",
1172 dev->name, ioread16(ioaddr + ChipCmd),
1173 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1175 netif_start_queue(dev);
1180 static void rhine_tx_timeout(struct net_device *dev)
1182 struct rhine_private *rp = netdev_priv(dev);
1183 void __iomem *ioaddr = rp->base;
1185 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1186 "%4.4x, resetting...\n",
1187 dev->name, ioread16(ioaddr + IntrStatus),
1188 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1190 /* protect against concurrent rx interrupts */
1191 disable_irq(rp->pdev->irq);
1193 napi_disable(&rp->napi);
1195 spin_lock(&rp->lock);
1197 /* clear all descriptors */
1203 /* Reinitialize the hardware. */
1204 rhine_chip_reset(dev);
1205 init_registers(dev);
1207 spin_unlock(&rp->lock);
1208 enable_irq(rp->pdev->irq);
1210 dev->trans_start = jiffies;
1211 rp->stats.tx_errors++;
1212 netif_wake_queue(dev);
1215 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1217 struct rhine_private *rp = netdev_priv(dev);
1218 void __iomem *ioaddr = rp->base;
1221 /* Caution: the write order is important here, set the field
1222 with the "ownership" bits last. */
1224 /* Calculate the next Tx descriptor entry. */
1225 entry = rp->cur_tx % TX_RING_SIZE;
1227 if (skb_padto(skb, ETH_ZLEN))
1230 rp->tx_skbuff[entry] = skb;
1232 if ((rp->quirks & rqRhineI) &&
1233 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1234 /* Must use alignment buffer. */
1235 if (skb->len > PKT_BUF_SZ) {
1236 /* packet too long, drop it */
1238 rp->tx_skbuff[entry] = NULL;
1239 rp->stats.tx_dropped++;
1243 /* Padding is not copied and so must be redone. */
1244 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1245 if (skb->len < ETH_ZLEN)
1246 memset(rp->tx_buf[entry] + skb->len, 0,
1247 ETH_ZLEN - skb->len);
1248 rp->tx_skbuff_dma[entry] = 0;
1249 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1250 (rp->tx_buf[entry] -
1253 rp->tx_skbuff_dma[entry] =
1254 pci_map_single(rp->pdev, skb->data, skb->len,
1256 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1259 rp->tx_ring[entry].desc_length =
1260 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1263 spin_lock_irq(&rp->lock);
1265 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1270 /* Non-x86 Todo: explicitly flush cache lines here. */
1272 /* Wake the potentially-idle transmit channel */
1273 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1277 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1278 netif_stop_queue(dev);
1280 dev->trans_start = jiffies;
1282 spin_unlock_irq(&rp->lock);
1285 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1286 dev->name, rp->cur_tx-1, entry);
1291 /* The interrupt handler does all of the Rx thread work and cleans up
1292 after the Tx thread. */
1293 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1295 struct net_device *dev = dev_instance;
1296 struct rhine_private *rp = netdev_priv(dev);
1297 void __iomem *ioaddr = rp->base;
1299 int boguscnt = max_interrupt_work;
1302 while ((intr_status = get_intr_status(dev))) {
1305 /* Acknowledge all of the current interrupt sources ASAP. */
1306 if (intr_status & IntrTxDescRace)
1307 iowrite8(0x08, ioaddr + IntrStatus2);
1308 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1312 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1313 dev->name, intr_status);
1315 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1316 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1317 iowrite16(IntrTxAborted |
1318 IntrTxDone | IntrTxError | IntrTxUnderrun |
1319 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1320 ioaddr + IntrEnable);
1322 napi_schedule(&rp->napi);
1325 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1326 if (intr_status & IntrTxErrSummary) {
1327 /* Avoid scavenging before Tx engine turned off */
1328 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1330 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1331 printk(KERN_WARNING "%s: "
1332 "rhine_interrupt() Tx engine "
1333 "still on.\n", dev->name);
1338 /* Abnormal error summary/uncommon events handlers. */
1339 if (intr_status & (IntrPCIErr | IntrLinkChange |
1340 IntrStatsMax | IntrTxError | IntrTxAborted |
1341 IntrTxUnderrun | IntrTxDescRace))
1342 rhine_error(dev, intr_status);
1344 if (--boguscnt < 0) {
1345 printk(KERN_WARNING "%s: Too much work at interrupt, "
1347 dev->name, intr_status);
1353 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1354 dev->name, ioread16(ioaddr + IntrStatus));
1355 return IRQ_RETVAL(handled);
1358 /* This routine is logically part of the interrupt handler, but isolated
1360 static void rhine_tx(struct net_device *dev)
1362 struct rhine_private *rp = netdev_priv(dev);
1363 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1365 spin_lock(&rp->lock);
1367 /* find and cleanup dirty tx descriptors */
1368 while (rp->dirty_tx != rp->cur_tx) {
1369 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1371 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1373 if (txstatus & DescOwn)
1375 if (txstatus & 0x8000) {
1377 printk(KERN_DEBUG "%s: Transmit error, "
1378 "Tx status %8.8x.\n",
1379 dev->name, txstatus);
1380 rp->stats.tx_errors++;
1381 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1382 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1383 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1384 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1385 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1386 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1387 rp->stats.tx_fifo_errors++;
1388 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1389 break; /* Keep the skb - we try again */
1391 /* Transmitter restarted in 'abnormal' handler. */
1393 if (rp->quirks & rqRhineI)
1394 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1396 rp->stats.collisions += txstatus & 0x0F;
1398 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1399 (txstatus >> 3) & 0xF,
1401 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1402 rp->stats.tx_packets++;
1404 /* Free the original skb. */
1405 if (rp->tx_skbuff_dma[entry]) {
1406 pci_unmap_single(rp->pdev,
1407 rp->tx_skbuff_dma[entry],
1408 rp->tx_skbuff[entry]->len,
1411 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1412 rp->tx_skbuff[entry] = NULL;
1413 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1415 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1416 netif_wake_queue(dev);
1418 spin_unlock(&rp->lock);
1421 /* Process up to limit frames from receive ring */
1422 static int rhine_rx(struct net_device *dev, int limit)
1424 struct rhine_private *rp = netdev_priv(dev);
1426 int entry = rp->cur_rx % RX_RING_SIZE;
1429 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1431 le32_to_cpu(rp->rx_head_desc->rx_status));
1434 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1435 for (count = 0; count < limit; ++count) {
1436 struct rx_desc *desc = rp->rx_head_desc;
1437 u32 desc_status = le32_to_cpu(desc->rx_status);
1438 int data_size = desc_status >> 16;
1440 if (desc_status & DescOwn)
1444 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1447 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1448 if ((desc_status & RxWholePkt) != RxWholePkt) {
1449 printk(KERN_WARNING "%s: Oversized Ethernet "
1450 "frame spanned multiple buffers, entry "
1451 "%#x length %d status %8.8x!\n",
1452 dev->name, entry, data_size,
1454 printk(KERN_WARNING "%s: Oversized Ethernet "
1455 "frame %p vs %p.\n", dev->name,
1456 rp->rx_head_desc, &rp->rx_ring[entry]);
1457 rp->stats.rx_length_errors++;
1458 } else if (desc_status & RxErr) {
1459 /* There was a error. */
1461 printk(KERN_DEBUG "rhine_rx() Rx "
1462 "error was %8.8x.\n",
1464 rp->stats.rx_errors++;
1465 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1466 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1467 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1468 if (desc_status & 0x0002) {
1469 /* this can also be updated outside the interrupt handler */
1470 spin_lock(&rp->lock);
1471 rp->stats.rx_crc_errors++;
1472 spin_unlock(&rp->lock);
1476 struct sk_buff *skb;
1477 /* Length should omit the CRC */
1478 int pkt_len = data_size - 4;
1480 /* Check if the packet is long enough to accept without
1481 copying to a minimally-sized skbuff. */
1482 if (pkt_len < rx_copybreak &&
1483 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1484 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1485 pci_dma_sync_single_for_cpu(rp->pdev,
1486 rp->rx_skbuff_dma[entry],
1488 PCI_DMA_FROMDEVICE);
1490 skb_copy_to_linear_data(skb,
1491 rp->rx_skbuff[entry]->data,
1493 skb_put(skb, pkt_len);
1494 pci_dma_sync_single_for_device(rp->pdev,
1495 rp->rx_skbuff_dma[entry],
1497 PCI_DMA_FROMDEVICE);
1499 skb = rp->rx_skbuff[entry];
1501 printk(KERN_ERR "%s: Inconsistent Rx "
1502 "descriptor chain.\n",
1506 rp->rx_skbuff[entry] = NULL;
1507 skb_put(skb, pkt_len);
1508 pci_unmap_single(rp->pdev,
1509 rp->rx_skbuff_dma[entry],
1511 PCI_DMA_FROMDEVICE);
1513 skb->protocol = eth_type_trans(skb, dev);
1514 netif_receive_skb(skb);
1515 rp->stats.rx_bytes += pkt_len;
1516 rp->stats.rx_packets++;
1518 entry = (++rp->cur_rx) % RX_RING_SIZE;
1519 rp->rx_head_desc = &rp->rx_ring[entry];
1522 /* Refill the Rx ring buffers. */
1523 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1524 struct sk_buff *skb;
1525 entry = rp->dirty_rx % RX_RING_SIZE;
1526 if (rp->rx_skbuff[entry] == NULL) {
1527 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1528 rp->rx_skbuff[entry] = skb;
1530 break; /* Better luck next round. */
1531 skb->dev = dev; /* Mark as being used by this device. */
1532 rp->rx_skbuff_dma[entry] =
1533 pci_map_single(rp->pdev, skb->data,
1535 PCI_DMA_FROMDEVICE);
1536 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1538 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1545 * Clears the "tally counters" for CRC errors and missed frames(?).
1546 * It has been reported that some chips need a write of 0 to clear
1547 * these, for others the counters are set to 1 when written to and
1548 * instead cleared when read. So we clear them both ways ...
1550 static inline void clear_tally_counters(void __iomem *ioaddr)
1552 iowrite32(0, ioaddr + RxMissed);
1553 ioread16(ioaddr + RxCRCErrs);
1554 ioread16(ioaddr + RxMissed);
1557 static void rhine_restart_tx(struct net_device *dev) {
1558 struct rhine_private *rp = netdev_priv(dev);
1559 void __iomem *ioaddr = rp->base;
1560 int entry = rp->dirty_tx % TX_RING_SIZE;
1564 * If new errors occured, we need to sort them out before doing Tx.
1565 * In that case the ISR will be back here RSN anyway.
1567 intr_status = get_intr_status(dev);
1569 if ((intr_status & IntrTxErrSummary) == 0) {
1571 /* We know better than the chip where it should continue. */
1572 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1573 ioaddr + TxRingPtr);
1575 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1577 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1582 /* This should never happen */
1584 printk(KERN_WARNING "%s: rhine_restart_tx() "
1585 "Another error occured %8.8x.\n",
1586 dev->name, intr_status);
1591 static void rhine_error(struct net_device *dev, int intr_status)
1593 struct rhine_private *rp = netdev_priv(dev);
1594 void __iomem *ioaddr = rp->base;
1596 spin_lock(&rp->lock);
1598 if (intr_status & IntrLinkChange)
1599 rhine_check_media(dev, 0);
1600 if (intr_status & IntrStatsMax) {
1601 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1602 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1603 clear_tally_counters(ioaddr);
1605 if (intr_status & IntrTxAborted) {
1607 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1608 dev->name, intr_status);
1610 if (intr_status & IntrTxUnderrun) {
1611 if (rp->tx_thresh < 0xE0)
1612 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1614 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1615 "threshold now %2.2x.\n",
1616 dev->name, rp->tx_thresh);
1618 if (intr_status & IntrTxDescRace) {
1620 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1623 if ((intr_status & IntrTxError) &&
1624 (intr_status & (IntrTxAborted |
1625 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1626 if (rp->tx_thresh < 0xE0) {
1627 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1630 printk(KERN_INFO "%s: Unspecified error. Tx "
1631 "threshold now %2.2x.\n",
1632 dev->name, rp->tx_thresh);
1634 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1636 rhine_restart_tx(dev);
1638 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1639 IntrTxError | IntrTxAborted | IntrNormalSummary |
1642 printk(KERN_ERR "%s: Something Wicked happened! "
1643 "%8.8x.\n", dev->name, intr_status);
1646 spin_unlock(&rp->lock);
1649 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1651 struct rhine_private *rp = netdev_priv(dev);
1652 void __iomem *ioaddr = rp->base;
1653 unsigned long flags;
1655 spin_lock_irqsave(&rp->lock, flags);
1656 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1657 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1658 clear_tally_counters(ioaddr);
1659 spin_unlock_irqrestore(&rp->lock, flags);
1664 static void rhine_set_rx_mode(struct net_device *dev)
1666 struct rhine_private *rp = netdev_priv(dev);
1667 void __iomem *ioaddr = rp->base;
1668 u32 mc_filter[2]; /* Multicast hash filter */
1669 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1671 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1673 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1674 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1675 } else if ((dev->mc_count > multicast_filter_limit)
1676 || (dev->flags & IFF_ALLMULTI)) {
1677 /* Too many to match, or accept all multicasts. */
1678 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1679 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1682 struct dev_mc_list *mclist;
1684 memset(mc_filter, 0, sizeof(mc_filter));
1685 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1686 i++, mclist = mclist->next) {
1687 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1689 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1691 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1692 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1695 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1698 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1700 struct rhine_private *rp = netdev_priv(dev);
1702 strcpy(info->driver, DRV_NAME);
1703 strcpy(info->version, DRV_VERSION);
1704 strcpy(info->bus_info, pci_name(rp->pdev));
1707 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1709 struct rhine_private *rp = netdev_priv(dev);
1712 spin_lock_irq(&rp->lock);
1713 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1714 spin_unlock_irq(&rp->lock);
1719 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1721 struct rhine_private *rp = netdev_priv(dev);
1724 spin_lock_irq(&rp->lock);
1725 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1726 spin_unlock_irq(&rp->lock);
1727 rhine_set_carrier(&rp->mii_if);
1732 static int netdev_nway_reset(struct net_device *dev)
1734 struct rhine_private *rp = netdev_priv(dev);
1736 return mii_nway_restart(&rp->mii_if);
1739 static u32 netdev_get_link(struct net_device *dev)
1741 struct rhine_private *rp = netdev_priv(dev);
1743 return mii_link_ok(&rp->mii_if);
1746 static u32 netdev_get_msglevel(struct net_device *dev)
1751 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1756 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1758 struct rhine_private *rp = netdev_priv(dev);
1760 if (!(rp->quirks & rqWOL))
1763 spin_lock_irq(&rp->lock);
1764 wol->supported = WAKE_PHY | WAKE_MAGIC |
1765 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1766 wol->wolopts = rp->wolopts;
1767 spin_unlock_irq(&rp->lock);
1770 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1772 struct rhine_private *rp = netdev_priv(dev);
1773 u32 support = WAKE_PHY | WAKE_MAGIC |
1774 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1776 if (!(rp->quirks & rqWOL))
1779 if (wol->wolopts & ~support)
1782 spin_lock_irq(&rp->lock);
1783 rp->wolopts = wol->wolopts;
1784 spin_unlock_irq(&rp->lock);
1789 static const struct ethtool_ops netdev_ethtool_ops = {
1790 .get_drvinfo = netdev_get_drvinfo,
1791 .get_settings = netdev_get_settings,
1792 .set_settings = netdev_set_settings,
1793 .nway_reset = netdev_nway_reset,
1794 .get_link = netdev_get_link,
1795 .get_msglevel = netdev_get_msglevel,
1796 .set_msglevel = netdev_set_msglevel,
1797 .get_wol = rhine_get_wol,
1798 .set_wol = rhine_set_wol,
1801 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1803 struct rhine_private *rp = netdev_priv(dev);
1806 if (!netif_running(dev))
1809 spin_lock_irq(&rp->lock);
1810 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1811 spin_unlock_irq(&rp->lock);
1812 rhine_set_carrier(&rp->mii_if);
1817 static int rhine_close(struct net_device *dev)
1819 struct rhine_private *rp = netdev_priv(dev);
1820 void __iomem *ioaddr = rp->base;
1822 spin_lock_irq(&rp->lock);
1824 netif_stop_queue(dev);
1825 napi_disable(&rp->napi);
1828 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1829 "status was %4.4x.\n",
1830 dev->name, ioread16(ioaddr + ChipCmd));
1832 /* Switch to loopback mode to avoid hardware races. */
1833 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1835 /* Disable interrupts by clearing the interrupt mask. */
1836 iowrite16(0x0000, ioaddr + IntrEnable);
1838 /* Stop the chip's Tx and Rx processes. */
1839 iowrite16(CmdStop, ioaddr + ChipCmd);
1841 spin_unlock_irq(&rp->lock);
1843 free_irq(rp->pdev->irq, dev);
1852 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1854 struct net_device *dev = pci_get_drvdata(pdev);
1855 struct rhine_private *rp = netdev_priv(dev);
1857 unregister_netdev(dev);
1859 pci_iounmap(pdev, rp->base);
1860 pci_release_regions(pdev);
1863 pci_disable_device(pdev);
1864 pci_set_drvdata(pdev, NULL);
1867 static void rhine_shutdown (struct pci_dev *pdev)
1869 struct net_device *dev = pci_get_drvdata(pdev);
1870 struct rhine_private *rp = netdev_priv(dev);
1871 void __iomem *ioaddr = rp->base;
1873 if (!(rp->quirks & rqWOL))
1874 return; /* Nothing to do for non-WOL adapters */
1876 rhine_power_init(dev);
1878 /* Make sure we use pattern 0, 1 and not 4, 5 */
1879 if (rp->quirks & rq6patterns)
1880 iowrite8(0x04, ioaddr + WOLcgClr);
1882 if (rp->wolopts & WAKE_MAGIC) {
1883 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1885 * Turn EEPROM-controlled wake-up back on -- some hardware may
1886 * not cooperate otherwise.
1888 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1891 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1892 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1894 if (rp->wolopts & WAKE_PHY)
1895 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1897 if (rp->wolopts & WAKE_UCAST)
1898 iowrite8(WOLucast, ioaddr + WOLcrSet);
1901 /* Enable legacy WOL (for old motherboards) */
1902 iowrite8(0x01, ioaddr + PwcfgSet);
1903 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1906 /* Hit power state D3 (sleep) */
1908 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1910 /* TODO: Check use of pci_enable_wake() */
1915 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1917 struct net_device *dev = pci_get_drvdata(pdev);
1918 struct rhine_private *rp = netdev_priv(dev);
1919 unsigned long flags;
1921 if (!netif_running(dev))
1924 napi_disable(&rp->napi);
1926 netif_device_detach(dev);
1927 pci_save_state(pdev);
1929 spin_lock_irqsave(&rp->lock, flags);
1930 rhine_shutdown(pdev);
1931 spin_unlock_irqrestore(&rp->lock, flags);
1933 free_irq(dev->irq, dev);
1937 static int rhine_resume(struct pci_dev *pdev)
1939 struct net_device *dev = pci_get_drvdata(pdev);
1940 struct rhine_private *rp = netdev_priv(dev);
1941 unsigned long flags;
1944 if (!netif_running(dev))
1947 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1948 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1950 ret = pci_set_power_state(pdev, PCI_D0);
1952 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1953 dev->name, ret ? "failed" : "succeeded", ret);
1955 pci_restore_state(pdev);
1957 spin_lock_irqsave(&rp->lock, flags);
1959 enable_mmio(rp->pioaddr, rp->quirks);
1961 rhine_power_init(dev);
1966 init_registers(dev);
1967 spin_unlock_irqrestore(&rp->lock, flags);
1969 netif_device_attach(dev);
1973 #endif /* CONFIG_PM */
1975 static struct pci_driver rhine_driver = {
1977 .id_table = rhine_pci_tbl,
1978 .probe = rhine_init_one,
1979 .remove = __devexit_p(rhine_remove_one),
1981 .suspend = rhine_suspend,
1982 .resume = rhine_resume,
1983 #endif /* CONFIG_PM */
1984 .shutdown = rhine_shutdown,
1987 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1991 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1992 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1998 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
1999 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2005 static int __init rhine_init(void)
2007 /* when a module, this is printed whether or not devices are found in probe */
2011 if (dmi_check_system(rhine_dmi_table)) {
2012 /* these BIOSes fail at PXE boot if chip is in D3 */
2014 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2019 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2021 return pci_register_driver(&rhine_driver);
2025 static void __exit rhine_cleanup(void)
2027 pci_unregister_driver(&rhine_driver);
2031 module_init(rhine_init);
2032 module_exit(rhine_cleanup);