]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wan/hdlc_fr.c
[ETH]: Make eth_type_trans set skb->dev like the other *_type_trans
[linux-2.6-omap-h63xx.git] / drivers / net / wan / hdlc_fr.c
1 /*
2  * Generic HDLC support routines for Linux
3  * Frame Relay support
4  *
5  * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11
12             Theory of PVC state
13
14  DCE mode:
15
16  (exist,new) -> 0,0 when "PVC create" or if "link unreliable"
17          0,x -> 1,1 if "link reliable" when sending FULL STATUS
18          1,1 -> 1,0 if received FULL STATUS ACK
19
20  (active)    -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create"
21              -> 1 when "PVC up" and (exist,new) = 1,0
22
23  DTE mode:
24  (exist,new,active) = FULL STATUS if "link reliable"
25                     = 0, 0, 0 if "link unreliable"
26  No LMI:
27  active = open and "link reliable"
28  exist = new = not used
29
30  CCITT LMI: ITU-T Q.933 Annex A
31  ANSI LMI: ANSI T1.617 Annex D
32  CISCO LMI: the original, aka "Gang of Four" LMI
33
34 */
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/poll.h>
40 #include <linux/errno.h>
41 #include <linux/if_arp.h>
42 #include <linux/init.h>
43 #include <linux/skbuff.h>
44 #include <linux/pkt_sched.h>
45 #include <linux/random.h>
46 #include <linux/inetdevice.h>
47 #include <linux/lapb.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/etherdevice.h>
50 #include <linux/hdlc.h>
51
52 #undef DEBUG_PKT
53 #undef DEBUG_ECN
54 #undef DEBUG_LINK
55 #undef DEBUG_PROTO
56 #undef DEBUG_PVC
57
58 #define FR_UI                   0x03
59 #define FR_PAD                  0x00
60
61 #define NLPID_IP                0xCC
62 #define NLPID_IPV6              0x8E
63 #define NLPID_SNAP              0x80
64 #define NLPID_PAD               0x00
65 #define NLPID_CCITT_ANSI_LMI    0x08
66 #define NLPID_CISCO_LMI         0x09
67
68
69 #define LMI_CCITT_ANSI_DLCI        0 /* LMI DLCI */
70 #define LMI_CISCO_DLCI          1023
71
72 #define LMI_CALLREF             0x00 /* Call Reference */
73 #define LMI_ANSI_LOCKSHIFT      0x95 /* ANSI locking shift */
74 #define LMI_ANSI_CISCO_REPTYPE  0x01 /* report type */
75 #define LMI_CCITT_REPTYPE       0x51
76 #define LMI_ANSI_CISCO_ALIVE    0x03 /* keep alive */
77 #define LMI_CCITT_ALIVE         0x53
78 #define LMI_ANSI_CISCO_PVCSTAT  0x07 /* PVC status */
79 #define LMI_CCITT_PVCSTAT       0x57
80
81 #define LMI_FULLREP             0x00 /* full report  */
82 #define LMI_INTEGRITY           0x01 /* link integrity report */
83 #define LMI_SINGLE              0x02 /* single PVC report */
84
85 #define LMI_STATUS_ENQUIRY      0x75
86 #define LMI_STATUS              0x7D /* reply */
87
88 #define LMI_REPT_LEN               1 /* report type element length */
89 #define LMI_INTEG_LEN              2 /* link integrity element length */
90
91 #define LMI_CCITT_CISCO_LENGTH    13 /* LMI frame lengths */
92 #define LMI_ANSI_LENGTH           14
93
94
95 typedef struct {
96 #if defined(__LITTLE_ENDIAN_BITFIELD)
97         unsigned ea1:   1;
98         unsigned cr:    1;
99         unsigned dlcih: 6;
100   
101         unsigned ea2:   1;
102         unsigned de:    1;
103         unsigned becn:  1;
104         unsigned fecn:  1;
105         unsigned dlcil: 4;
106 #else
107         unsigned dlcih: 6;
108         unsigned cr:    1;
109         unsigned ea1:   1;
110
111         unsigned dlcil: 4;
112         unsigned fecn:  1;
113         unsigned becn:  1;
114         unsigned de:    1;
115         unsigned ea2:   1;
116 #endif
117 }__attribute__ ((packed)) fr_hdr;
118
119
120 typedef struct pvc_device_struct {
121         struct net_device *frad;
122         struct net_device *main;
123         struct net_device *ether;       /* bridged Ethernet interface   */
124         struct pvc_device_struct *next; /* Sorted in ascending DLCI order */
125         int dlci;
126         int open_count;
127
128         struct {
129                 unsigned int new: 1;
130                 unsigned int active: 1;
131                 unsigned int exist: 1;
132                 unsigned int deleted: 1;
133                 unsigned int fecn: 1;
134                 unsigned int becn: 1;
135                 unsigned int bandwidth; /* Cisco LMI reporting only */
136         }state;
137 }pvc_device;
138
139
140 struct frad_state {
141         fr_proto settings;
142         pvc_device *first_pvc;
143         int dce_pvc_count;
144
145         struct timer_list timer;
146         unsigned long last_poll;
147         int reliable;
148         int dce_changed;
149         int request;
150         int fullrep_sent;
151         u32 last_errors; /* last errors bit list */
152         u8 n391cnt;
153         u8 txseq; /* TX sequence number */
154         u8 rxseq; /* RX sequence number */
155 };
156
157
158 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr);
159
160
161 static inline u16 q922_to_dlci(u8 *hdr)
162 {
163         return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4);
164 }
165
166
167 static inline void dlci_to_q922(u8 *hdr, u16 dlci)
168 {
169         hdr[0] = (dlci >> 2) & 0xFC;
170         hdr[1] = ((dlci << 4) & 0xF0) | 0x01;
171 }
172
173
174 static inline struct frad_state * state(hdlc_device *hdlc)
175 {
176         return(struct frad_state *)(hdlc->state);
177 }
178
179
180 static __inline__ pvc_device* dev_to_pvc(struct net_device *dev)
181 {
182         return dev->priv;
183 }
184
185
186 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci)
187 {
188         pvc_device *pvc = state(hdlc)->first_pvc;
189
190         while (pvc) {
191                 if (pvc->dlci == dlci)
192                         return pvc;
193                 if (pvc->dlci > dlci)
194                         return NULL; /* the listed is sorted */
195                 pvc = pvc->next;
196         }
197
198         return NULL;
199 }
200
201
202 static pvc_device* add_pvc(struct net_device *dev, u16 dlci)
203 {
204         hdlc_device *hdlc = dev_to_hdlc(dev);
205         pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc;
206
207         while (*pvc_p) {
208                 if ((*pvc_p)->dlci == dlci)
209                         return *pvc_p;
210                 if ((*pvc_p)->dlci > dlci)
211                         break;  /* the list is sorted */
212                 pvc_p = &(*pvc_p)->next;
213         }
214
215         pvc = kmalloc(sizeof(pvc_device), GFP_ATOMIC);
216 #ifdef DEBUG_PVC
217         printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev);
218 #endif
219         if (!pvc)
220                 return NULL;
221
222         memset(pvc, 0, sizeof(pvc_device));
223         pvc->dlci = dlci;
224         pvc->frad = dev;
225         pvc->next = *pvc_p;     /* Put it in the chain */
226         *pvc_p = pvc;
227         return pvc;
228 }
229
230
231 static inline int pvc_is_used(pvc_device *pvc)
232 {
233         return pvc->main || pvc->ether;
234 }
235
236
237 static inline void pvc_carrier(int on, pvc_device *pvc)
238 {
239         if (on) {
240                 if (pvc->main)
241                         if (!netif_carrier_ok(pvc->main))
242                                 netif_carrier_on(pvc->main);
243                 if (pvc->ether)
244                         if (!netif_carrier_ok(pvc->ether))
245                                 netif_carrier_on(pvc->ether);
246         } else {
247                 if (pvc->main)
248                         if (netif_carrier_ok(pvc->main))
249                                 netif_carrier_off(pvc->main);
250                 if (pvc->ether)
251                         if (netif_carrier_ok(pvc->ether))
252                                 netif_carrier_off(pvc->ether);
253         }
254 }
255
256
257 static inline void delete_unused_pvcs(hdlc_device *hdlc)
258 {
259         pvc_device **pvc_p = &state(hdlc)->first_pvc;
260
261         while (*pvc_p) {
262                 if (!pvc_is_used(*pvc_p)) {
263                         pvc_device *pvc = *pvc_p;
264 #ifdef DEBUG_PVC
265                         printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc);
266 #endif
267                         *pvc_p = pvc->next;
268                         kfree(pvc);
269                         continue;
270                 }
271                 pvc_p = &(*pvc_p)->next;
272         }
273 }
274
275
276 static inline struct net_device** get_dev_p(pvc_device *pvc, int type)
277 {
278         if (type == ARPHRD_ETHER)
279                 return &pvc->ether;
280         else
281                 return &pvc->main;
282 }
283
284
285 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci)
286 {
287         u16 head_len;
288         struct sk_buff *skb = *skb_p;
289
290         switch (skb->protocol) {
291         case __constant_ntohs(NLPID_CCITT_ANSI_LMI):
292                 head_len = 4;
293                 skb_push(skb, head_len);
294                 skb->data[3] = NLPID_CCITT_ANSI_LMI;
295                 break;
296
297         case __constant_ntohs(NLPID_CISCO_LMI):
298                 head_len = 4;
299                 skb_push(skb, head_len);
300                 skb->data[3] = NLPID_CISCO_LMI;
301                 break;
302
303         case __constant_ntohs(ETH_P_IP):
304                 head_len = 4;
305                 skb_push(skb, head_len);
306                 skb->data[3] = NLPID_IP;
307                 break;
308
309         case __constant_ntohs(ETH_P_IPV6):
310                 head_len = 4;
311                 skb_push(skb, head_len);
312                 skb->data[3] = NLPID_IPV6;
313                 break;
314
315         case __constant_ntohs(ETH_P_802_3):
316                 head_len = 10;
317                 if (skb_headroom(skb) < head_len) {
318                         struct sk_buff *skb2 = skb_realloc_headroom(skb,
319                                                                     head_len);
320                         if (!skb2)
321                                 return -ENOBUFS;
322                         dev_kfree_skb(skb);
323                         skb = *skb_p = skb2;
324                 }
325                 skb_push(skb, head_len);
326                 skb->data[3] = FR_PAD;
327                 skb->data[4] = NLPID_SNAP;
328                 skb->data[5] = FR_PAD;
329                 skb->data[6] = 0x80;
330                 skb->data[7] = 0xC2;
331                 skb->data[8] = 0x00;
332                 skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */
333                 break;
334
335         default:
336                 head_len = 10;
337                 skb_push(skb, head_len);
338                 skb->data[3] = FR_PAD;
339                 skb->data[4] = NLPID_SNAP;
340                 skb->data[5] = FR_PAD;
341                 skb->data[6] = FR_PAD;
342                 skb->data[7] = FR_PAD;
343                 *(u16*)(skb->data + 8) = skb->protocol;
344         }
345
346         dlci_to_q922(skb->data, dlci);
347         skb->data[2] = FR_UI;
348         return 0;
349 }
350
351
352
353 static int pvc_open(struct net_device *dev)
354 {
355         pvc_device *pvc = dev_to_pvc(dev);
356
357         if ((pvc->frad->flags & IFF_UP) == 0)
358                 return -EIO;  /* Frad must be UP in order to activate PVC */
359
360         if (pvc->open_count++ == 0) {
361                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
362                 if (state(hdlc)->settings.lmi == LMI_NONE)
363                         pvc->state.active = netif_carrier_ok(pvc->frad);
364
365                 pvc_carrier(pvc->state.active, pvc);
366                 state(hdlc)->dce_changed = 1;
367         }
368         return 0;
369 }
370
371
372
373 static int pvc_close(struct net_device *dev)
374 {
375         pvc_device *pvc = dev_to_pvc(dev);
376
377         if (--pvc->open_count == 0) {
378                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
379                 if (state(hdlc)->settings.lmi == LMI_NONE)
380                         pvc->state.active = 0;
381
382                 if (state(hdlc)->settings.dce) {
383                         state(hdlc)->dce_changed = 1;
384                         pvc->state.active = 0;
385                 }
386         }
387         return 0;
388 }
389
390
391
392 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
393 {
394         pvc_device *pvc = dev_to_pvc(dev);
395         fr_proto_pvc_info info;
396
397         if (ifr->ifr_settings.type == IF_GET_PROTO) {
398                 if (dev->type == ARPHRD_ETHER)
399                         ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC;
400                 else
401                         ifr->ifr_settings.type = IF_PROTO_FR_PVC;
402
403                 if (ifr->ifr_settings.size < sizeof(info)) {
404                         /* data size wanted */
405                         ifr->ifr_settings.size = sizeof(info);
406                         return -ENOBUFS;
407                 }
408
409                 info.dlci = pvc->dlci;
410                 memcpy(info.master, pvc->frad->name, IFNAMSIZ);
411                 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info,
412                                  &info, sizeof(info)))
413                         return -EFAULT;
414                 return 0;
415         }
416
417         return -EINVAL;
418 }
419
420
421 static inline struct net_device_stats *pvc_get_stats(struct net_device *dev)
422 {
423         return &dev_to_desc(dev)->stats;
424 }
425
426
427
428 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
429 {
430         pvc_device *pvc = dev_to_pvc(dev);
431         struct net_device_stats *stats = pvc_get_stats(dev);
432
433         if (pvc->state.active) {
434                 if (dev->type == ARPHRD_ETHER) {
435                         int pad = ETH_ZLEN - skb->len;
436                         if (pad > 0) { /* Pad the frame with zeros */
437                                 int len = skb->len;
438                                 if (skb_tailroom(skb) < pad)
439                                         if (pskb_expand_head(skb, 0, pad,
440                                                              GFP_ATOMIC)) {
441                                                 stats->tx_dropped++;
442                                                 dev_kfree_skb(skb);
443                                                 return 0;
444                                         }
445                                 skb_put(skb, pad);
446                                 memset(skb->data + len, 0, pad);
447                         }
448                         skb->protocol = __constant_htons(ETH_P_802_3);
449                 }
450                 if (!fr_hard_header(&skb, pvc->dlci)) {
451                         stats->tx_bytes += skb->len;
452                         stats->tx_packets++;
453                         if (pvc->state.fecn) /* TX Congestion counter */
454                                 stats->tx_compressed++;
455                         skb->dev = pvc->frad;
456                         dev_queue_xmit(skb);
457                         return 0;
458                 }
459         }
460
461         stats->tx_dropped++;
462         dev_kfree_skb(skb);
463         return 0;
464 }
465
466
467
468 static int pvc_change_mtu(struct net_device *dev, int new_mtu)
469 {
470         if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU))
471                 return -EINVAL;
472         dev->mtu = new_mtu;
473         return 0;
474 }
475
476
477
478 static inline void fr_log_dlci_active(pvc_device *pvc)
479 {
480         printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n",
481                pvc->frad->name,
482                pvc->dlci,
483                pvc->main ? pvc->main->name : "",
484                pvc->main && pvc->ether ? " " : "",
485                pvc->ether ? pvc->ether->name : "",
486                pvc->state.new ? " new" : "",
487                !pvc->state.exist ? "deleted" :
488                pvc->state.active ? "active" : "inactive");
489 }
490
491
492
493 static inline u8 fr_lmi_nextseq(u8 x)
494 {
495         x++;
496         return x ? x : 1;
497 }
498
499
500 static void fr_lmi_send(struct net_device *dev, int fullrep)
501 {
502         hdlc_device *hdlc = dev_to_hdlc(dev);
503         struct sk_buff *skb;
504         pvc_device *pvc = state(hdlc)->first_pvc;
505         int lmi = state(hdlc)->settings.lmi;
506         int dce = state(hdlc)->settings.dce;
507         int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH;
508         int stat_len = (lmi == LMI_CISCO) ? 6 : 3;
509         u8 *data;
510         int i = 0;
511
512         if (dce && fullrep) {
513                 len += state(hdlc)->dce_pvc_count * (2 + stat_len);
514                 if (len > HDLC_MAX_MRU) {
515                         printk(KERN_WARNING "%s: Too many PVCs while sending "
516                                "LMI full report\n", dev->name);
517                         return;
518                 }
519         }
520
521         skb = dev_alloc_skb(len);
522         if (!skb) {
523                 printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n",
524                        dev->name);
525                 return;
526         }
527         memset(skb->data, 0, len);
528         skb_reserve(skb, 4);
529         if (lmi == LMI_CISCO) {
530                 skb->protocol = __constant_htons(NLPID_CISCO_LMI);
531                 fr_hard_header(&skb, LMI_CISCO_DLCI);
532         } else {
533                 skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI);
534                 fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI);
535         }
536         data = skb->tail;
537         data[i++] = LMI_CALLREF;
538         data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY;
539         if (lmi == LMI_ANSI)
540                 data[i++] = LMI_ANSI_LOCKSHIFT;
541         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
542                 LMI_ANSI_CISCO_REPTYPE;
543         data[i++] = LMI_REPT_LEN;
544         data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY;
545         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE;
546         data[i++] = LMI_INTEG_LEN;
547         data[i++] = state(hdlc)->txseq =
548                 fr_lmi_nextseq(state(hdlc)->txseq);
549         data[i++] = state(hdlc)->rxseq;
550
551         if (dce && fullrep) {
552                 while (pvc) {
553                         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
554                                 LMI_ANSI_CISCO_PVCSTAT;
555                         data[i++] = stat_len;
556
557                         /* LMI start/restart */
558                         if (state(hdlc)->reliable && !pvc->state.exist) {
559                                 pvc->state.exist = pvc->state.new = 1;
560                                 fr_log_dlci_active(pvc);
561                         }
562
563                         /* ifconfig PVC up */
564                         if (pvc->open_count && !pvc->state.active &&
565                             pvc->state.exist && !pvc->state.new) {
566                                 pvc_carrier(1, pvc);
567                                 pvc->state.active = 1;
568                                 fr_log_dlci_active(pvc);
569                         }
570
571                         if (lmi == LMI_CISCO) {
572                                 data[i] = pvc->dlci >> 8;
573                                 data[i + 1] = pvc->dlci & 0xFF;
574                         } else {
575                                 data[i] = (pvc->dlci >> 4) & 0x3F;
576                                 data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80;
577                                 data[i + 2] = 0x80;
578                         }
579
580                         if (pvc->state.new)
581                                 data[i + 2] |= 0x08;
582                         else if (pvc->state.active)
583                                 data[i + 2] |= 0x02;
584
585                         i += stat_len;
586                         pvc = pvc->next;
587                 }
588         }
589
590         skb_put(skb, i);
591         skb->priority = TC_PRIO_CONTROL;
592         skb->dev = dev;
593         skb->nh.raw = skb->data;
594
595         dev_queue_xmit(skb);
596 }
597
598
599
600 static void fr_set_link_state(int reliable, struct net_device *dev)
601 {
602         hdlc_device *hdlc = dev_to_hdlc(dev);
603         pvc_device *pvc = state(hdlc)->first_pvc;
604
605         state(hdlc)->reliable = reliable;
606         if (reliable) {
607                 netif_dormant_off(dev);
608                 state(hdlc)->n391cnt = 0; /* Request full status */
609                 state(hdlc)->dce_changed = 1;
610
611                 if (state(hdlc)->settings.lmi == LMI_NONE) {
612                         while (pvc) {   /* Activate all PVCs */
613                                 pvc_carrier(1, pvc);
614                                 pvc->state.exist = pvc->state.active = 1;
615                                 pvc->state.new = 0;
616                                 pvc = pvc->next;
617                         }
618                 }
619         } else {
620                 netif_dormant_on(dev);
621                 while (pvc) {           /* Deactivate all PVCs */
622                         pvc_carrier(0, pvc);
623                         pvc->state.exist = pvc->state.active = 0;
624                         pvc->state.new = 0;
625                         if (!state(hdlc)->settings.dce)
626                                 pvc->state.bandwidth = 0;
627                         pvc = pvc->next;
628                 }
629         }
630 }
631
632
633 static void fr_timer(unsigned long arg)
634 {
635         struct net_device *dev = (struct net_device *)arg;
636         hdlc_device *hdlc = dev_to_hdlc(dev);
637         int i, cnt = 0, reliable;
638         u32 list;
639
640         if (state(hdlc)->settings.dce) {
641                 reliable = state(hdlc)->request &&
642                         time_before(jiffies, state(hdlc)->last_poll +
643                                     state(hdlc)->settings.t392 * HZ);
644                 state(hdlc)->request = 0;
645         } else {
646                 state(hdlc)->last_errors <<= 1; /* Shift the list */
647                 if (state(hdlc)->request) {
648                         if (state(hdlc)->reliable)
649                                 printk(KERN_INFO "%s: No LMI status reply "
650                                        "received\n", dev->name);
651                         state(hdlc)->last_errors |= 1;
652                 }
653
654                 list = state(hdlc)->last_errors;
655                 for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1)
656                         cnt += (list & 1);      /* errors count */
657
658                 reliable = (cnt < state(hdlc)->settings.n392);
659         }
660
661         if (state(hdlc)->reliable != reliable) {
662                 printk(KERN_INFO "%s: Link %sreliable\n", dev->name,
663                        reliable ? "" : "un");
664                 fr_set_link_state(reliable, dev);
665         }
666
667         if (state(hdlc)->settings.dce)
668                 state(hdlc)->timer.expires = jiffies +
669                         state(hdlc)->settings.t392 * HZ;
670         else {
671                 if (state(hdlc)->n391cnt)
672                         state(hdlc)->n391cnt--;
673
674                 fr_lmi_send(dev, state(hdlc)->n391cnt == 0);
675
676                 state(hdlc)->last_poll = jiffies;
677                 state(hdlc)->request = 1;
678                 state(hdlc)->timer.expires = jiffies +
679                         state(hdlc)->settings.t391 * HZ;
680         }
681
682         state(hdlc)->timer.function = fr_timer;
683         state(hdlc)->timer.data = arg;
684         add_timer(&state(hdlc)->timer);
685 }
686
687
688 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb)
689 {
690         hdlc_device *hdlc = dev_to_hdlc(dev);
691         pvc_device *pvc;
692         u8 rxseq, txseq;
693         int lmi = state(hdlc)->settings.lmi;
694         int dce = state(hdlc)->settings.dce;
695         int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i;
696
697         if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH :
698                         LMI_CCITT_CISCO_LENGTH)) {
699                 printk(KERN_INFO "%s: Short LMI frame\n", dev->name);
700                 return 1;
701         }
702
703         if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI :
704                              NLPID_CCITT_ANSI_LMI)) {
705                 printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n",
706                        dev->name);
707                 return 1;
708         }
709
710         if (skb->data[4] != LMI_CALLREF) {
711                 printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n",
712                        dev->name, skb->data[4]);
713                 return 1;
714         }
715
716         if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) {
717                 printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n",
718                        dev->name, skb->data[5]);
719                 return 1;
720         }
721
722         if (lmi == LMI_ANSI) {
723                 if (skb->data[6] != LMI_ANSI_LOCKSHIFT) {
724                         printk(KERN_INFO "%s: Not ANSI locking shift in LMI"
725                                " message (0x%02X)\n", dev->name, skb->data[6]);
726                         return 1;
727                 }
728                 i = 7;
729         } else
730                 i = 6;
731
732         if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
733                              LMI_ANSI_CISCO_REPTYPE)) {
734                 printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n",
735                        dev->name, skb->data[i]);
736                 return 1;
737         }
738
739         if (skb->data[++i] != LMI_REPT_LEN) {
740                 printk(KERN_INFO "%s: Invalid LMI Report type IE length"
741                        " (%u)\n", dev->name, skb->data[i]);
742                 return 1;
743         }
744
745         reptype = skb->data[++i];
746         if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) {
747                 printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n",
748                        dev->name, reptype);
749                 return 1;
750         }
751
752         if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE :
753                                LMI_ANSI_CISCO_ALIVE)) {
754                 printk(KERN_INFO "%s: Not an LMI Link integrity verification"
755                        " IE (0x%02X)\n", dev->name, skb->data[i]);
756                 return 1;
757         }
758
759         if (skb->data[++i] != LMI_INTEG_LEN) {
760                 printk(KERN_INFO "%s: Invalid LMI Link integrity verification"
761                        " IE length (%u)\n", dev->name, skb->data[i]);
762                 return 1;
763         }
764         i++;
765
766         state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */
767         rxseq = skb->data[i++]; /* Should confirm our sequence */
768
769         txseq = state(hdlc)->txseq;
770
771         if (dce)
772                 state(hdlc)->last_poll = jiffies;
773
774         error = 0;
775         if (!state(hdlc)->reliable)
776                 error = 1;
777
778         if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */
779                 state(hdlc)->n391cnt = 0;
780                 error = 1;
781         }
782
783         if (dce) {
784                 if (state(hdlc)->fullrep_sent && !error) {
785 /* Stop sending full report - the last one has been confirmed by DTE */
786                         state(hdlc)->fullrep_sent = 0;
787                         pvc = state(hdlc)->first_pvc;
788                         while (pvc) {
789                                 if (pvc->state.new) {
790                                         pvc->state.new = 0;
791
792 /* Tell DTE that new PVC is now active */
793                                         state(hdlc)->dce_changed = 1;
794                                 }
795                                 pvc = pvc->next;
796                         }
797                 }
798
799                 if (state(hdlc)->dce_changed) {
800                         reptype = LMI_FULLREP;
801                         state(hdlc)->fullrep_sent = 1;
802                         state(hdlc)->dce_changed = 0;
803                 }
804
805                 state(hdlc)->request = 1; /* got request */
806                 fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0);
807                 return 0;
808         }
809
810         /* DTE */
811
812         state(hdlc)->request = 0; /* got response, no request pending */
813
814         if (error)
815                 return 0;
816
817         if (reptype != LMI_FULLREP)
818                 return 0;
819
820         pvc = state(hdlc)->first_pvc;
821
822         while (pvc) {
823                 pvc->state.deleted = 1;
824                 pvc = pvc->next;
825         }
826
827         no_ram = 0;
828         while (skb->len >= i + 2 + stat_len) {
829                 u16 dlci;
830                 u32 bw;
831                 unsigned int active, new;
832
833                 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
834                                        LMI_ANSI_CISCO_PVCSTAT)) {
835                         printk(KERN_INFO "%s: Not an LMI PVC status IE"
836                                " (0x%02X)\n", dev->name, skb->data[i]);
837                         return 1;
838                 }
839
840                 if (skb->data[++i] != stat_len) {
841                         printk(KERN_INFO "%s: Invalid LMI PVC status IE length"
842                                " (%u)\n", dev->name, skb->data[i]);
843                         return 1;
844                 }
845                 i++;
846
847                 new = !! (skb->data[i + 2] & 0x08);
848                 active = !! (skb->data[i + 2] & 0x02);
849                 if (lmi == LMI_CISCO) {
850                         dlci = (skb->data[i] << 8) | skb->data[i + 1];
851                         bw = (skb->data[i + 3] << 16) |
852                                 (skb->data[i + 4] << 8) |
853                                 (skb->data[i + 5]);
854                 } else {
855                         dlci = ((skb->data[i] & 0x3F) << 4) |
856                                 ((skb->data[i + 1] & 0x78) >> 3);
857                         bw = 0;
858                 }
859
860                 pvc = add_pvc(dev, dlci);
861
862                 if (!pvc && !no_ram) {
863                         printk(KERN_WARNING
864                                "%s: Memory squeeze on fr_lmi_recv()\n",
865                                dev->name);
866                         no_ram = 1;
867                 }
868
869                 if (pvc) {
870                         pvc->state.exist = 1;
871                         pvc->state.deleted = 0;
872                         if (active != pvc->state.active ||
873                             new != pvc->state.new ||
874                             bw != pvc->state.bandwidth ||
875                             !pvc->state.exist) {
876                                 pvc->state.new = new;
877                                 pvc->state.active = active;
878                                 pvc->state.bandwidth = bw;
879                                 pvc_carrier(active, pvc);
880                                 fr_log_dlci_active(pvc);
881                         }
882                 }
883
884                 i += stat_len;
885         }
886
887         pvc = state(hdlc)->first_pvc;
888
889         while (pvc) {
890                 if (pvc->state.deleted && pvc->state.exist) {
891                         pvc_carrier(0, pvc);
892                         pvc->state.active = pvc->state.new = 0;
893                         pvc->state.exist = 0;
894                         pvc->state.bandwidth = 0;
895                         fr_log_dlci_active(pvc);
896                 }
897                 pvc = pvc->next;
898         }
899
900         /* Next full report after N391 polls */
901         state(hdlc)->n391cnt = state(hdlc)->settings.n391;
902
903         return 0;
904 }
905
906
907 static int fr_rx(struct sk_buff *skb)
908 {
909         struct net_device *frad = skb->dev;
910         hdlc_device *hdlc = dev_to_hdlc(frad);
911         fr_hdr *fh = (fr_hdr*)skb->data;
912         u8 *data = skb->data;
913         u16 dlci;
914         pvc_device *pvc;
915         struct net_device *dev = NULL;
916
917         if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI)
918                 goto rx_error;
919
920         dlci = q922_to_dlci(skb->data);
921
922         if ((dlci == LMI_CCITT_ANSI_DLCI &&
923              (state(hdlc)->settings.lmi == LMI_ANSI ||
924               state(hdlc)->settings.lmi == LMI_CCITT)) ||
925             (dlci == LMI_CISCO_DLCI &&
926              state(hdlc)->settings.lmi == LMI_CISCO)) {
927                 if (fr_lmi_recv(frad, skb))
928                         goto rx_error;
929                 dev_kfree_skb_any(skb);
930                 return NET_RX_SUCCESS;
931         }
932
933         pvc = find_pvc(hdlc, dlci);
934         if (!pvc) {
935 #ifdef DEBUG_PKT
936                 printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n",
937                        frad->name, dlci);
938 #endif
939                 dev_kfree_skb_any(skb);
940                 return NET_RX_DROP;
941         }
942
943         if (pvc->state.fecn != fh->fecn) {
944 #ifdef DEBUG_ECN
945                 printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name,
946                        dlci, fh->fecn ? "N" : "FF");
947 #endif
948                 pvc->state.fecn ^= 1;
949         }
950
951         if (pvc->state.becn != fh->becn) {
952 #ifdef DEBUG_ECN
953                 printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name,
954                        dlci, fh->becn ? "N" : "FF");
955 #endif
956                 pvc->state.becn ^= 1;
957         }
958
959
960         if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
961                 dev_to_desc(frad)->stats.rx_dropped++;
962                 return NET_RX_DROP;
963         }
964
965         if (data[3] == NLPID_IP) {
966                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
967                 dev = pvc->main;
968                 skb->protocol = htons(ETH_P_IP);
969
970         } else if (data[3] == NLPID_IPV6) {
971                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
972                 dev = pvc->main;
973                 skb->protocol = htons(ETH_P_IPV6);
974
975         } else if (skb->len > 10 && data[3] == FR_PAD &&
976                    data[4] == NLPID_SNAP && data[5] == FR_PAD) {
977                 u16 oui = ntohs(*(u16*)(data + 6));
978                 u16 pid = ntohs(*(u16*)(data + 8));
979                 skb_pull(skb, 10);
980
981                 switch ((((u32)oui) << 16) | pid) {
982                 case ETH_P_ARP: /* routed frame with SNAP */
983                 case ETH_P_IPX:
984                 case ETH_P_IP:  /* a long variant */
985                 case ETH_P_IPV6:
986                         dev = pvc->main;
987                         skb->protocol = htons(pid);
988                         break;
989
990                 case 0x80C20007: /* bridged Ethernet frame */
991                         if ((dev = pvc->ether) != NULL)
992                                 skb->protocol = eth_type_trans(skb, dev);
993                         break;
994
995                 default:
996                         printk(KERN_INFO "%s: Unsupported protocol, OUI=%x "
997                                "PID=%x\n", frad->name, oui, pid);
998                         dev_kfree_skb_any(skb);
999                         return NET_RX_DROP;
1000                 }
1001         } else {
1002                 printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x "
1003                        "length = %i\n", frad->name, data[3], skb->len);
1004                 dev_kfree_skb_any(skb);
1005                 return NET_RX_DROP;
1006         }
1007
1008         if (dev) {
1009                 struct net_device_stats *stats = pvc_get_stats(dev);
1010                 stats->rx_packets++; /* PVC traffic */
1011                 stats->rx_bytes += skb->len;
1012                 if (pvc->state.becn)
1013                         stats->rx_compressed++;
1014                 netif_rx(skb);
1015                 return NET_RX_SUCCESS;
1016         } else {
1017                 dev_kfree_skb_any(skb);
1018                 return NET_RX_DROP;
1019         }
1020
1021  rx_error:
1022         dev_to_desc(frad)->stats.rx_errors++; /* Mark error */
1023         dev_kfree_skb_any(skb);
1024         return NET_RX_DROP;
1025 }
1026
1027
1028
1029 static void fr_start(struct net_device *dev)
1030 {
1031         hdlc_device *hdlc = dev_to_hdlc(dev);
1032 #ifdef DEBUG_LINK
1033         printk(KERN_DEBUG "fr_start\n");
1034 #endif
1035         if (state(hdlc)->settings.lmi != LMI_NONE) {
1036                 state(hdlc)->reliable = 0;
1037                 state(hdlc)->dce_changed = 1;
1038                 state(hdlc)->request = 0;
1039                 state(hdlc)->fullrep_sent = 0;
1040                 state(hdlc)->last_errors = 0xFFFFFFFF;
1041                 state(hdlc)->n391cnt = 0;
1042                 state(hdlc)->txseq = state(hdlc)->rxseq = 0;
1043
1044                 init_timer(&state(hdlc)->timer);
1045                 /* First poll after 1 s */
1046                 state(hdlc)->timer.expires = jiffies + HZ;
1047                 state(hdlc)->timer.function = fr_timer;
1048                 state(hdlc)->timer.data = (unsigned long)dev;
1049                 add_timer(&state(hdlc)->timer);
1050         } else
1051                 fr_set_link_state(1, dev);
1052 }
1053
1054
1055 static void fr_stop(struct net_device *dev)
1056 {
1057         hdlc_device *hdlc = dev_to_hdlc(dev);
1058 #ifdef DEBUG_LINK
1059         printk(KERN_DEBUG "fr_stop\n");
1060 #endif
1061         if (state(hdlc)->settings.lmi != LMI_NONE)
1062                 del_timer_sync(&state(hdlc)->timer);
1063         fr_set_link_state(0, dev);
1064 }
1065
1066
1067 static void fr_close(struct net_device *dev)
1068 {
1069         hdlc_device *hdlc = dev_to_hdlc(dev);
1070         pvc_device *pvc = state(hdlc)->first_pvc;
1071
1072         while (pvc) {           /* Shutdown all PVCs for this FRAD */
1073                 if (pvc->main)
1074                         dev_close(pvc->main);
1075                 if (pvc->ether)
1076                         dev_close(pvc->ether);
1077                 pvc = pvc->next;
1078         }
1079 }
1080
1081
1082 static void pvc_setup(struct net_device *dev)
1083 {
1084         dev->type = ARPHRD_DLCI;
1085         dev->flags = IFF_POINTOPOINT;
1086         dev->hard_header_len = 10;
1087         dev->addr_len = 2;
1088 }
1089
1090 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
1091 {
1092         hdlc_device *hdlc = dev_to_hdlc(frad);
1093         pvc_device *pvc = NULL;
1094         struct net_device *dev;
1095         int result, used;
1096         char * prefix = "pvc%d";
1097
1098         if (type == ARPHRD_ETHER)
1099                 prefix = "pvceth%d";
1100
1101         if ((pvc = add_pvc(frad, dlci)) == NULL) {
1102                 printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n",
1103                        frad->name);
1104                 return -ENOBUFS;
1105         }
1106
1107         if (*get_dev_p(pvc, type))
1108                 return -EEXIST;
1109
1110         used = pvc_is_used(pvc);
1111
1112         if (type == ARPHRD_ETHER)
1113                 dev = alloc_netdev(sizeof(struct net_device_stats),
1114                                    "pvceth%d", ether_setup);
1115         else
1116                 dev = alloc_netdev(sizeof(struct net_device_stats),
1117                                    "pvc%d", pvc_setup);
1118
1119         if (!dev) {
1120                 printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n",
1121                        frad->name);
1122                 delete_unused_pvcs(hdlc);
1123                 return -ENOBUFS;
1124         }
1125
1126         if (type == ARPHRD_ETHER) {
1127                 memcpy(dev->dev_addr, "\x00\x01", 2);
1128                 get_random_bytes(dev->dev_addr + 2, ETH_ALEN - 2);
1129         } else {
1130                 *(u16*)dev->dev_addr = htons(dlci);
1131                 dlci_to_q922(dev->broadcast, dlci);
1132         }
1133         dev->hard_start_xmit = pvc_xmit;
1134         dev->get_stats = pvc_get_stats;
1135         dev->open = pvc_open;
1136         dev->stop = pvc_close;
1137         dev->do_ioctl = pvc_ioctl;
1138         dev->change_mtu = pvc_change_mtu;
1139         dev->mtu = HDLC_MAX_MTU;
1140         dev->tx_queue_len = 0;
1141         dev->priv = pvc;
1142
1143         result = dev_alloc_name(dev, dev->name);
1144         if (result < 0) {
1145                 free_netdev(dev);
1146                 delete_unused_pvcs(hdlc);
1147                 return result;
1148         }
1149
1150         if (register_netdevice(dev) != 0) {
1151                 free_netdev(dev);
1152                 delete_unused_pvcs(hdlc);
1153                 return -EIO;
1154         }
1155
1156         dev->destructor = free_netdev;
1157         *get_dev_p(pvc, type) = dev;
1158         if (!used) {
1159                 state(hdlc)->dce_changed = 1;
1160                 state(hdlc)->dce_pvc_count++;
1161         }
1162         return 0;
1163 }
1164
1165
1166
1167 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type)
1168 {
1169         pvc_device *pvc;
1170         struct net_device *dev;
1171
1172         if ((pvc = find_pvc(hdlc, dlci)) == NULL)
1173                 return -ENOENT;
1174
1175         if ((dev = *get_dev_p(pvc, type)) == NULL)
1176                 return -ENOENT;
1177
1178         if (dev->flags & IFF_UP)
1179                 return -EBUSY;          /* PVC in use */
1180
1181         unregister_netdevice(dev); /* the destructor will free_netdev(dev) */
1182         *get_dev_p(pvc, type) = NULL;
1183
1184         if (!pvc_is_used(pvc)) {
1185                 state(hdlc)->dce_pvc_count--;
1186                 state(hdlc)->dce_changed = 1;
1187         }
1188         delete_unused_pvcs(hdlc);
1189         return 0;
1190 }
1191
1192
1193
1194 static void fr_destroy(struct net_device *frad)
1195 {
1196         hdlc_device *hdlc = dev_to_hdlc(frad);
1197         pvc_device *pvc = state(hdlc)->first_pvc;
1198         state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */
1199         state(hdlc)->dce_pvc_count = 0;
1200         state(hdlc)->dce_changed = 1;
1201
1202         while (pvc) {
1203                 pvc_device *next = pvc->next;
1204                 /* destructors will free_netdev() main and ether */
1205                 if (pvc->main)
1206                         unregister_netdevice(pvc->main);
1207
1208                 if (pvc->ether)
1209                         unregister_netdevice(pvc->ether);
1210
1211                 kfree(pvc);
1212                 pvc = next;
1213         }
1214 }
1215
1216
1217 static struct hdlc_proto proto = {
1218         .close          = fr_close,
1219         .start          = fr_start,
1220         .stop           = fr_stop,
1221         .detach         = fr_destroy,
1222         .ioctl          = fr_ioctl,
1223         .module         = THIS_MODULE,
1224 };
1225
1226
1227 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr)
1228 {
1229         fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr;
1230         const size_t size = sizeof(fr_proto);
1231         fr_proto new_settings;
1232         hdlc_device *hdlc = dev_to_hdlc(dev);
1233         fr_proto_pvc pvc;
1234         int result;
1235
1236         switch (ifr->ifr_settings.type) {
1237         case IF_GET_PROTO:
1238                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1239                         return -EINVAL;
1240                 ifr->ifr_settings.type = IF_PROTO_FR;
1241                 if (ifr->ifr_settings.size < size) {
1242                         ifr->ifr_settings.size = size; /* data size wanted */
1243                         return -ENOBUFS;
1244                 }
1245                 if (copy_to_user(fr_s, &state(hdlc)->settings, size))
1246                         return -EFAULT;
1247                 return 0;
1248
1249         case IF_PROTO_FR:
1250                 if(!capable(CAP_NET_ADMIN))
1251                         return -EPERM;
1252
1253                 if(dev->flags & IFF_UP)
1254                         return -EBUSY;
1255
1256                 if (copy_from_user(&new_settings, fr_s, size))
1257                         return -EFAULT;
1258
1259                 if (new_settings.lmi == LMI_DEFAULT)
1260                         new_settings.lmi = LMI_ANSI;
1261
1262                 if ((new_settings.lmi != LMI_NONE &&
1263                      new_settings.lmi != LMI_ANSI &&
1264                      new_settings.lmi != LMI_CCITT &&
1265                      new_settings.lmi != LMI_CISCO) ||
1266                     new_settings.t391 < 1 ||
1267                     new_settings.t392 < 2 ||
1268                     new_settings.n391 < 1 ||
1269                     new_settings.n392 < 1 ||
1270                     new_settings.n393 < new_settings.n392 ||
1271                     new_settings.n393 > 32 ||
1272                     (new_settings.dce != 0 &&
1273                      new_settings.dce != 1))
1274                         return -EINVAL;
1275
1276                 result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
1277                 if (result)
1278                         return result;
1279
1280                 if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */
1281                         result = attach_hdlc_protocol(dev, &proto, fr_rx,
1282                                                       sizeof(struct frad_state));
1283                         if (result)
1284                                 return result;
1285                         state(hdlc)->first_pvc = NULL;
1286                         state(hdlc)->dce_pvc_count = 0;
1287                 }
1288                 memcpy(&state(hdlc)->settings, &new_settings, size);
1289
1290                 dev->hard_start_xmit = hdlc->xmit;
1291                 dev->type = ARPHRD_FRAD;
1292                 return 0;
1293
1294         case IF_PROTO_FR_ADD_PVC:
1295         case IF_PROTO_FR_DEL_PVC:
1296         case IF_PROTO_FR_ADD_ETH_PVC:
1297         case IF_PROTO_FR_DEL_ETH_PVC:
1298                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1299                         return -EINVAL;
1300
1301                 if(!capable(CAP_NET_ADMIN))
1302                         return -EPERM;
1303
1304                 if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc,
1305                                    sizeof(fr_proto_pvc)))
1306                         return -EFAULT;
1307
1308                 if (pvc.dlci <= 0 || pvc.dlci >= 1024)
1309                         return -EINVAL; /* Only 10 bits, DLCI 0 reserved */
1310
1311                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC ||
1312                     ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC)
1313                         result = ARPHRD_ETHER; /* bridged Ethernet device */
1314                 else
1315                         result = ARPHRD_DLCI;
1316
1317                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC ||
1318                     ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC)
1319                         return fr_add_pvc(dev, pvc.dlci, result);
1320                 else
1321                         return fr_del_pvc(hdlc, pvc.dlci, result);
1322         }
1323
1324         return -EINVAL;
1325 }
1326
1327
1328 static int __init mod_init(void)
1329 {
1330         register_hdlc_protocol(&proto);
1331         return 0;
1332 }
1333
1334
1335 static void __exit mod_exit(void)
1336 {
1337         unregister_hdlc_protocol(&proto);
1338 }
1339
1340
1341 module_init(mod_init);
1342 module_exit(mod_exit);
1343
1344 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
1345 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC");
1346 MODULE_LICENSE("GPL v2");