]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wan/hdlc_fr.c
Merge branch 'drm-patches' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[linux-2.6-omap-h63xx.git] / drivers / net / wan / hdlc_fr.c
1 /*
2  * Generic HDLC support routines for Linux
3  * Frame Relay support
4  *
5  * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11
12             Theory of PVC state
13
14  DCE mode:
15
16  (exist,new) -> 0,0 when "PVC create" or if "link unreliable"
17          0,x -> 1,1 if "link reliable" when sending FULL STATUS
18          1,1 -> 1,0 if received FULL STATUS ACK
19
20  (active)    -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create"
21              -> 1 when "PVC up" and (exist,new) = 1,0
22
23  DTE mode:
24  (exist,new,active) = FULL STATUS if "link reliable"
25                     = 0, 0, 0 if "link unreliable"
26  No LMI:
27  active = open and "link reliable"
28  exist = new = not used
29
30  CCITT LMI: ITU-T Q.933 Annex A
31  ANSI LMI: ANSI T1.617 Annex D
32  CISCO LMI: the original, aka "Gang of Four" LMI
33
34 */
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/poll.h>
40 #include <linux/errno.h>
41 #include <linux/if_arp.h>
42 #include <linux/init.h>
43 #include <linux/skbuff.h>
44 #include <linux/pkt_sched.h>
45 #include <linux/random.h>
46 #include <linux/inetdevice.h>
47 #include <linux/lapb.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/etherdevice.h>
50 #include <linux/hdlc.h>
51
52 #undef DEBUG_PKT
53 #undef DEBUG_ECN
54 #undef DEBUG_LINK
55 #undef DEBUG_PROTO
56 #undef DEBUG_PVC
57
58 #define FR_UI                   0x03
59 #define FR_PAD                  0x00
60
61 #define NLPID_IP                0xCC
62 #define NLPID_IPV6              0x8E
63 #define NLPID_SNAP              0x80
64 #define NLPID_PAD               0x00
65 #define NLPID_CCITT_ANSI_LMI    0x08
66 #define NLPID_CISCO_LMI         0x09
67
68
69 #define LMI_CCITT_ANSI_DLCI        0 /* LMI DLCI */
70 #define LMI_CISCO_DLCI          1023
71
72 #define LMI_CALLREF             0x00 /* Call Reference */
73 #define LMI_ANSI_LOCKSHIFT      0x95 /* ANSI locking shift */
74 #define LMI_ANSI_CISCO_REPTYPE  0x01 /* report type */
75 #define LMI_CCITT_REPTYPE       0x51
76 #define LMI_ANSI_CISCO_ALIVE    0x03 /* keep alive */
77 #define LMI_CCITT_ALIVE         0x53
78 #define LMI_ANSI_CISCO_PVCSTAT  0x07 /* PVC status */
79 #define LMI_CCITT_PVCSTAT       0x57
80
81 #define LMI_FULLREP             0x00 /* full report  */
82 #define LMI_INTEGRITY           0x01 /* link integrity report */
83 #define LMI_SINGLE              0x02 /* single PVC report */
84
85 #define LMI_STATUS_ENQUIRY      0x75
86 #define LMI_STATUS              0x7D /* reply */
87
88 #define LMI_REPT_LEN               1 /* report type element length */
89 #define LMI_INTEG_LEN              2 /* link integrity element length */
90
91 #define LMI_CCITT_CISCO_LENGTH    13 /* LMI frame lengths */
92 #define LMI_ANSI_LENGTH           14
93
94
95 typedef struct {
96 #if defined(__LITTLE_ENDIAN_BITFIELD)
97         unsigned ea1:   1;
98         unsigned cr:    1;
99         unsigned dlcih: 6;
100   
101         unsigned ea2:   1;
102         unsigned de:    1;
103         unsigned becn:  1;
104         unsigned fecn:  1;
105         unsigned dlcil: 4;
106 #else
107         unsigned dlcih: 6;
108         unsigned cr:    1;
109         unsigned ea1:   1;
110
111         unsigned dlcil: 4;
112         unsigned fecn:  1;
113         unsigned becn:  1;
114         unsigned de:    1;
115         unsigned ea2:   1;
116 #endif
117 }__attribute__ ((packed)) fr_hdr;
118
119
120 typedef struct pvc_device_struct {
121         struct net_device *frad;
122         struct net_device *main;
123         struct net_device *ether;       /* bridged Ethernet interface   */
124         struct pvc_device_struct *next; /* Sorted in ascending DLCI order */
125         int dlci;
126         int open_count;
127
128         struct {
129                 unsigned int new: 1;
130                 unsigned int active: 1;
131                 unsigned int exist: 1;
132                 unsigned int deleted: 1;
133                 unsigned int fecn: 1;
134                 unsigned int becn: 1;
135                 unsigned int bandwidth; /* Cisco LMI reporting only */
136         }state;
137 }pvc_device;
138
139
140 struct frad_state {
141         fr_proto settings;
142         pvc_device *first_pvc;
143         int dce_pvc_count;
144
145         struct timer_list timer;
146         unsigned long last_poll;
147         int reliable;
148         int dce_changed;
149         int request;
150         int fullrep_sent;
151         u32 last_errors; /* last errors bit list */
152         u8 n391cnt;
153         u8 txseq; /* TX sequence number */
154         u8 rxseq; /* RX sequence number */
155 };
156
157
158 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr);
159
160
161 static inline u16 q922_to_dlci(u8 *hdr)
162 {
163         return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4);
164 }
165
166
167 static inline void dlci_to_q922(u8 *hdr, u16 dlci)
168 {
169         hdr[0] = (dlci >> 2) & 0xFC;
170         hdr[1] = ((dlci << 4) & 0xF0) | 0x01;
171 }
172
173
174 static inline struct frad_state * state(hdlc_device *hdlc)
175 {
176         return(struct frad_state *)(hdlc->state);
177 }
178
179
180 static __inline__ pvc_device* dev_to_pvc(struct net_device *dev)
181 {
182         return dev->priv;
183 }
184
185
186 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci)
187 {
188         pvc_device *pvc = state(hdlc)->first_pvc;
189
190         while (pvc) {
191                 if (pvc->dlci == dlci)
192                         return pvc;
193                 if (pvc->dlci > dlci)
194                         return NULL; /* the listed is sorted */
195                 pvc = pvc->next;
196         }
197
198         return NULL;
199 }
200
201
202 static pvc_device* add_pvc(struct net_device *dev, u16 dlci)
203 {
204         hdlc_device *hdlc = dev_to_hdlc(dev);
205         pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc;
206
207         while (*pvc_p) {
208                 if ((*pvc_p)->dlci == dlci)
209                         return *pvc_p;
210                 if ((*pvc_p)->dlci > dlci)
211                         break;  /* the list is sorted */
212                 pvc_p = &(*pvc_p)->next;
213         }
214
215         pvc = kzalloc(sizeof(pvc_device), GFP_ATOMIC);
216 #ifdef DEBUG_PVC
217         printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev);
218 #endif
219         if (!pvc)
220                 return NULL;
221
222         pvc->dlci = dlci;
223         pvc->frad = dev;
224         pvc->next = *pvc_p;     /* Put it in the chain */
225         *pvc_p = pvc;
226         return pvc;
227 }
228
229
230 static inline int pvc_is_used(pvc_device *pvc)
231 {
232         return pvc->main || pvc->ether;
233 }
234
235
236 static inline void pvc_carrier(int on, pvc_device *pvc)
237 {
238         if (on) {
239                 if (pvc->main)
240                         if (!netif_carrier_ok(pvc->main))
241                                 netif_carrier_on(pvc->main);
242                 if (pvc->ether)
243                         if (!netif_carrier_ok(pvc->ether))
244                                 netif_carrier_on(pvc->ether);
245         } else {
246                 if (pvc->main)
247                         if (netif_carrier_ok(pvc->main))
248                                 netif_carrier_off(pvc->main);
249                 if (pvc->ether)
250                         if (netif_carrier_ok(pvc->ether))
251                                 netif_carrier_off(pvc->ether);
252         }
253 }
254
255
256 static inline void delete_unused_pvcs(hdlc_device *hdlc)
257 {
258         pvc_device **pvc_p = &state(hdlc)->first_pvc;
259
260         while (*pvc_p) {
261                 if (!pvc_is_used(*pvc_p)) {
262                         pvc_device *pvc = *pvc_p;
263 #ifdef DEBUG_PVC
264                         printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc);
265 #endif
266                         *pvc_p = pvc->next;
267                         kfree(pvc);
268                         continue;
269                 }
270                 pvc_p = &(*pvc_p)->next;
271         }
272 }
273
274
275 static inline struct net_device** get_dev_p(pvc_device *pvc, int type)
276 {
277         if (type == ARPHRD_ETHER)
278                 return &pvc->ether;
279         else
280                 return &pvc->main;
281 }
282
283
284 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci)
285 {
286         u16 head_len;
287         struct sk_buff *skb = *skb_p;
288
289         switch (skb->protocol) {
290         case __constant_htons(NLPID_CCITT_ANSI_LMI):
291                 head_len = 4;
292                 skb_push(skb, head_len);
293                 skb->data[3] = NLPID_CCITT_ANSI_LMI;
294                 break;
295
296         case __constant_htons(NLPID_CISCO_LMI):
297                 head_len = 4;
298                 skb_push(skb, head_len);
299                 skb->data[3] = NLPID_CISCO_LMI;
300                 break;
301
302         case __constant_htons(ETH_P_IP):
303                 head_len = 4;
304                 skb_push(skb, head_len);
305                 skb->data[3] = NLPID_IP;
306                 break;
307
308         case __constant_htons(ETH_P_IPV6):
309                 head_len = 4;
310                 skb_push(skb, head_len);
311                 skb->data[3] = NLPID_IPV6;
312                 break;
313
314         case __constant_htons(ETH_P_802_3):
315                 head_len = 10;
316                 if (skb_headroom(skb) < head_len) {
317                         struct sk_buff *skb2 = skb_realloc_headroom(skb,
318                                                                     head_len);
319                         if (!skb2)
320                                 return -ENOBUFS;
321                         dev_kfree_skb(skb);
322                         skb = *skb_p = skb2;
323                 }
324                 skb_push(skb, head_len);
325                 skb->data[3] = FR_PAD;
326                 skb->data[4] = NLPID_SNAP;
327                 skb->data[5] = FR_PAD;
328                 skb->data[6] = 0x80;
329                 skb->data[7] = 0xC2;
330                 skb->data[8] = 0x00;
331                 skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */
332                 break;
333
334         default:
335                 head_len = 10;
336                 skb_push(skb, head_len);
337                 skb->data[3] = FR_PAD;
338                 skb->data[4] = NLPID_SNAP;
339                 skb->data[5] = FR_PAD;
340                 skb->data[6] = FR_PAD;
341                 skb->data[7] = FR_PAD;
342                 *(__be16*)(skb->data + 8) = skb->protocol;
343         }
344
345         dlci_to_q922(skb->data, dlci);
346         skb->data[2] = FR_UI;
347         return 0;
348 }
349
350
351
352 static int pvc_open(struct net_device *dev)
353 {
354         pvc_device *pvc = dev_to_pvc(dev);
355
356         if ((pvc->frad->flags & IFF_UP) == 0)
357                 return -EIO;  /* Frad must be UP in order to activate PVC */
358
359         if (pvc->open_count++ == 0) {
360                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
361                 if (state(hdlc)->settings.lmi == LMI_NONE)
362                         pvc->state.active = netif_carrier_ok(pvc->frad);
363
364                 pvc_carrier(pvc->state.active, pvc);
365                 state(hdlc)->dce_changed = 1;
366         }
367         return 0;
368 }
369
370
371
372 static int pvc_close(struct net_device *dev)
373 {
374         pvc_device *pvc = dev_to_pvc(dev);
375
376         if (--pvc->open_count == 0) {
377                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
378                 if (state(hdlc)->settings.lmi == LMI_NONE)
379                         pvc->state.active = 0;
380
381                 if (state(hdlc)->settings.dce) {
382                         state(hdlc)->dce_changed = 1;
383                         pvc->state.active = 0;
384                 }
385         }
386         return 0;
387 }
388
389
390
391 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
392 {
393         pvc_device *pvc = dev_to_pvc(dev);
394         fr_proto_pvc_info info;
395
396         if (ifr->ifr_settings.type == IF_GET_PROTO) {
397                 if (dev->type == ARPHRD_ETHER)
398                         ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC;
399                 else
400                         ifr->ifr_settings.type = IF_PROTO_FR_PVC;
401
402                 if (ifr->ifr_settings.size < sizeof(info)) {
403                         /* data size wanted */
404                         ifr->ifr_settings.size = sizeof(info);
405                         return -ENOBUFS;
406                 }
407
408                 info.dlci = pvc->dlci;
409                 memcpy(info.master, pvc->frad->name, IFNAMSIZ);
410                 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info,
411                                  &info, sizeof(info)))
412                         return -EFAULT;
413                 return 0;
414         }
415
416         return -EINVAL;
417 }
418
419
420 static inline struct net_device_stats *pvc_get_stats(struct net_device *dev)
421 {
422         return &dev_to_desc(dev)->stats;
423 }
424
425
426
427 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
428 {
429         pvc_device *pvc = dev_to_pvc(dev);
430         struct net_device_stats *stats = pvc_get_stats(dev);
431
432         if (pvc->state.active) {
433                 if (dev->type == ARPHRD_ETHER) {
434                         int pad = ETH_ZLEN - skb->len;
435                         if (pad > 0) { /* Pad the frame with zeros */
436                                 int len = skb->len;
437                                 if (skb_tailroom(skb) < pad)
438                                         if (pskb_expand_head(skb, 0, pad,
439                                                              GFP_ATOMIC)) {
440                                                 stats->tx_dropped++;
441                                                 dev_kfree_skb(skb);
442                                                 return 0;
443                                         }
444                                 skb_put(skb, pad);
445                                 memset(skb->data + len, 0, pad);
446                         }
447                         skb->protocol = __constant_htons(ETH_P_802_3);
448                 }
449                 if (!fr_hard_header(&skb, pvc->dlci)) {
450                         stats->tx_bytes += skb->len;
451                         stats->tx_packets++;
452                         if (pvc->state.fecn) /* TX Congestion counter */
453                                 stats->tx_compressed++;
454                         skb->dev = pvc->frad;
455                         dev_queue_xmit(skb);
456                         return 0;
457                 }
458         }
459
460         stats->tx_dropped++;
461         dev_kfree_skb(skb);
462         return 0;
463 }
464
465
466
467 static int pvc_change_mtu(struct net_device *dev, int new_mtu)
468 {
469         if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU))
470                 return -EINVAL;
471         dev->mtu = new_mtu;
472         return 0;
473 }
474
475
476
477 static inline void fr_log_dlci_active(pvc_device *pvc)
478 {
479         printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n",
480                pvc->frad->name,
481                pvc->dlci,
482                pvc->main ? pvc->main->name : "",
483                pvc->main && pvc->ether ? " " : "",
484                pvc->ether ? pvc->ether->name : "",
485                pvc->state.new ? " new" : "",
486                !pvc->state.exist ? "deleted" :
487                pvc->state.active ? "active" : "inactive");
488 }
489
490
491
492 static inline u8 fr_lmi_nextseq(u8 x)
493 {
494         x++;
495         return x ? x : 1;
496 }
497
498
499 static void fr_lmi_send(struct net_device *dev, int fullrep)
500 {
501         hdlc_device *hdlc = dev_to_hdlc(dev);
502         struct sk_buff *skb;
503         pvc_device *pvc = state(hdlc)->first_pvc;
504         int lmi = state(hdlc)->settings.lmi;
505         int dce = state(hdlc)->settings.dce;
506         int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH;
507         int stat_len = (lmi == LMI_CISCO) ? 6 : 3;
508         u8 *data;
509         int i = 0;
510
511         if (dce && fullrep) {
512                 len += state(hdlc)->dce_pvc_count * (2 + stat_len);
513                 if (len > HDLC_MAX_MRU) {
514                         printk(KERN_WARNING "%s: Too many PVCs while sending "
515                                "LMI full report\n", dev->name);
516                         return;
517                 }
518         }
519
520         skb = dev_alloc_skb(len);
521         if (!skb) {
522                 printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n",
523                        dev->name);
524                 return;
525         }
526         memset(skb->data, 0, len);
527         skb_reserve(skb, 4);
528         if (lmi == LMI_CISCO) {
529                 skb->protocol = __constant_htons(NLPID_CISCO_LMI);
530                 fr_hard_header(&skb, LMI_CISCO_DLCI);
531         } else {
532                 skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI);
533                 fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI);
534         }
535         data = skb_tail_pointer(skb);
536         data[i++] = LMI_CALLREF;
537         data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY;
538         if (lmi == LMI_ANSI)
539                 data[i++] = LMI_ANSI_LOCKSHIFT;
540         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
541                 LMI_ANSI_CISCO_REPTYPE;
542         data[i++] = LMI_REPT_LEN;
543         data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY;
544         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE;
545         data[i++] = LMI_INTEG_LEN;
546         data[i++] = state(hdlc)->txseq =
547                 fr_lmi_nextseq(state(hdlc)->txseq);
548         data[i++] = state(hdlc)->rxseq;
549
550         if (dce && fullrep) {
551                 while (pvc) {
552                         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
553                                 LMI_ANSI_CISCO_PVCSTAT;
554                         data[i++] = stat_len;
555
556                         /* LMI start/restart */
557                         if (state(hdlc)->reliable && !pvc->state.exist) {
558                                 pvc->state.exist = pvc->state.new = 1;
559                                 fr_log_dlci_active(pvc);
560                         }
561
562                         /* ifconfig PVC up */
563                         if (pvc->open_count && !pvc->state.active &&
564                             pvc->state.exist && !pvc->state.new) {
565                                 pvc_carrier(1, pvc);
566                                 pvc->state.active = 1;
567                                 fr_log_dlci_active(pvc);
568                         }
569
570                         if (lmi == LMI_CISCO) {
571                                 data[i] = pvc->dlci >> 8;
572                                 data[i + 1] = pvc->dlci & 0xFF;
573                         } else {
574                                 data[i] = (pvc->dlci >> 4) & 0x3F;
575                                 data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80;
576                                 data[i + 2] = 0x80;
577                         }
578
579                         if (pvc->state.new)
580                                 data[i + 2] |= 0x08;
581                         else if (pvc->state.active)
582                                 data[i + 2] |= 0x02;
583
584                         i += stat_len;
585                         pvc = pvc->next;
586                 }
587         }
588
589         skb_put(skb, i);
590         skb->priority = TC_PRIO_CONTROL;
591         skb->dev = dev;
592         skb_reset_network_header(skb);
593
594         dev_queue_xmit(skb);
595 }
596
597
598
599 static void fr_set_link_state(int reliable, struct net_device *dev)
600 {
601         hdlc_device *hdlc = dev_to_hdlc(dev);
602         pvc_device *pvc = state(hdlc)->first_pvc;
603
604         state(hdlc)->reliable = reliable;
605         if (reliable) {
606                 netif_dormant_off(dev);
607                 state(hdlc)->n391cnt = 0; /* Request full status */
608                 state(hdlc)->dce_changed = 1;
609
610                 if (state(hdlc)->settings.lmi == LMI_NONE) {
611                         while (pvc) {   /* Activate all PVCs */
612                                 pvc_carrier(1, pvc);
613                                 pvc->state.exist = pvc->state.active = 1;
614                                 pvc->state.new = 0;
615                                 pvc = pvc->next;
616                         }
617                 }
618         } else {
619                 netif_dormant_on(dev);
620                 while (pvc) {           /* Deactivate all PVCs */
621                         pvc_carrier(0, pvc);
622                         pvc->state.exist = pvc->state.active = 0;
623                         pvc->state.new = 0;
624                         if (!state(hdlc)->settings.dce)
625                                 pvc->state.bandwidth = 0;
626                         pvc = pvc->next;
627                 }
628         }
629 }
630
631
632 static void fr_timer(unsigned long arg)
633 {
634         struct net_device *dev = (struct net_device *)arg;
635         hdlc_device *hdlc = dev_to_hdlc(dev);
636         int i, cnt = 0, reliable;
637         u32 list;
638
639         if (state(hdlc)->settings.dce) {
640                 reliable = state(hdlc)->request &&
641                         time_before(jiffies, state(hdlc)->last_poll +
642                                     state(hdlc)->settings.t392 * HZ);
643                 state(hdlc)->request = 0;
644         } else {
645                 state(hdlc)->last_errors <<= 1; /* Shift the list */
646                 if (state(hdlc)->request) {
647                         if (state(hdlc)->reliable)
648                                 printk(KERN_INFO "%s: No LMI status reply "
649                                        "received\n", dev->name);
650                         state(hdlc)->last_errors |= 1;
651                 }
652
653                 list = state(hdlc)->last_errors;
654                 for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1)
655                         cnt += (list & 1);      /* errors count */
656
657                 reliable = (cnt < state(hdlc)->settings.n392);
658         }
659
660         if (state(hdlc)->reliable != reliable) {
661                 printk(KERN_INFO "%s: Link %sreliable\n", dev->name,
662                        reliable ? "" : "un");
663                 fr_set_link_state(reliable, dev);
664         }
665
666         if (state(hdlc)->settings.dce)
667                 state(hdlc)->timer.expires = jiffies +
668                         state(hdlc)->settings.t392 * HZ;
669         else {
670                 if (state(hdlc)->n391cnt)
671                         state(hdlc)->n391cnt--;
672
673                 fr_lmi_send(dev, state(hdlc)->n391cnt == 0);
674
675                 state(hdlc)->last_poll = jiffies;
676                 state(hdlc)->request = 1;
677                 state(hdlc)->timer.expires = jiffies +
678                         state(hdlc)->settings.t391 * HZ;
679         }
680
681         state(hdlc)->timer.function = fr_timer;
682         state(hdlc)->timer.data = arg;
683         add_timer(&state(hdlc)->timer);
684 }
685
686
687 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb)
688 {
689         hdlc_device *hdlc = dev_to_hdlc(dev);
690         pvc_device *pvc;
691         u8 rxseq, txseq;
692         int lmi = state(hdlc)->settings.lmi;
693         int dce = state(hdlc)->settings.dce;
694         int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i;
695
696         if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH :
697                         LMI_CCITT_CISCO_LENGTH)) {
698                 printk(KERN_INFO "%s: Short LMI frame\n", dev->name);
699                 return 1;
700         }
701
702         if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI :
703                              NLPID_CCITT_ANSI_LMI)) {
704                 printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n",
705                        dev->name);
706                 return 1;
707         }
708
709         if (skb->data[4] != LMI_CALLREF) {
710                 printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n",
711                        dev->name, skb->data[4]);
712                 return 1;
713         }
714
715         if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) {
716                 printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n",
717                        dev->name, skb->data[5]);
718                 return 1;
719         }
720
721         if (lmi == LMI_ANSI) {
722                 if (skb->data[6] != LMI_ANSI_LOCKSHIFT) {
723                         printk(KERN_INFO "%s: Not ANSI locking shift in LMI"
724                                " message (0x%02X)\n", dev->name, skb->data[6]);
725                         return 1;
726                 }
727                 i = 7;
728         } else
729                 i = 6;
730
731         if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
732                              LMI_ANSI_CISCO_REPTYPE)) {
733                 printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n",
734                        dev->name, skb->data[i]);
735                 return 1;
736         }
737
738         if (skb->data[++i] != LMI_REPT_LEN) {
739                 printk(KERN_INFO "%s: Invalid LMI Report type IE length"
740                        " (%u)\n", dev->name, skb->data[i]);
741                 return 1;
742         }
743
744         reptype = skb->data[++i];
745         if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) {
746                 printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n",
747                        dev->name, reptype);
748                 return 1;
749         }
750
751         if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE :
752                                LMI_ANSI_CISCO_ALIVE)) {
753                 printk(KERN_INFO "%s: Not an LMI Link integrity verification"
754                        " IE (0x%02X)\n", dev->name, skb->data[i]);
755                 return 1;
756         }
757
758         if (skb->data[++i] != LMI_INTEG_LEN) {
759                 printk(KERN_INFO "%s: Invalid LMI Link integrity verification"
760                        " IE length (%u)\n", dev->name, skb->data[i]);
761                 return 1;
762         }
763         i++;
764
765         state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */
766         rxseq = skb->data[i++]; /* Should confirm our sequence */
767
768         txseq = state(hdlc)->txseq;
769
770         if (dce)
771                 state(hdlc)->last_poll = jiffies;
772
773         error = 0;
774         if (!state(hdlc)->reliable)
775                 error = 1;
776
777         if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */
778                 state(hdlc)->n391cnt = 0;
779                 error = 1;
780         }
781
782         if (dce) {
783                 if (state(hdlc)->fullrep_sent && !error) {
784 /* Stop sending full report - the last one has been confirmed by DTE */
785                         state(hdlc)->fullrep_sent = 0;
786                         pvc = state(hdlc)->first_pvc;
787                         while (pvc) {
788                                 if (pvc->state.new) {
789                                         pvc->state.new = 0;
790
791 /* Tell DTE that new PVC is now active */
792                                         state(hdlc)->dce_changed = 1;
793                                 }
794                                 pvc = pvc->next;
795                         }
796                 }
797
798                 if (state(hdlc)->dce_changed) {
799                         reptype = LMI_FULLREP;
800                         state(hdlc)->fullrep_sent = 1;
801                         state(hdlc)->dce_changed = 0;
802                 }
803
804                 state(hdlc)->request = 1; /* got request */
805                 fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0);
806                 return 0;
807         }
808
809         /* DTE */
810
811         state(hdlc)->request = 0; /* got response, no request pending */
812
813         if (error)
814                 return 0;
815
816         if (reptype != LMI_FULLREP)
817                 return 0;
818
819         pvc = state(hdlc)->first_pvc;
820
821         while (pvc) {
822                 pvc->state.deleted = 1;
823                 pvc = pvc->next;
824         }
825
826         no_ram = 0;
827         while (skb->len >= i + 2 + stat_len) {
828                 u16 dlci;
829                 u32 bw;
830                 unsigned int active, new;
831
832                 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
833                                        LMI_ANSI_CISCO_PVCSTAT)) {
834                         printk(KERN_INFO "%s: Not an LMI PVC status IE"
835                                " (0x%02X)\n", dev->name, skb->data[i]);
836                         return 1;
837                 }
838
839                 if (skb->data[++i] != stat_len) {
840                         printk(KERN_INFO "%s: Invalid LMI PVC status IE length"
841                                " (%u)\n", dev->name, skb->data[i]);
842                         return 1;
843                 }
844                 i++;
845
846                 new = !! (skb->data[i + 2] & 0x08);
847                 active = !! (skb->data[i + 2] & 0x02);
848                 if (lmi == LMI_CISCO) {
849                         dlci = (skb->data[i] << 8) | skb->data[i + 1];
850                         bw = (skb->data[i + 3] << 16) |
851                                 (skb->data[i + 4] << 8) |
852                                 (skb->data[i + 5]);
853                 } else {
854                         dlci = ((skb->data[i] & 0x3F) << 4) |
855                                 ((skb->data[i + 1] & 0x78) >> 3);
856                         bw = 0;
857                 }
858
859                 pvc = add_pvc(dev, dlci);
860
861                 if (!pvc && !no_ram) {
862                         printk(KERN_WARNING
863                                "%s: Memory squeeze on fr_lmi_recv()\n",
864                                dev->name);
865                         no_ram = 1;
866                 }
867
868                 if (pvc) {
869                         pvc->state.exist = 1;
870                         pvc->state.deleted = 0;
871                         if (active != pvc->state.active ||
872                             new != pvc->state.new ||
873                             bw != pvc->state.bandwidth ||
874                             !pvc->state.exist) {
875                                 pvc->state.new = new;
876                                 pvc->state.active = active;
877                                 pvc->state.bandwidth = bw;
878                                 pvc_carrier(active, pvc);
879                                 fr_log_dlci_active(pvc);
880                         }
881                 }
882
883                 i += stat_len;
884         }
885
886         pvc = state(hdlc)->first_pvc;
887
888         while (pvc) {
889                 if (pvc->state.deleted && pvc->state.exist) {
890                         pvc_carrier(0, pvc);
891                         pvc->state.active = pvc->state.new = 0;
892                         pvc->state.exist = 0;
893                         pvc->state.bandwidth = 0;
894                         fr_log_dlci_active(pvc);
895                 }
896                 pvc = pvc->next;
897         }
898
899         /* Next full report after N391 polls */
900         state(hdlc)->n391cnt = state(hdlc)->settings.n391;
901
902         return 0;
903 }
904
905
906 static int fr_rx(struct sk_buff *skb)
907 {
908         struct net_device *frad = skb->dev;
909         hdlc_device *hdlc = dev_to_hdlc(frad);
910         fr_hdr *fh = (fr_hdr*)skb->data;
911         u8 *data = skb->data;
912         u16 dlci;
913         pvc_device *pvc;
914         struct net_device *dev = NULL;
915
916         if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI)
917                 goto rx_error;
918
919         dlci = q922_to_dlci(skb->data);
920
921         if ((dlci == LMI_CCITT_ANSI_DLCI &&
922              (state(hdlc)->settings.lmi == LMI_ANSI ||
923               state(hdlc)->settings.lmi == LMI_CCITT)) ||
924             (dlci == LMI_CISCO_DLCI &&
925              state(hdlc)->settings.lmi == LMI_CISCO)) {
926                 if (fr_lmi_recv(frad, skb))
927                         goto rx_error;
928                 dev_kfree_skb_any(skb);
929                 return NET_RX_SUCCESS;
930         }
931
932         pvc = find_pvc(hdlc, dlci);
933         if (!pvc) {
934 #ifdef DEBUG_PKT
935                 printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n",
936                        frad->name, dlci);
937 #endif
938                 dev_kfree_skb_any(skb);
939                 return NET_RX_DROP;
940         }
941
942         if (pvc->state.fecn != fh->fecn) {
943 #ifdef DEBUG_ECN
944                 printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name,
945                        dlci, fh->fecn ? "N" : "FF");
946 #endif
947                 pvc->state.fecn ^= 1;
948         }
949
950         if (pvc->state.becn != fh->becn) {
951 #ifdef DEBUG_ECN
952                 printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name,
953                        dlci, fh->becn ? "N" : "FF");
954 #endif
955                 pvc->state.becn ^= 1;
956         }
957
958
959         if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
960                 dev_to_desc(frad)->stats.rx_dropped++;
961                 return NET_RX_DROP;
962         }
963
964         if (data[3] == NLPID_IP) {
965                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
966                 dev = pvc->main;
967                 skb->protocol = htons(ETH_P_IP);
968
969         } else if (data[3] == NLPID_IPV6) {
970                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
971                 dev = pvc->main;
972                 skb->protocol = htons(ETH_P_IPV6);
973
974         } else if (skb->len > 10 && data[3] == FR_PAD &&
975                    data[4] == NLPID_SNAP && data[5] == FR_PAD) {
976                 u16 oui = ntohs(*(__be16*)(data + 6));
977                 u16 pid = ntohs(*(__be16*)(data + 8));
978                 skb_pull(skb, 10);
979
980                 switch ((((u32)oui) << 16) | pid) {
981                 case ETH_P_ARP: /* routed frame with SNAP */
982                 case ETH_P_IPX:
983                 case ETH_P_IP:  /* a long variant */
984                 case ETH_P_IPV6:
985                         dev = pvc->main;
986                         skb->protocol = htons(pid);
987                         break;
988
989                 case 0x80C20007: /* bridged Ethernet frame */
990                         if ((dev = pvc->ether) != NULL)
991                                 skb->protocol = eth_type_trans(skb, dev);
992                         break;
993
994                 default:
995                         printk(KERN_INFO "%s: Unsupported protocol, OUI=%x "
996                                "PID=%x\n", frad->name, oui, pid);
997                         dev_kfree_skb_any(skb);
998                         return NET_RX_DROP;
999                 }
1000         } else {
1001                 printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x "
1002                        "length = %i\n", frad->name, data[3], skb->len);
1003                 dev_kfree_skb_any(skb);
1004                 return NET_RX_DROP;
1005         }
1006
1007         if (dev) {
1008                 struct net_device_stats *stats = pvc_get_stats(dev);
1009                 stats->rx_packets++; /* PVC traffic */
1010                 stats->rx_bytes += skb->len;
1011                 if (pvc->state.becn)
1012                         stats->rx_compressed++;
1013                 netif_rx(skb);
1014                 return NET_RX_SUCCESS;
1015         } else {
1016                 dev_kfree_skb_any(skb);
1017                 return NET_RX_DROP;
1018         }
1019
1020  rx_error:
1021         dev_to_desc(frad)->stats.rx_errors++; /* Mark error */
1022         dev_kfree_skb_any(skb);
1023         return NET_RX_DROP;
1024 }
1025
1026
1027
1028 static void fr_start(struct net_device *dev)
1029 {
1030         hdlc_device *hdlc = dev_to_hdlc(dev);
1031 #ifdef DEBUG_LINK
1032         printk(KERN_DEBUG "fr_start\n");
1033 #endif
1034         if (state(hdlc)->settings.lmi != LMI_NONE) {
1035                 state(hdlc)->reliable = 0;
1036                 state(hdlc)->dce_changed = 1;
1037                 state(hdlc)->request = 0;
1038                 state(hdlc)->fullrep_sent = 0;
1039                 state(hdlc)->last_errors = 0xFFFFFFFF;
1040                 state(hdlc)->n391cnt = 0;
1041                 state(hdlc)->txseq = state(hdlc)->rxseq = 0;
1042
1043                 init_timer(&state(hdlc)->timer);
1044                 /* First poll after 1 s */
1045                 state(hdlc)->timer.expires = jiffies + HZ;
1046                 state(hdlc)->timer.function = fr_timer;
1047                 state(hdlc)->timer.data = (unsigned long)dev;
1048                 add_timer(&state(hdlc)->timer);
1049         } else
1050                 fr_set_link_state(1, dev);
1051 }
1052
1053
1054 static void fr_stop(struct net_device *dev)
1055 {
1056         hdlc_device *hdlc = dev_to_hdlc(dev);
1057 #ifdef DEBUG_LINK
1058         printk(KERN_DEBUG "fr_stop\n");
1059 #endif
1060         if (state(hdlc)->settings.lmi != LMI_NONE)
1061                 del_timer_sync(&state(hdlc)->timer);
1062         fr_set_link_state(0, dev);
1063 }
1064
1065
1066 static void fr_close(struct net_device *dev)
1067 {
1068         hdlc_device *hdlc = dev_to_hdlc(dev);
1069         pvc_device *pvc = state(hdlc)->first_pvc;
1070
1071         while (pvc) {           /* Shutdown all PVCs for this FRAD */
1072                 if (pvc->main)
1073                         dev_close(pvc->main);
1074                 if (pvc->ether)
1075                         dev_close(pvc->ether);
1076                 pvc = pvc->next;
1077         }
1078 }
1079
1080
1081 static void pvc_setup(struct net_device *dev)
1082 {
1083         dev->type = ARPHRD_DLCI;
1084         dev->flags = IFF_POINTOPOINT;
1085         dev->hard_header_len = 10;
1086         dev->addr_len = 2;
1087 }
1088
1089 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
1090 {
1091         hdlc_device *hdlc = dev_to_hdlc(frad);
1092         pvc_device *pvc = NULL;
1093         struct net_device *dev;
1094         int result, used;
1095         char * prefix = "pvc%d";
1096
1097         if (type == ARPHRD_ETHER)
1098                 prefix = "pvceth%d";
1099
1100         if ((pvc = add_pvc(frad, dlci)) == NULL) {
1101                 printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n",
1102                        frad->name);
1103                 return -ENOBUFS;
1104         }
1105
1106         if (*get_dev_p(pvc, type))
1107                 return -EEXIST;
1108
1109         used = pvc_is_used(pvc);
1110
1111         if (type == ARPHRD_ETHER)
1112                 dev = alloc_netdev(sizeof(struct net_device_stats),
1113                                    "pvceth%d", ether_setup);
1114         else
1115                 dev = alloc_netdev(sizeof(struct net_device_stats),
1116                                    "pvc%d", pvc_setup);
1117
1118         if (!dev) {
1119                 printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n",
1120                        frad->name);
1121                 delete_unused_pvcs(hdlc);
1122                 return -ENOBUFS;
1123         }
1124
1125         if (type == ARPHRD_ETHER) {
1126                 memcpy(dev->dev_addr, "\x00\x01", 2);
1127                 get_random_bytes(dev->dev_addr + 2, ETH_ALEN - 2);
1128         } else {
1129                 *(__be16*)dev->dev_addr = htons(dlci);
1130                 dlci_to_q922(dev->broadcast, dlci);
1131         }
1132         dev->hard_start_xmit = pvc_xmit;
1133         dev->get_stats = pvc_get_stats;
1134         dev->open = pvc_open;
1135         dev->stop = pvc_close;
1136         dev->do_ioctl = pvc_ioctl;
1137         dev->change_mtu = pvc_change_mtu;
1138         dev->mtu = HDLC_MAX_MTU;
1139         dev->tx_queue_len = 0;
1140         dev->priv = pvc;
1141
1142         result = dev_alloc_name(dev, dev->name);
1143         if (result < 0) {
1144                 free_netdev(dev);
1145                 delete_unused_pvcs(hdlc);
1146                 return result;
1147         }
1148
1149         if (register_netdevice(dev) != 0) {
1150                 free_netdev(dev);
1151                 delete_unused_pvcs(hdlc);
1152                 return -EIO;
1153         }
1154
1155         dev->destructor = free_netdev;
1156         *get_dev_p(pvc, type) = dev;
1157         if (!used) {
1158                 state(hdlc)->dce_changed = 1;
1159                 state(hdlc)->dce_pvc_count++;
1160         }
1161         return 0;
1162 }
1163
1164
1165
1166 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type)
1167 {
1168         pvc_device *pvc;
1169         struct net_device *dev;
1170
1171         if ((pvc = find_pvc(hdlc, dlci)) == NULL)
1172                 return -ENOENT;
1173
1174         if ((dev = *get_dev_p(pvc, type)) == NULL)
1175                 return -ENOENT;
1176
1177         if (dev->flags & IFF_UP)
1178                 return -EBUSY;          /* PVC in use */
1179
1180         unregister_netdevice(dev); /* the destructor will free_netdev(dev) */
1181         *get_dev_p(pvc, type) = NULL;
1182
1183         if (!pvc_is_used(pvc)) {
1184                 state(hdlc)->dce_pvc_count--;
1185                 state(hdlc)->dce_changed = 1;
1186         }
1187         delete_unused_pvcs(hdlc);
1188         return 0;
1189 }
1190
1191
1192
1193 static void fr_destroy(struct net_device *frad)
1194 {
1195         hdlc_device *hdlc = dev_to_hdlc(frad);
1196         pvc_device *pvc = state(hdlc)->first_pvc;
1197         state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */
1198         state(hdlc)->dce_pvc_count = 0;
1199         state(hdlc)->dce_changed = 1;
1200
1201         while (pvc) {
1202                 pvc_device *next = pvc->next;
1203                 /* destructors will free_netdev() main and ether */
1204                 if (pvc->main)
1205                         unregister_netdevice(pvc->main);
1206
1207                 if (pvc->ether)
1208                         unregister_netdevice(pvc->ether);
1209
1210                 kfree(pvc);
1211                 pvc = next;
1212         }
1213 }
1214
1215
1216 static struct hdlc_proto proto = {
1217         .close          = fr_close,
1218         .start          = fr_start,
1219         .stop           = fr_stop,
1220         .detach         = fr_destroy,
1221         .ioctl          = fr_ioctl,
1222         .module         = THIS_MODULE,
1223 };
1224
1225
1226 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr)
1227 {
1228         fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr;
1229         const size_t size = sizeof(fr_proto);
1230         fr_proto new_settings;
1231         hdlc_device *hdlc = dev_to_hdlc(dev);
1232         fr_proto_pvc pvc;
1233         int result;
1234
1235         switch (ifr->ifr_settings.type) {
1236         case IF_GET_PROTO:
1237                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1238                         return -EINVAL;
1239                 ifr->ifr_settings.type = IF_PROTO_FR;
1240                 if (ifr->ifr_settings.size < size) {
1241                         ifr->ifr_settings.size = size; /* data size wanted */
1242                         return -ENOBUFS;
1243                 }
1244                 if (copy_to_user(fr_s, &state(hdlc)->settings, size))
1245                         return -EFAULT;
1246                 return 0;
1247
1248         case IF_PROTO_FR:
1249                 if(!capable(CAP_NET_ADMIN))
1250                         return -EPERM;
1251
1252                 if(dev->flags & IFF_UP)
1253                         return -EBUSY;
1254
1255                 if (copy_from_user(&new_settings, fr_s, size))
1256                         return -EFAULT;
1257
1258                 if (new_settings.lmi == LMI_DEFAULT)
1259                         new_settings.lmi = LMI_ANSI;
1260
1261                 if ((new_settings.lmi != LMI_NONE &&
1262                      new_settings.lmi != LMI_ANSI &&
1263                      new_settings.lmi != LMI_CCITT &&
1264                      new_settings.lmi != LMI_CISCO) ||
1265                     new_settings.t391 < 1 ||
1266                     new_settings.t392 < 2 ||
1267                     new_settings.n391 < 1 ||
1268                     new_settings.n392 < 1 ||
1269                     new_settings.n393 < new_settings.n392 ||
1270                     new_settings.n393 > 32 ||
1271                     (new_settings.dce != 0 &&
1272                      new_settings.dce != 1))
1273                         return -EINVAL;
1274
1275                 result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
1276                 if (result)
1277                         return result;
1278
1279                 if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */
1280                         result = attach_hdlc_protocol(dev, &proto, fr_rx,
1281                                                       sizeof(struct frad_state));
1282                         if (result)
1283                                 return result;
1284                         state(hdlc)->first_pvc = NULL;
1285                         state(hdlc)->dce_pvc_count = 0;
1286                 }
1287                 memcpy(&state(hdlc)->settings, &new_settings, size);
1288
1289                 dev->hard_start_xmit = hdlc->xmit;
1290                 dev->type = ARPHRD_FRAD;
1291                 return 0;
1292
1293         case IF_PROTO_FR_ADD_PVC:
1294         case IF_PROTO_FR_DEL_PVC:
1295         case IF_PROTO_FR_ADD_ETH_PVC:
1296         case IF_PROTO_FR_DEL_ETH_PVC:
1297                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1298                         return -EINVAL;
1299
1300                 if(!capable(CAP_NET_ADMIN))
1301                         return -EPERM;
1302
1303                 if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc,
1304                                    sizeof(fr_proto_pvc)))
1305                         return -EFAULT;
1306
1307                 if (pvc.dlci <= 0 || pvc.dlci >= 1024)
1308                         return -EINVAL; /* Only 10 bits, DLCI 0 reserved */
1309
1310                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC ||
1311                     ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC)
1312                         result = ARPHRD_ETHER; /* bridged Ethernet device */
1313                 else
1314                         result = ARPHRD_DLCI;
1315
1316                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC ||
1317                     ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC)
1318                         return fr_add_pvc(dev, pvc.dlci, result);
1319                 else
1320                         return fr_del_pvc(hdlc, pvc.dlci, result);
1321         }
1322
1323         return -EINVAL;
1324 }
1325
1326
1327 static int __init mod_init(void)
1328 {
1329         register_hdlc_protocol(&proto);
1330         return 0;
1331 }
1332
1333
1334 static void __exit mod_exit(void)
1335 {
1336         unregister_hdlc_protocol(&proto);
1337 }
1338
1339
1340 module_init(mod_init);
1341 module_exit(mod_exit);
1342
1343 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
1344 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC");
1345 MODULE_LICENSE("GPL v2");