]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/ipw2200.c
c9b306a8116cd8e59d901782f9d5b20be17ede32
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35 #define IPW2200_VERSION "1.0.5"
36 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
38 #define DRV_VERSION     IPW2200_VERSION
39
40 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
41
42 MODULE_DESCRIPTION(DRV_DESCRIPTION);
43 MODULE_VERSION(DRV_VERSION);
44 MODULE_AUTHOR(DRV_COPYRIGHT);
45 MODULE_LICENSE("GPL");
46
47 static int cmdlog = 0;
48 static int debug = 0;
49 static int channel = 0;
50 static int mode = 0;
51
52 static u32 ipw_debug_level;
53 static int associate = 1;
54 static int auto_create = 1;
55 static int led = 0;
56 static int disable = 0;
57 static int hwcrypto = 1;
58 static const char ipw_modes[] = {
59         'a', 'b', 'g', '?'
60 };
61
62 #ifdef CONFIG_IPW_QOS
63 static int qos_enable = 0;
64 static int qos_burst_enable = 0;
65 static int qos_no_ack_mask = 0;
66 static int burst_duration_CCK = 0;
67 static int burst_duration_OFDM = 0;
68
69 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
70         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
71          QOS_TX3_CW_MIN_OFDM},
72         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
73          QOS_TX3_CW_MAX_OFDM},
74         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
75         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
76         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
77          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
78 };
79
80 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
81         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
82          QOS_TX3_CW_MIN_CCK},
83         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
84          QOS_TX3_CW_MAX_CCK},
85         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
86         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
87         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
88          QOS_TX3_TXOP_LIMIT_CCK}
89 };
90
91 static struct ieee80211_qos_parameters def_parameters_OFDM = {
92         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
93          DEF_TX3_CW_MIN_OFDM},
94         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
95          DEF_TX3_CW_MAX_OFDM},
96         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
97         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
98         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
99          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
100 };
101
102 static struct ieee80211_qos_parameters def_parameters_CCK = {
103         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
104          DEF_TX3_CW_MIN_CCK},
105         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
106          DEF_TX3_CW_MAX_CCK},
107         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
108         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
109         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
110          DEF_TX3_TXOP_LIMIT_CCK}
111 };
112
113 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
114
115 static int from_priority_to_tx_queue[] = {
116         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
117         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
118 };
119
120 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
121
122 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
123                                        *qos_param);
124 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
125                                      *qos_param);
126 #endif                          /* CONFIG_IPW_QOS */
127
128 static void ipw_remove_current_network(struct ipw_priv *priv);
129 static void ipw_rx(struct ipw_priv *priv);
130 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
131                                 struct clx2_tx_queue *txq, int qindex);
132 static int ipw_queue_reset(struct ipw_priv *priv);
133
134 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
135                              int len, int sync);
136
137 static void ipw_tx_queue_free(struct ipw_priv *);
138
139 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
140 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
141 static void ipw_rx_queue_replenish(void *);
142 static int ipw_up(struct ipw_priv *);
143 static void ipw_bg_up(void *);
144 static void ipw_down(struct ipw_priv *);
145 static void ipw_bg_down(void *);
146 static int ipw_config(struct ipw_priv *);
147 static int init_supported_rates(struct ipw_priv *priv,
148                                 struct ipw_supported_rates *prates);
149 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
150 static void ipw_send_wep_keys(struct ipw_priv *, int);
151
152 static int ipw_is_valid_channel(struct ieee80211_device *, u8);
153 static int ipw_channel_to_index(struct ieee80211_device *, u8);
154 static u8 ipw_freq_to_channel(struct ieee80211_device *, u32);
155 static int ipw_set_geo(struct ieee80211_device *, const struct ieee80211_geo *);
156 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *);
157
158 static int snprint_line(char *buf, size_t count,
159                         const u8 * data, u32 len, u32 ofs)
160 {
161         int out, i, j, l;
162         char c;
163
164         out = snprintf(buf, count, "%08X", ofs);
165
166         for (l = 0, i = 0; i < 2; i++) {
167                 out += snprintf(buf + out, count - out, " ");
168                 for (j = 0; j < 8 && l < len; j++, l++)
169                         out += snprintf(buf + out, count - out, "%02X ",
170                                         data[(i * 8 + j)]);
171                 for (; j < 8; j++)
172                         out += snprintf(buf + out, count - out, "   ");
173         }
174
175         out += snprintf(buf + out, count - out, " ");
176         for (l = 0, i = 0; i < 2; i++) {
177                 out += snprintf(buf + out, count - out, " ");
178                 for (j = 0; j < 8 && l < len; j++, l++) {
179                         c = data[(i * 8 + j)];
180                         if (!isascii(c) || !isprint(c))
181                                 c = '.';
182
183                         out += snprintf(buf + out, count - out, "%c", c);
184                 }
185
186                 for (; j < 8; j++)
187                         out += snprintf(buf + out, count - out, " ");
188         }
189
190         return out;
191 }
192
193 static void printk_buf(int level, const u8 * data, u32 len)
194 {
195         char line[81];
196         u32 ofs = 0;
197         if (!(ipw_debug_level & level))
198                 return;
199
200         while (len) {
201                 snprint_line(line, sizeof(line), &data[ofs],
202                              min(len, 16U), ofs);
203                 printk(KERN_DEBUG "%s\n", line);
204                 ofs += 16;
205                 len -= min(len, 16U);
206         }
207 }
208
209 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
210 {
211         size_t out = size;
212         u32 ofs = 0;
213         int total = 0;
214
215         while (size && len) {
216                 out = snprint_line(output, size, &data[ofs],
217                                    min_t(size_t, len, 16U), ofs);
218
219                 ofs += 16;
220                 output += out;
221                 size -= out;
222                 len -= min_t(size_t, len, 16U);
223                 total += out;
224         }
225         return total;
226 }
227
228 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
229 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
230
231 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
232 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
233
234 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
235 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
236 {
237         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
238                      __LINE__, (u32) (b), (u32) (c));
239         _ipw_write_reg8(a, b, c);
240 }
241
242 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
243 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
244 {
245         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
246                      __LINE__, (u32) (b), (u32) (c));
247         _ipw_write_reg16(a, b, c);
248 }
249
250 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
251 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
252 {
253         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
254                      __LINE__, (u32) (b), (u32) (c));
255         _ipw_write_reg32(a, b, c);
256 }
257
258 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
259 #define ipw_write8(ipw, ofs, val) \
260  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
261  _ipw_write8(ipw, ofs, val)
262
263 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
264 #define ipw_write16(ipw, ofs, val) \
265  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
266  _ipw_write16(ipw, ofs, val)
267
268 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
269 #define ipw_write32(ipw, ofs, val) \
270  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
271  _ipw_write32(ipw, ofs, val)
272
273 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
274 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
275 {
276         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
277         return _ipw_read8(ipw, ofs);
278 }
279
280 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
281
282 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
283 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
284 {
285         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
286         return _ipw_read16(ipw, ofs);
287 }
288
289 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
290
291 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
292 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
293 {
294         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
295         return _ipw_read32(ipw, ofs);
296 }
297
298 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
299
300 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
301 static inline void __ipw_read_indirect(const char *f, int l,
302                                        struct ipw_priv *a, u32 b, u8 * c, int d)
303 {
304         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
305                      d);
306         _ipw_read_indirect(a, b, c, d);
307 }
308
309 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
310
311 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
312                                 int num);
313 #define ipw_write_indirect(a, b, c, d) \
314         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
315         _ipw_write_indirect(a, b, c, d)
316
317 /* indirect write s */
318 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
319 {
320         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
321         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
322         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
323 }
324
325 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
326 {
327         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
328         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
329         _ipw_write8(priv, IPW_INDIRECT_DATA, value);
330 }
331
332 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
333 {
334         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
335         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
336         _ipw_write16(priv, IPW_INDIRECT_DATA, value);
337 }
338
339 /* indirect read s */
340
341 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
342 {
343         u32 word;
344         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
345         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
346         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
347         return (word >> ((reg & 0x3) * 8)) & 0xff;
348 }
349
350 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
351 {
352         u32 value;
353
354         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
355
356         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
357         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
358         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
359         return value;
360 }
361
362 /* iterative/auto-increment 32 bit reads and writes */
363 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
364                                int num)
365 {
366         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
367         u32 dif_len = addr - aligned_addr;
368         u32 i;
369
370         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
371
372         if (num <= 0) {
373                 return;
374         }
375
376         /* Read the first nibble byte by byte */
377         if (unlikely(dif_len)) {
378                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
379                 /* Start reading at aligned_addr + dif_len */
380                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
381                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
382                 aligned_addr += 4;
383         }
384
385         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
386         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
387                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
388
389         /* Copy the last nibble */
390         if (unlikely(num)) {
391                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
392                 for (i = 0; num > 0; i++, num--)
393                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
394         }
395 }
396
397 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
398                                 int num)
399 {
400         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
401         u32 dif_len = addr - aligned_addr;
402         u32 i;
403
404         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
405
406         if (num <= 0) {
407                 return;
408         }
409
410         /* Write the first nibble byte by byte */
411         if (unlikely(dif_len)) {
412                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
413                 /* Start reading at aligned_addr + dif_len */
414                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
415                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
416                 aligned_addr += 4;
417         }
418
419         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
420         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
421                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
422
423         /* Copy the last nibble */
424         if (unlikely(num)) {
425                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
426                 for (i = 0; num > 0; i++, num--, buf++)
427                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
428         }
429 }
430
431 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
432                              int num)
433 {
434         memcpy_toio((priv->hw_base + addr), buf, num);
435 }
436
437 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
438 {
439         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
440 }
441
442 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
443 {
444         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
445 }
446
447 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
448 {
449         if (priv->status & STATUS_INT_ENABLED)
450                 return;
451         priv->status |= STATUS_INT_ENABLED;
452         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
453 }
454
455 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
456 {
457         if (!(priv->status & STATUS_INT_ENABLED))
458                 return;
459         priv->status &= ~STATUS_INT_ENABLED;
460         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
461 }
462
463 #ifdef CONFIG_IPW_DEBUG
464 static char *ipw_error_desc(u32 val)
465 {
466         switch (val) {
467         case IPW_FW_ERROR_OK:
468                 return "ERROR_OK";
469         case IPW_FW_ERROR_FAIL:
470                 return "ERROR_FAIL";
471         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
472                 return "MEMORY_UNDERFLOW";
473         case IPW_FW_ERROR_MEMORY_OVERFLOW:
474                 return "MEMORY_OVERFLOW";
475         case IPW_FW_ERROR_BAD_PARAM:
476                 return "BAD_PARAM";
477         case IPW_FW_ERROR_BAD_CHECKSUM:
478                 return "BAD_CHECKSUM";
479         case IPW_FW_ERROR_NMI_INTERRUPT:
480                 return "NMI_INTERRUPT";
481         case IPW_FW_ERROR_BAD_DATABASE:
482                 return "BAD_DATABASE";
483         case IPW_FW_ERROR_ALLOC_FAIL:
484                 return "ALLOC_FAIL";
485         case IPW_FW_ERROR_DMA_UNDERRUN:
486                 return "DMA_UNDERRUN";
487         case IPW_FW_ERROR_DMA_STATUS:
488                 return "DMA_STATUS";
489         case IPW_FW_ERROR_DINO_ERROR:
490                 return "DINO_ERROR";
491         case IPW_FW_ERROR_EEPROM_ERROR:
492                 return "EEPROM_ERROR";
493         case IPW_FW_ERROR_SYSASSERT:
494                 return "SYSASSERT";
495         case IPW_FW_ERROR_FATAL_ERROR:
496                 return "FATAL_ERROR";
497         default:
498                 return "UNKNOWN_ERROR";
499         }
500 }
501
502 static void ipw_dump_error_log(struct ipw_priv *priv,
503                                struct ipw_fw_error *error)
504 {
505         u32 i;
506
507         if (!error) {
508                 IPW_ERROR("Error allocating and capturing error log.  "
509                           "Nothing to dump.\n");
510                 return;
511         }
512
513         IPW_ERROR("Start IPW Error Log Dump:\n");
514         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
515                   error->status, error->config);
516
517         for (i = 0; i < error->elem_len; i++)
518                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
519                           ipw_error_desc(error->elem[i].desc),
520                           error->elem[i].time,
521                           error->elem[i].blink1,
522                           error->elem[i].blink2,
523                           error->elem[i].link1,
524                           error->elem[i].link2, error->elem[i].data);
525         for (i = 0; i < error->log_len; i++)
526                 IPW_ERROR("%i\t0x%08x\t%i\n",
527                           error->log[i].time,
528                           error->log[i].event, error->log[i].data);
529 }
530 #endif
531
532 static inline int ipw_is_init(struct ipw_priv *priv)
533 {
534         return (priv->status & STATUS_INIT) ? 1 : 0;
535 }
536
537 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
538 {
539         u32 addr, field_info, field_len, field_count, total_len;
540
541         IPW_DEBUG_ORD("ordinal = %i\n", ord);
542
543         if (!priv || !val || !len) {
544                 IPW_DEBUG_ORD("Invalid argument\n");
545                 return -EINVAL;
546         }
547
548         /* verify device ordinal tables have been initialized */
549         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
550                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
551                 return -EINVAL;
552         }
553
554         switch (IPW_ORD_TABLE_ID_MASK & ord) {
555         case IPW_ORD_TABLE_0_MASK:
556                 /*
557                  * TABLE 0: Direct access to a table of 32 bit values
558                  *
559                  * This is a very simple table with the data directly
560                  * read from the table
561                  */
562
563                 /* remove the table id from the ordinal */
564                 ord &= IPW_ORD_TABLE_VALUE_MASK;
565
566                 /* boundary check */
567                 if (ord > priv->table0_len) {
568                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
569                                       "max (%i)\n", ord, priv->table0_len);
570                         return -EINVAL;
571                 }
572
573                 /* verify we have enough room to store the value */
574                 if (*len < sizeof(u32)) {
575                         IPW_DEBUG_ORD("ordinal buffer length too small, "
576                                       "need %zd\n", sizeof(u32));
577                         return -EINVAL;
578                 }
579
580                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
581                               ord, priv->table0_addr + (ord << 2));
582
583                 *len = sizeof(u32);
584                 ord <<= 2;
585                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
586                 break;
587
588         case IPW_ORD_TABLE_1_MASK:
589                 /*
590                  * TABLE 1: Indirect access to a table of 32 bit values
591                  *
592                  * This is a fairly large table of u32 values each
593                  * representing starting addr for the data (which is
594                  * also a u32)
595                  */
596
597                 /* remove the table id from the ordinal */
598                 ord &= IPW_ORD_TABLE_VALUE_MASK;
599
600                 /* boundary check */
601                 if (ord > priv->table1_len) {
602                         IPW_DEBUG_ORD("ordinal value too long\n");
603                         return -EINVAL;
604                 }
605
606                 /* verify we have enough room to store the value */
607                 if (*len < sizeof(u32)) {
608                         IPW_DEBUG_ORD("ordinal buffer length too small, "
609                                       "need %zd\n", sizeof(u32));
610                         return -EINVAL;
611                 }
612
613                 *((u32 *) val) =
614                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
615                 *len = sizeof(u32);
616                 break;
617
618         case IPW_ORD_TABLE_2_MASK:
619                 /*
620                  * TABLE 2: Indirect access to a table of variable sized values
621                  *
622                  * This table consist of six values, each containing
623                  *     - dword containing the starting offset of the data
624                  *     - dword containing the lengh in the first 16bits
625                  *       and the count in the second 16bits
626                  */
627
628                 /* remove the table id from the ordinal */
629                 ord &= IPW_ORD_TABLE_VALUE_MASK;
630
631                 /* boundary check */
632                 if (ord > priv->table2_len) {
633                         IPW_DEBUG_ORD("ordinal value too long\n");
634                         return -EINVAL;
635                 }
636
637                 /* get the address of statistic */
638                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
639
640                 /* get the second DW of statistics ;
641                  * two 16-bit words - first is length, second is count */
642                 field_info =
643                     ipw_read_reg32(priv,
644                                    priv->table2_addr + (ord << 3) +
645                                    sizeof(u32));
646
647                 /* get each entry length */
648                 field_len = *((u16 *) & field_info);
649
650                 /* get number of entries */
651                 field_count = *(((u16 *) & field_info) + 1);
652
653                 /* abort if not enought memory */
654                 total_len = field_len * field_count;
655                 if (total_len > *len) {
656                         *len = total_len;
657                         return -EINVAL;
658                 }
659
660                 *len = total_len;
661                 if (!total_len)
662                         return 0;
663
664                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
665                               "field_info = 0x%08x\n",
666                               addr, total_len, field_info);
667                 ipw_read_indirect(priv, addr, val, total_len);
668                 break;
669
670         default:
671                 IPW_DEBUG_ORD("Invalid ordinal!\n");
672                 return -EINVAL;
673
674         }
675
676         return 0;
677 }
678
679 static void ipw_init_ordinals(struct ipw_priv *priv)
680 {
681         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
682         priv->table0_len = ipw_read32(priv, priv->table0_addr);
683
684         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
685                       priv->table0_addr, priv->table0_len);
686
687         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
688         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
689
690         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
691                       priv->table1_addr, priv->table1_len);
692
693         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
694         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
695         priv->table2_len &= 0x0000ffff; /* use first two bytes */
696
697         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
698                       priv->table2_addr, priv->table2_len);
699
700 }
701
702 u32 ipw_register_toggle(u32 reg)
703 {
704         reg &= ~IPW_START_STANDBY;
705         if (reg & IPW_GATE_ODMA)
706                 reg &= ~IPW_GATE_ODMA;
707         if (reg & IPW_GATE_IDMA)
708                 reg &= ~IPW_GATE_IDMA;
709         if (reg & IPW_GATE_ADMA)
710                 reg &= ~IPW_GATE_ADMA;
711         return reg;
712 }
713
714 /*
715  * LED behavior:
716  * - On radio ON, turn on any LEDs that require to be on during start
717  * - On initialization, start unassociated blink
718  * - On association, disable unassociated blink
719  * - On disassociation, start unassociated blink
720  * - On radio OFF, turn off any LEDs started during radio on
721  *
722  */
723 #define LD_TIME_LINK_ON 300
724 #define LD_TIME_LINK_OFF 2700
725 #define LD_TIME_ACT_ON 250
726
727 void ipw_led_link_on(struct ipw_priv *priv)
728 {
729         unsigned long flags;
730         u32 led;
731
732         /* If configured to not use LEDs, or nic_type is 1,
733          * then we don't toggle a LINK led */
734         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
735                 return;
736
737         spin_lock_irqsave(&priv->lock, flags);
738
739         if (!(priv->status & STATUS_RF_KILL_MASK) &&
740             !(priv->status & STATUS_LED_LINK_ON)) {
741                 IPW_DEBUG_LED("Link LED On\n");
742                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
743                 led |= priv->led_association_on;
744
745                 led = ipw_register_toggle(led);
746
747                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
748                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
749
750                 priv->status |= STATUS_LED_LINK_ON;
751
752                 /* If we aren't associated, schedule turning the LED off */
753                 if (!(priv->status & STATUS_ASSOCIATED))
754                         queue_delayed_work(priv->workqueue,
755                                            &priv->led_link_off,
756                                            LD_TIME_LINK_ON);
757         }
758
759         spin_unlock_irqrestore(&priv->lock, flags);
760 }
761
762 static void ipw_bg_led_link_on(void *data)
763 {
764         struct ipw_priv *priv = data;
765         down(&priv->sem);
766         ipw_led_link_on(data);
767         up(&priv->sem);
768 }
769
770 void ipw_led_link_off(struct ipw_priv *priv)
771 {
772         unsigned long flags;
773         u32 led;
774
775         /* If configured not to use LEDs, or nic type is 1,
776          * then we don't goggle the LINK led. */
777         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
778                 return;
779
780         spin_lock_irqsave(&priv->lock, flags);
781
782         if (priv->status & STATUS_LED_LINK_ON) {
783                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
784                 led &= priv->led_association_off;
785                 led = ipw_register_toggle(led);
786
787                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
788                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
789
790                 IPW_DEBUG_LED("Link LED Off\n");
791
792                 priv->status &= ~STATUS_LED_LINK_ON;
793
794                 /* If we aren't associated and the radio is on, schedule
795                  * turning the LED on (blink while unassociated) */
796                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
797                     !(priv->status & STATUS_ASSOCIATED))
798                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
799                                            LD_TIME_LINK_OFF);
800
801         }
802
803         spin_unlock_irqrestore(&priv->lock, flags);
804 }
805
806 static void ipw_bg_led_link_off(void *data)
807 {
808         struct ipw_priv *priv = data;
809         down(&priv->sem);
810         ipw_led_link_off(data);
811         up(&priv->sem);
812 }
813
814 static inline void __ipw_led_activity_on(struct ipw_priv *priv)
815 {
816         u32 led;
817
818         if (priv->config & CFG_NO_LED)
819                 return;
820
821         if (priv->status & STATUS_RF_KILL_MASK)
822                 return;
823
824         if (!(priv->status & STATUS_LED_ACT_ON)) {
825                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
826                 led |= priv->led_activity_on;
827
828                 led = ipw_register_toggle(led);
829
830                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
831                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
832
833                 IPW_DEBUG_LED("Activity LED On\n");
834
835                 priv->status |= STATUS_LED_ACT_ON;
836
837                 cancel_delayed_work(&priv->led_act_off);
838                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
839                                    LD_TIME_ACT_ON);
840         } else {
841                 /* Reschedule LED off for full time period */
842                 cancel_delayed_work(&priv->led_act_off);
843                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
844                                    LD_TIME_ACT_ON);
845         }
846 }
847
848 void ipw_led_activity_on(struct ipw_priv *priv)
849 {
850         unsigned long flags;
851         spin_lock_irqsave(&priv->lock, flags);
852         __ipw_led_activity_on(priv);
853         spin_unlock_irqrestore(&priv->lock, flags);
854 }
855
856 void ipw_led_activity_off(struct ipw_priv *priv)
857 {
858         unsigned long flags;
859         u32 led;
860
861         if (priv->config & CFG_NO_LED)
862                 return;
863
864         spin_lock_irqsave(&priv->lock, flags);
865
866         if (priv->status & STATUS_LED_ACT_ON) {
867                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
868                 led &= priv->led_activity_off;
869
870                 led = ipw_register_toggle(led);
871
872                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
873                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
874
875                 IPW_DEBUG_LED("Activity LED Off\n");
876
877                 priv->status &= ~STATUS_LED_ACT_ON;
878         }
879
880         spin_unlock_irqrestore(&priv->lock, flags);
881 }
882
883 static void ipw_bg_led_activity_off(void *data)
884 {
885         struct ipw_priv *priv = data;
886         down(&priv->sem);
887         ipw_led_activity_off(data);
888         up(&priv->sem);
889 }
890
891 void ipw_led_band_on(struct ipw_priv *priv)
892 {
893         unsigned long flags;
894         u32 led;
895
896         /* Only nic type 1 supports mode LEDs */
897         if (priv->config & CFG_NO_LED ||
898             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
899                 return;
900
901         spin_lock_irqsave(&priv->lock, flags);
902
903         led = ipw_read_reg32(priv, IPW_EVENT_REG);
904         if (priv->assoc_network->mode == IEEE_A) {
905                 led |= priv->led_ofdm_on;
906                 led &= priv->led_association_off;
907                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
908         } else if (priv->assoc_network->mode == IEEE_G) {
909                 led |= priv->led_ofdm_on;
910                 led |= priv->led_association_on;
911                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
912         } else {
913                 led &= priv->led_ofdm_off;
914                 led |= priv->led_association_on;
915                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
916         }
917
918         led = ipw_register_toggle(led);
919
920         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
921         ipw_write_reg32(priv, IPW_EVENT_REG, led);
922
923         spin_unlock_irqrestore(&priv->lock, flags);
924 }
925
926 void ipw_led_band_off(struct ipw_priv *priv)
927 {
928         unsigned long flags;
929         u32 led;
930
931         /* Only nic type 1 supports mode LEDs */
932         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
933                 return;
934
935         spin_lock_irqsave(&priv->lock, flags);
936
937         led = ipw_read_reg32(priv, IPW_EVENT_REG);
938         led &= priv->led_ofdm_off;
939         led &= priv->led_association_off;
940
941         led = ipw_register_toggle(led);
942
943         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
944         ipw_write_reg32(priv, IPW_EVENT_REG, led);
945
946         spin_unlock_irqrestore(&priv->lock, flags);
947 }
948
949 void ipw_led_radio_on(struct ipw_priv *priv)
950 {
951         ipw_led_link_on(priv);
952 }
953
954 void ipw_led_radio_off(struct ipw_priv *priv)
955 {
956         ipw_led_activity_off(priv);
957         ipw_led_link_off(priv);
958 }
959
960 void ipw_led_link_up(struct ipw_priv *priv)
961 {
962         /* Set the Link Led on for all nic types */
963         ipw_led_link_on(priv);
964 }
965
966 void ipw_led_link_down(struct ipw_priv *priv)
967 {
968         ipw_led_activity_off(priv);
969         ipw_led_link_off(priv);
970
971         if (priv->status & STATUS_RF_KILL_MASK)
972                 ipw_led_radio_off(priv);
973 }
974
975 void ipw_led_init(struct ipw_priv *priv)
976 {
977         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
978
979         /* Set the default PINs for the link and activity leds */
980         priv->led_activity_on = IPW_ACTIVITY_LED;
981         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
982
983         priv->led_association_on = IPW_ASSOCIATED_LED;
984         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
985
986         /* Set the default PINs for the OFDM leds */
987         priv->led_ofdm_on = IPW_OFDM_LED;
988         priv->led_ofdm_off = ~(IPW_OFDM_LED);
989
990         switch (priv->nic_type) {
991         case EEPROM_NIC_TYPE_1:
992                 /* In this NIC type, the LEDs are reversed.... */
993                 priv->led_activity_on = IPW_ASSOCIATED_LED;
994                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
995                 priv->led_association_on = IPW_ACTIVITY_LED;
996                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
997
998                 if (!(priv->config & CFG_NO_LED))
999                         ipw_led_band_on(priv);
1000
1001                 /* And we don't blink link LEDs for this nic, so
1002                  * just return here */
1003                 return;
1004
1005         case EEPROM_NIC_TYPE_3:
1006         case EEPROM_NIC_TYPE_2:
1007         case EEPROM_NIC_TYPE_4:
1008         case EEPROM_NIC_TYPE_0:
1009                 break;
1010
1011         default:
1012                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1013                                priv->nic_type);
1014                 priv->nic_type = EEPROM_NIC_TYPE_0;
1015                 break;
1016         }
1017
1018         if (!(priv->config & CFG_NO_LED)) {
1019                 if (priv->status & STATUS_ASSOCIATED)
1020                         ipw_led_link_on(priv);
1021                 else
1022                         ipw_led_link_off(priv);
1023         }
1024 }
1025
1026 void ipw_led_shutdown(struct ipw_priv *priv)
1027 {
1028         ipw_led_activity_off(priv);
1029         ipw_led_link_off(priv);
1030         ipw_led_band_off(priv);
1031         cancel_delayed_work(&priv->led_link_on);
1032         cancel_delayed_work(&priv->led_link_off);
1033         cancel_delayed_work(&priv->led_act_off);
1034 }
1035
1036 /*
1037  * The following adds a new attribute to the sysfs representation
1038  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1039  * used for controling the debug level.
1040  *
1041  * See the level definitions in ipw for details.
1042  */
1043 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1044 {
1045         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1046 }
1047
1048 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1049                                  size_t count)
1050 {
1051         char *p = (char *)buf;
1052         u32 val;
1053
1054         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1055                 p++;
1056                 if (p[0] == 'x' || p[0] == 'X')
1057                         p++;
1058                 val = simple_strtoul(p, &p, 16);
1059         } else
1060                 val = simple_strtoul(p, &p, 10);
1061         if (p == buf)
1062                 printk(KERN_INFO DRV_NAME
1063                        ": %s is not in hex or decimal form.\n", buf);
1064         else
1065                 ipw_debug_level = val;
1066
1067         return strnlen(buf, count);
1068 }
1069
1070 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1071                    show_debug_level, store_debug_level);
1072
1073 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1074 {
1075         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1076 }
1077
1078 static void ipw_capture_event_log(struct ipw_priv *priv,
1079                                   u32 log_len, struct ipw_event *log)
1080 {
1081         u32 base;
1082
1083         if (log_len) {
1084                 base = ipw_read32(priv, IPW_EVENT_LOG);
1085                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1086                                   (u8 *) log, sizeof(*log) * log_len);
1087         }
1088 }
1089
1090 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1091 {
1092         struct ipw_fw_error *error;
1093         u32 log_len = ipw_get_event_log_len(priv);
1094         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1095         u32 elem_len = ipw_read_reg32(priv, base);
1096
1097         error = kmalloc(sizeof(*error) +
1098                         sizeof(*error->elem) * elem_len +
1099                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1100         if (!error) {
1101                 IPW_ERROR("Memory allocation for firmware error log "
1102                           "failed.\n");
1103                 return NULL;
1104         }
1105         error->jiffies = jiffies;
1106         error->status = priv->status;
1107         error->config = priv->config;
1108         error->elem_len = elem_len;
1109         error->log_len = log_len;
1110         error->elem = (struct ipw_error_elem *)error->payload;
1111         error->log = (struct ipw_event *)(error->elem +
1112                                           (sizeof(*error->elem) * elem_len));
1113
1114         ipw_capture_event_log(priv, log_len, error->log);
1115
1116         if (elem_len)
1117                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1118                                   sizeof(*error->elem) * elem_len);
1119
1120         return error;
1121 }
1122
1123 static void ipw_free_error_log(struct ipw_fw_error *error)
1124 {
1125         if (error)
1126                 kfree(error);
1127 }
1128
1129 static ssize_t show_event_log(struct device *d,
1130                               struct device_attribute *attr, char *buf)
1131 {
1132         struct ipw_priv *priv = dev_get_drvdata(d);
1133         u32 log_len = ipw_get_event_log_len(priv);
1134         struct ipw_event log[log_len];
1135         u32 len = 0, i;
1136
1137         ipw_capture_event_log(priv, log_len, log);
1138
1139         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1140         for (i = 0; i < log_len; i++)
1141                 len += snprintf(buf + len, PAGE_SIZE - len,
1142                                 "\n%08X%08X%08X",
1143                                 log[i].time, log[i].event, log[i].data);
1144         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1145         return len;
1146 }
1147
1148 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1149
1150 static ssize_t show_error(struct device *d,
1151                           struct device_attribute *attr, char *buf)
1152 {
1153         struct ipw_priv *priv = dev_get_drvdata(d);
1154         u32 len = 0, i;
1155         if (!priv->error)
1156                 return 0;
1157         len += snprintf(buf + len, PAGE_SIZE - len,
1158                         "%08lX%08X%08X%08X",
1159                         priv->error->jiffies,
1160                         priv->error->status,
1161                         priv->error->config, priv->error->elem_len);
1162         for (i = 0; i < priv->error->elem_len; i++)
1163                 len += snprintf(buf + len, PAGE_SIZE - len,
1164                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1165                                 priv->error->elem[i].time,
1166                                 priv->error->elem[i].desc,
1167                                 priv->error->elem[i].blink1,
1168                                 priv->error->elem[i].blink2,
1169                                 priv->error->elem[i].link1,
1170                                 priv->error->elem[i].link2,
1171                                 priv->error->elem[i].data);
1172
1173         len += snprintf(buf + len, PAGE_SIZE - len,
1174                         "\n%08X", priv->error->log_len);
1175         for (i = 0; i < priv->error->log_len; i++)
1176                 len += snprintf(buf + len, PAGE_SIZE - len,
1177                                 "\n%08X%08X%08X",
1178                                 priv->error->log[i].time,
1179                                 priv->error->log[i].event,
1180                                 priv->error->log[i].data);
1181         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1182         return len;
1183 }
1184
1185 static ssize_t clear_error(struct device *d,
1186                            struct device_attribute *attr,
1187                            const char *buf, size_t count)
1188 {
1189         struct ipw_priv *priv = dev_get_drvdata(d);
1190         if (priv->error) {
1191                 ipw_free_error_log(priv->error);
1192                 priv->error = NULL;
1193         }
1194         return count;
1195 }
1196
1197 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1198
1199 static ssize_t show_cmd_log(struct device *d,
1200                             struct device_attribute *attr, char *buf)
1201 {
1202         struct ipw_priv *priv = dev_get_drvdata(d);
1203         u32 len = 0, i;
1204         if (!priv->cmdlog)
1205                 return 0;
1206         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1207              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1208              i = (i + 1) % priv->cmdlog_len) {
1209                 len +=
1210                     snprintf(buf + len, PAGE_SIZE - len,
1211                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1212                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1213                              priv->cmdlog[i].cmd.len);
1214                 len +=
1215                     snprintk_buf(buf + len, PAGE_SIZE - len,
1216                                  (u8 *) priv->cmdlog[i].cmd.param,
1217                                  priv->cmdlog[i].cmd.len);
1218                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1219         }
1220         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1221         return len;
1222 }
1223
1224 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1225
1226 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1227                              char *buf)
1228 {
1229         struct ipw_priv *priv = dev_get_drvdata(d);
1230         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1231 }
1232
1233 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1234                               const char *buf, size_t count)
1235 {
1236         struct ipw_priv *priv = dev_get_drvdata(d);
1237 #ifdef CONFIG_IPW_DEBUG
1238         struct net_device *dev = priv->net_dev;
1239 #endif
1240         char buffer[] = "00000000";
1241         unsigned long len =
1242             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1243         unsigned long val;
1244         char *p = buffer;
1245
1246         IPW_DEBUG_INFO("enter\n");
1247
1248         strncpy(buffer, buf, len);
1249         buffer[len] = 0;
1250
1251         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1252                 p++;
1253                 if (p[0] == 'x' || p[0] == 'X')
1254                         p++;
1255                 val = simple_strtoul(p, &p, 16);
1256         } else
1257                 val = simple_strtoul(p, &p, 10);
1258         if (p == buffer) {
1259                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1260         } else {
1261                 priv->ieee->scan_age = val;
1262                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1263         }
1264
1265         IPW_DEBUG_INFO("exit\n");
1266         return len;
1267 }
1268
1269 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1270
1271 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1272                         char *buf)
1273 {
1274         struct ipw_priv *priv = dev_get_drvdata(d);
1275         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1276 }
1277
1278 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1279                          const char *buf, size_t count)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282
1283         IPW_DEBUG_INFO("enter\n");
1284
1285         if (count == 0)
1286                 return 0;
1287
1288         if (*buf == 0) {
1289                 IPW_DEBUG_LED("Disabling LED control.\n");
1290                 priv->config |= CFG_NO_LED;
1291                 ipw_led_shutdown(priv);
1292         } else {
1293                 IPW_DEBUG_LED("Enabling LED control.\n");
1294                 priv->config &= ~CFG_NO_LED;
1295                 ipw_led_init(priv);
1296         }
1297
1298         IPW_DEBUG_INFO("exit\n");
1299         return count;
1300 }
1301
1302 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1303
1304 static ssize_t show_status(struct device *d,
1305                            struct device_attribute *attr, char *buf)
1306 {
1307         struct ipw_priv *p = d->driver_data;
1308         return sprintf(buf, "0x%08x\n", (int)p->status);
1309 }
1310
1311 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1312
1313 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1314                         char *buf)
1315 {
1316         struct ipw_priv *p = d->driver_data;
1317         return sprintf(buf, "0x%08x\n", (int)p->config);
1318 }
1319
1320 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1321
1322 static ssize_t show_nic_type(struct device *d,
1323                              struct device_attribute *attr, char *buf)
1324 {
1325         struct ipw_priv *priv = d->driver_data;
1326         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1327 }
1328
1329 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1330
1331 static ssize_t show_ucode_version(struct device *d,
1332                                   struct device_attribute *attr, char *buf)
1333 {
1334         u32 len = sizeof(u32), tmp = 0;
1335         struct ipw_priv *p = d->driver_data;
1336
1337         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1338                 return 0;
1339
1340         return sprintf(buf, "0x%08x\n", tmp);
1341 }
1342
1343 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1344
1345 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1346                         char *buf)
1347 {
1348         u32 len = sizeof(u32), tmp = 0;
1349         struct ipw_priv *p = d->driver_data;
1350
1351         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1352                 return 0;
1353
1354         return sprintf(buf, "0x%08x\n", tmp);
1355 }
1356
1357 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1358
1359 /*
1360  * Add a device attribute to view/control the delay between eeprom
1361  * operations.
1362  */
1363 static ssize_t show_eeprom_delay(struct device *d,
1364                                  struct device_attribute *attr, char *buf)
1365 {
1366         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1367         return sprintf(buf, "%i\n", n);
1368 }
1369 static ssize_t store_eeprom_delay(struct device *d,
1370                                   struct device_attribute *attr,
1371                                   const char *buf, size_t count)
1372 {
1373         struct ipw_priv *p = d->driver_data;
1374         sscanf(buf, "%i", &p->eeprom_delay);
1375         return strnlen(buf, count);
1376 }
1377
1378 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1379                    show_eeprom_delay, store_eeprom_delay);
1380
1381 static ssize_t show_command_event_reg(struct device *d,
1382                                       struct device_attribute *attr, char *buf)
1383 {
1384         u32 reg = 0;
1385         struct ipw_priv *p = d->driver_data;
1386
1387         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1388         return sprintf(buf, "0x%08x\n", reg);
1389 }
1390 static ssize_t store_command_event_reg(struct device *d,
1391                                        struct device_attribute *attr,
1392                                        const char *buf, size_t count)
1393 {
1394         u32 reg;
1395         struct ipw_priv *p = d->driver_data;
1396
1397         sscanf(buf, "%x", &reg);
1398         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1399         return strnlen(buf, count);
1400 }
1401
1402 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1403                    show_command_event_reg, store_command_event_reg);
1404
1405 static ssize_t show_mem_gpio_reg(struct device *d,
1406                                  struct device_attribute *attr, char *buf)
1407 {
1408         u32 reg = 0;
1409         struct ipw_priv *p = d->driver_data;
1410
1411         reg = ipw_read_reg32(p, 0x301100);
1412         return sprintf(buf, "0x%08x\n", reg);
1413 }
1414 static ssize_t store_mem_gpio_reg(struct device *d,
1415                                   struct device_attribute *attr,
1416                                   const char *buf, size_t count)
1417 {
1418         u32 reg;
1419         struct ipw_priv *p = d->driver_data;
1420
1421         sscanf(buf, "%x", &reg);
1422         ipw_write_reg32(p, 0x301100, reg);
1423         return strnlen(buf, count);
1424 }
1425
1426 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1427                    show_mem_gpio_reg, store_mem_gpio_reg);
1428
1429 static ssize_t show_indirect_dword(struct device *d,
1430                                    struct device_attribute *attr, char *buf)
1431 {
1432         u32 reg = 0;
1433         struct ipw_priv *priv = d->driver_data;
1434
1435         if (priv->status & STATUS_INDIRECT_DWORD)
1436                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1437         else
1438                 reg = 0;
1439
1440         return sprintf(buf, "0x%08x\n", reg);
1441 }
1442 static ssize_t store_indirect_dword(struct device *d,
1443                                     struct device_attribute *attr,
1444                                     const char *buf, size_t count)
1445 {
1446         struct ipw_priv *priv = d->driver_data;
1447
1448         sscanf(buf, "%x", &priv->indirect_dword);
1449         priv->status |= STATUS_INDIRECT_DWORD;
1450         return strnlen(buf, count);
1451 }
1452
1453 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1454                    show_indirect_dword, store_indirect_dword);
1455
1456 static ssize_t show_indirect_byte(struct device *d,
1457                                   struct device_attribute *attr, char *buf)
1458 {
1459         u8 reg = 0;
1460         struct ipw_priv *priv = d->driver_data;
1461
1462         if (priv->status & STATUS_INDIRECT_BYTE)
1463                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1464         else
1465                 reg = 0;
1466
1467         return sprintf(buf, "0x%02x\n", reg);
1468 }
1469 static ssize_t store_indirect_byte(struct device *d,
1470                                    struct device_attribute *attr,
1471                                    const char *buf, size_t count)
1472 {
1473         struct ipw_priv *priv = d->driver_data;
1474
1475         sscanf(buf, "%x", &priv->indirect_byte);
1476         priv->status |= STATUS_INDIRECT_BYTE;
1477         return strnlen(buf, count);
1478 }
1479
1480 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1481                    show_indirect_byte, store_indirect_byte);
1482
1483 static ssize_t show_direct_dword(struct device *d,
1484                                  struct device_attribute *attr, char *buf)
1485 {
1486         u32 reg = 0;
1487         struct ipw_priv *priv = d->driver_data;
1488
1489         if (priv->status & STATUS_DIRECT_DWORD)
1490                 reg = ipw_read32(priv, priv->direct_dword);
1491         else
1492                 reg = 0;
1493
1494         return sprintf(buf, "0x%08x\n", reg);
1495 }
1496 static ssize_t store_direct_dword(struct device *d,
1497                                   struct device_attribute *attr,
1498                                   const char *buf, size_t count)
1499 {
1500         struct ipw_priv *priv = d->driver_data;
1501
1502         sscanf(buf, "%x", &priv->direct_dword);
1503         priv->status |= STATUS_DIRECT_DWORD;
1504         return strnlen(buf, count);
1505 }
1506
1507 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1508                    show_direct_dword, store_direct_dword);
1509
1510 static inline int rf_kill_active(struct ipw_priv *priv)
1511 {
1512         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1513                 priv->status |= STATUS_RF_KILL_HW;
1514         else
1515                 priv->status &= ~STATUS_RF_KILL_HW;
1516
1517         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1518 }
1519
1520 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1521                             char *buf)
1522 {
1523         /* 0 - RF kill not enabled
1524            1 - SW based RF kill active (sysfs)
1525            2 - HW based RF kill active
1526            3 - Both HW and SW baed RF kill active */
1527         struct ipw_priv *priv = d->driver_data;
1528         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1529             (rf_kill_active(priv) ? 0x2 : 0x0);
1530         return sprintf(buf, "%i\n", val);
1531 }
1532
1533 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1534 {
1535         if ((disable_radio ? 1 : 0) ==
1536             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1537                 return 0;
1538
1539         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1540                           disable_radio ? "OFF" : "ON");
1541
1542         if (disable_radio) {
1543                 priv->status |= STATUS_RF_KILL_SW;
1544
1545                 if (priv->workqueue)
1546                         cancel_delayed_work(&priv->request_scan);
1547                 queue_work(priv->workqueue, &priv->down);
1548         } else {
1549                 priv->status &= ~STATUS_RF_KILL_SW;
1550                 if (rf_kill_active(priv)) {
1551                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1552                                           "disabled by HW switch\n");
1553                         /* Make sure the RF_KILL check timer is running */
1554                         cancel_delayed_work(&priv->rf_kill);
1555                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1556                                            2 * HZ);
1557                 } else
1558                         queue_work(priv->workqueue, &priv->up);
1559         }
1560
1561         return 1;
1562 }
1563
1564 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1565                              const char *buf, size_t count)
1566 {
1567         struct ipw_priv *priv = d->driver_data;
1568
1569         ipw_radio_kill_sw(priv, buf[0] == '1');
1570
1571         return count;
1572 }
1573
1574 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1575
1576 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1577                                char *buf)
1578 {
1579         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1580         int pos = 0, len = 0;
1581         if (priv->config & CFG_SPEED_SCAN) {
1582                 while (priv->speed_scan[pos] != 0)
1583                         len += sprintf(&buf[len], "%d ",
1584                                        priv->speed_scan[pos++]);
1585                 return len + sprintf(&buf[len], "\n");
1586         }
1587
1588         return sprintf(buf, "0\n");
1589 }
1590
1591 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1592                                 const char *buf, size_t count)
1593 {
1594         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1595         int channel, pos = 0;
1596         const char *p = buf;
1597
1598         /* list of space separated channels to scan, optionally ending with 0 */
1599         while ((channel = simple_strtol(p, NULL, 0))) {
1600                 if (pos == MAX_SPEED_SCAN - 1) {
1601                         priv->speed_scan[pos] = 0;
1602                         break;
1603                 }
1604
1605                 if (ipw_is_valid_channel(priv->ieee, channel))
1606                         priv->speed_scan[pos++] = channel;
1607                 else
1608                         IPW_WARNING("Skipping invalid channel request: %d\n",
1609                                     channel);
1610                 p = strchr(p, ' ');
1611                 if (!p)
1612                         break;
1613                 while (*p == ' ' || *p == '\t')
1614                         p++;
1615         }
1616
1617         if (pos == 0)
1618                 priv->config &= ~CFG_SPEED_SCAN;
1619         else {
1620                 priv->speed_scan_pos = 0;
1621                 priv->config |= CFG_SPEED_SCAN;
1622         }
1623
1624         return count;
1625 }
1626
1627 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1628                    store_speed_scan);
1629
1630 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1631                               char *buf)
1632 {
1633         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1634         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1635 }
1636
1637 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1638                                const char *buf, size_t count)
1639 {
1640         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1641         if (buf[0] == '1')
1642                 priv->config |= CFG_NET_STATS;
1643         else
1644                 priv->config &= ~CFG_NET_STATS;
1645
1646         return count;
1647 }
1648
1649 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1650                    show_net_stats, store_net_stats);
1651
1652 static void notify_wx_assoc_event(struct ipw_priv *priv)
1653 {
1654         union iwreq_data wrqu;
1655         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1656         if (priv->status & STATUS_ASSOCIATED)
1657                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1658         else
1659                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1660         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1661 }
1662
1663 static void ipw_irq_tasklet(struct ipw_priv *priv)
1664 {
1665         u32 inta, inta_mask, handled = 0;
1666         unsigned long flags;
1667         int rc = 0;
1668
1669         spin_lock_irqsave(&priv->lock, flags);
1670
1671         inta = ipw_read32(priv, IPW_INTA_RW);
1672         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1673         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1674
1675         /* Add any cached INTA values that need to be handled */
1676         inta |= priv->isr_inta;
1677
1678         /* handle all the justifications for the interrupt */
1679         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1680                 ipw_rx(priv);
1681                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1682         }
1683
1684         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1685                 IPW_DEBUG_HC("Command completed.\n");
1686                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1687                 priv->status &= ~STATUS_HCMD_ACTIVE;
1688                 wake_up_interruptible(&priv->wait_command_queue);
1689                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1690         }
1691
1692         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1693                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1694                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1695                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1696         }
1697
1698         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1699                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1700                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1701                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1702         }
1703
1704         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1705                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1706                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1707                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1708         }
1709
1710         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1711                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1712                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1713                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1714         }
1715
1716         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1717                 IPW_WARNING("STATUS_CHANGE\n");
1718                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1719         }
1720
1721         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1722                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1723                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1724         }
1725
1726         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1727                 IPW_WARNING("HOST_CMD_DONE\n");
1728                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1729         }
1730
1731         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1732                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1733                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1734         }
1735
1736         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1737                 IPW_WARNING("PHY_OFF_DONE\n");
1738                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1739         }
1740
1741         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1742                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1743                 priv->status |= STATUS_RF_KILL_HW;
1744                 wake_up_interruptible(&priv->wait_command_queue);
1745                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1746                 cancel_delayed_work(&priv->request_scan);
1747                 schedule_work(&priv->link_down);
1748                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1749                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1750         }
1751
1752         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1753                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1754                 if (priv->error) {
1755                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1756 #ifdef CONFIG_IPW_DEBUG
1757                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1758                                 struct ipw_fw_error *error =
1759                                     ipw_alloc_error_log(priv);
1760                                 ipw_dump_error_log(priv, error);
1761                                 if (error)
1762                                         ipw_free_error_log(error);
1763                         }
1764 #endif
1765                 } else {
1766                         priv->error = ipw_alloc_error_log(priv);
1767                         if (priv->error)
1768                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1769                         else
1770                                 IPW_ERROR("Error allocating sysfs 'error' "
1771                                           "log.\n");
1772 #ifdef CONFIG_IPW_DEBUG
1773                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1774                                 ipw_dump_error_log(priv, priv->error);
1775 #endif
1776                 }
1777
1778                 /* XXX: If hardware encryption is for WPA/WPA2,
1779                  * we have to notify the supplicant. */
1780                 if (priv->ieee->sec.encrypt) {
1781                         priv->status &= ~STATUS_ASSOCIATED;
1782                         notify_wx_assoc_event(priv);
1783                 }
1784
1785                 /* Keep the restart process from trying to send host
1786                  * commands by clearing the INIT status bit */
1787                 priv->status &= ~STATUS_INIT;
1788
1789                 /* Cancel currently queued command. */
1790                 priv->status &= ~STATUS_HCMD_ACTIVE;
1791                 wake_up_interruptible(&priv->wait_command_queue);
1792
1793                 queue_work(priv->workqueue, &priv->adapter_restart);
1794                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1795         }
1796
1797         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1798                 IPW_ERROR("Parity error\n");
1799                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1800         }
1801
1802         if (handled != inta) {
1803                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1804         }
1805
1806         /* enable all interrupts */
1807         ipw_enable_interrupts(priv);
1808
1809         spin_unlock_irqrestore(&priv->lock, flags);
1810 }
1811
1812 #ifdef CONFIG_IPW_DEBUG
1813 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1814 static char *get_cmd_string(u8 cmd)
1815 {
1816         switch (cmd) {
1817                 IPW_CMD(HOST_COMPLETE);
1818                 IPW_CMD(POWER_DOWN);
1819                 IPW_CMD(SYSTEM_CONFIG);
1820                 IPW_CMD(MULTICAST_ADDRESS);
1821                 IPW_CMD(SSID);
1822                 IPW_CMD(ADAPTER_ADDRESS);
1823                 IPW_CMD(PORT_TYPE);
1824                 IPW_CMD(RTS_THRESHOLD);
1825                 IPW_CMD(FRAG_THRESHOLD);
1826                 IPW_CMD(POWER_MODE);
1827                 IPW_CMD(WEP_KEY);
1828                 IPW_CMD(TGI_TX_KEY);
1829                 IPW_CMD(SCAN_REQUEST);
1830                 IPW_CMD(SCAN_REQUEST_EXT);
1831                 IPW_CMD(ASSOCIATE);
1832                 IPW_CMD(SUPPORTED_RATES);
1833                 IPW_CMD(SCAN_ABORT);
1834                 IPW_CMD(TX_FLUSH);
1835                 IPW_CMD(QOS_PARAMETERS);
1836                 IPW_CMD(DINO_CONFIG);
1837                 IPW_CMD(RSN_CAPABILITIES);
1838                 IPW_CMD(RX_KEY);
1839                 IPW_CMD(CARD_DISABLE);
1840                 IPW_CMD(SEED_NUMBER);
1841                 IPW_CMD(TX_POWER);
1842                 IPW_CMD(COUNTRY_INFO);
1843                 IPW_CMD(AIRONET_INFO);
1844                 IPW_CMD(AP_TX_POWER);
1845                 IPW_CMD(CCKM_INFO);
1846                 IPW_CMD(CCX_VER_INFO);
1847                 IPW_CMD(SET_CALIBRATION);
1848                 IPW_CMD(SENSITIVITY_CALIB);
1849                 IPW_CMD(RETRY_LIMIT);
1850                 IPW_CMD(IPW_PRE_POWER_DOWN);
1851                 IPW_CMD(VAP_BEACON_TEMPLATE);
1852                 IPW_CMD(VAP_DTIM_PERIOD);
1853                 IPW_CMD(EXT_SUPPORTED_RATES);
1854                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1855                 IPW_CMD(VAP_QUIET_INTERVALS);
1856                 IPW_CMD(VAP_CHANNEL_SWITCH);
1857                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1858                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1859                 IPW_CMD(VAP_CF_PARAM_SET);
1860                 IPW_CMD(VAP_SET_BEACONING_STATE);
1861                 IPW_CMD(MEASUREMENT);
1862                 IPW_CMD(POWER_CAPABILITY);
1863                 IPW_CMD(SUPPORTED_CHANNELS);
1864                 IPW_CMD(TPC_REPORT);
1865                 IPW_CMD(WME_INFO);
1866                 IPW_CMD(PRODUCTION_COMMAND);
1867         default:
1868                 return "UNKNOWN";
1869         }
1870 }
1871 #endif
1872
1873 #define HOST_COMPLETE_TIMEOUT HZ
1874 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1875 {
1876         int rc = 0;
1877         unsigned long flags;
1878
1879         spin_lock_irqsave(&priv->lock, flags);
1880         if (priv->status & STATUS_HCMD_ACTIVE) {
1881                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1882                           get_cmd_string(cmd->cmd));
1883                 spin_unlock_irqrestore(&priv->lock, flags);
1884                 return -EAGAIN;
1885         }
1886
1887         if (priv->status & STATUS_ASSOCIATING) {
1888                 IPW_DEBUG_HC("abandon a command while associating\n");
1889                 spin_unlock_irqrestore(&priv->lock, flags);
1890                 return -1;
1891         }
1892
1893         if (priv->status & STATUS_DISASSOCIATING) {
1894                 IPW_DEBUG_HC("abandon a command while disassociating\n");
1895                 spin_unlock_irqrestore(&priv->lock, flags);
1896                 return -1;
1897         }
1898
1899         priv->status |= STATUS_HCMD_ACTIVE;
1900
1901         if (priv->cmdlog) {
1902                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1903                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1904                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1905                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1906                        cmd->len);
1907                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1908         }
1909
1910         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1911                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1912                      priv->status);
1913         printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1914
1915         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1916         if (rc) {
1917                 priv->status &= ~STATUS_HCMD_ACTIVE;
1918                 IPW_ERROR("Failed to send %s: Reason %d\n",
1919                           get_cmd_string(cmd->cmd), rc);
1920                 spin_unlock_irqrestore(&priv->lock, flags);
1921                 goto exit;
1922         }
1923         spin_unlock_irqrestore(&priv->lock, flags);
1924
1925         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1926                                               !(priv->
1927                                                 status & STATUS_HCMD_ACTIVE),
1928                                               HOST_COMPLETE_TIMEOUT);
1929         if (rc == 0) {
1930                 spin_lock_irqsave(&priv->lock, flags);
1931                 if (priv->status & STATUS_HCMD_ACTIVE) {
1932                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1933                                   get_cmd_string(cmd->cmd));
1934                         priv->status &= ~STATUS_HCMD_ACTIVE;
1935                         spin_unlock_irqrestore(&priv->lock, flags);
1936                         rc = -EIO;
1937                         goto exit;
1938                 }
1939                 spin_unlock_irqrestore(&priv->lock, flags);
1940         } else
1941                 rc = 0;
1942
1943         if (priv->status & STATUS_RF_KILL_HW) {
1944                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1945                           get_cmd_string(cmd->cmd));
1946                 rc = -EIO;
1947                 goto exit;
1948         }
1949
1950       exit:
1951         if (priv->cmdlog) {
1952                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1953                 priv->cmdlog_pos %= priv->cmdlog_len;
1954         }
1955         return rc;
1956 }
1957
1958 static int ipw_send_host_complete(struct ipw_priv *priv)
1959 {
1960         struct host_cmd cmd = {
1961                 .cmd = IPW_CMD_HOST_COMPLETE,
1962                 .len = 0
1963         };
1964
1965         if (!priv) {
1966                 IPW_ERROR("Invalid args\n");
1967                 return -1;
1968         }
1969
1970         return ipw_send_cmd(priv, &cmd);
1971 }
1972
1973 static int ipw_send_system_config(struct ipw_priv *priv,
1974                                   struct ipw_sys_config *config)
1975 {
1976         struct host_cmd cmd = {
1977                 .cmd = IPW_CMD_SYSTEM_CONFIG,
1978                 .len = sizeof(*config)
1979         };
1980
1981         if (!priv || !config) {
1982                 IPW_ERROR("Invalid args\n");
1983                 return -1;
1984         }
1985
1986         memcpy(cmd.param, config, sizeof(*config));
1987         return ipw_send_cmd(priv, &cmd);
1988 }
1989
1990 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1991 {
1992         struct host_cmd cmd = {
1993                 .cmd = IPW_CMD_SSID,
1994                 .len = min(len, IW_ESSID_MAX_SIZE)
1995         };
1996
1997         if (!priv || !ssid) {
1998                 IPW_ERROR("Invalid args\n");
1999                 return -1;
2000         }
2001
2002         memcpy(cmd.param, ssid, cmd.len);
2003         return ipw_send_cmd(priv, &cmd);
2004 }
2005
2006 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2007 {
2008         struct host_cmd cmd = {
2009                 .cmd = IPW_CMD_ADAPTER_ADDRESS,
2010                 .len = ETH_ALEN
2011         };
2012
2013         if (!priv || !mac) {
2014                 IPW_ERROR("Invalid args\n");
2015                 return -1;
2016         }
2017
2018         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2019                        priv->net_dev->name, MAC_ARG(mac));
2020
2021         memcpy(cmd.param, mac, ETH_ALEN);
2022         return ipw_send_cmd(priv, &cmd);
2023 }
2024
2025 /*
2026  * NOTE: This must be executed from our workqueue as it results in udelay
2027  * being called which may corrupt the keyboard if executed on default
2028  * workqueue
2029  */
2030 static void ipw_adapter_restart(void *adapter)
2031 {
2032         struct ipw_priv *priv = adapter;
2033
2034         if (priv->status & STATUS_RF_KILL_MASK)
2035                 return;
2036
2037         ipw_down(priv);
2038
2039         if (priv->assoc_network &&
2040             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2041                 ipw_remove_current_network(priv);
2042
2043         if (ipw_up(priv)) {
2044                 IPW_ERROR("Failed to up device\n");
2045                 return;
2046         }
2047 }
2048
2049 static void ipw_bg_adapter_restart(void *data)
2050 {
2051         struct ipw_priv *priv = data;
2052         down(&priv->sem);
2053         ipw_adapter_restart(data);
2054         up(&priv->sem);
2055 }
2056
2057 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2058
2059 static void ipw_scan_check(void *data)
2060 {
2061         struct ipw_priv *priv = data;
2062         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2063                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2064                                "adapter (%dms).\n",
2065                                IPW_SCAN_CHECK_WATCHDOG / 100);
2066                 queue_work(priv->workqueue, &priv->adapter_restart);
2067         }
2068 }
2069
2070 static void ipw_bg_scan_check(void *data)
2071 {
2072         struct ipw_priv *priv = data;
2073         down(&priv->sem);
2074         ipw_scan_check(data);
2075         up(&priv->sem);
2076 }
2077
2078 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2079                                      struct ipw_scan_request_ext *request)
2080 {
2081         struct host_cmd cmd = {
2082                 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
2083                 .len = sizeof(*request)
2084         };
2085
2086         memcpy(cmd.param, request, sizeof(*request));
2087         return ipw_send_cmd(priv, &cmd);
2088 }
2089
2090 static int ipw_send_scan_abort(struct ipw_priv *priv)
2091 {
2092         struct host_cmd cmd = {
2093                 .cmd = IPW_CMD_SCAN_ABORT,
2094                 .len = 0
2095         };
2096
2097         if (!priv) {
2098                 IPW_ERROR("Invalid args\n");
2099                 return -1;
2100         }
2101
2102         return ipw_send_cmd(priv, &cmd);
2103 }
2104
2105 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2106 {
2107         struct host_cmd cmd = {
2108                 .cmd = IPW_CMD_SENSITIVITY_CALIB,
2109                 .len = sizeof(struct ipw_sensitivity_calib)
2110         };
2111         struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
2112             &cmd.param;
2113         calib->beacon_rssi_raw = sens;
2114         return ipw_send_cmd(priv, &cmd);
2115 }
2116
2117 static int ipw_send_associate(struct ipw_priv *priv,
2118                               struct ipw_associate *associate)
2119 {
2120         struct host_cmd cmd = {
2121                 .cmd = IPW_CMD_ASSOCIATE,
2122                 .len = sizeof(*associate)
2123         };
2124
2125         struct ipw_associate tmp_associate;
2126         memcpy(&tmp_associate, associate, sizeof(*associate));
2127         tmp_associate.policy_support =
2128             cpu_to_le16(tmp_associate.policy_support);
2129         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2130         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2131         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2132         tmp_associate.listen_interval =
2133             cpu_to_le16(tmp_associate.listen_interval);
2134         tmp_associate.beacon_interval =
2135             cpu_to_le16(tmp_associate.beacon_interval);
2136         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2137
2138         if (!priv || !associate) {
2139                 IPW_ERROR("Invalid args\n");
2140                 return -1;
2141         }
2142
2143         memcpy(cmd.param, &tmp_associate, sizeof(*associate));
2144         return ipw_send_cmd(priv, &cmd);
2145 }
2146
2147 static int ipw_send_supported_rates(struct ipw_priv *priv,
2148                                     struct ipw_supported_rates *rates)
2149 {
2150         struct host_cmd cmd = {
2151                 .cmd = IPW_CMD_SUPPORTED_RATES,
2152                 .len = sizeof(*rates)
2153         };
2154
2155         if (!priv || !rates) {
2156                 IPW_ERROR("Invalid args\n");
2157                 return -1;
2158         }
2159
2160         memcpy(cmd.param, rates, sizeof(*rates));
2161         return ipw_send_cmd(priv, &cmd);
2162 }
2163
2164 static int ipw_set_random_seed(struct ipw_priv *priv)
2165 {
2166         struct host_cmd cmd = {
2167                 .cmd = IPW_CMD_SEED_NUMBER,
2168                 .len = sizeof(u32)
2169         };
2170
2171         if (!priv) {
2172                 IPW_ERROR("Invalid args\n");
2173                 return -1;
2174         }
2175
2176         get_random_bytes(&cmd.param, sizeof(u32));
2177
2178         return ipw_send_cmd(priv, &cmd);
2179 }
2180
2181 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2182 {
2183         struct host_cmd cmd = {
2184                 .cmd = IPW_CMD_CARD_DISABLE,
2185                 .len = sizeof(u32)
2186         };
2187
2188         if (!priv) {
2189                 IPW_ERROR("Invalid args\n");
2190                 return -1;
2191         }
2192
2193         *((u32 *) & cmd.param) = phy_off;
2194
2195         return ipw_send_cmd(priv, &cmd);
2196 }
2197
2198 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2199 {
2200         struct host_cmd cmd = {
2201                 .cmd = IPW_CMD_TX_POWER,
2202                 .len = sizeof(*power)
2203         };
2204
2205         if (!priv || !power) {
2206                 IPW_ERROR("Invalid args\n");
2207                 return -1;
2208         }
2209
2210         memcpy(cmd.param, power, sizeof(*power));
2211         return ipw_send_cmd(priv, &cmd);
2212 }
2213
2214 static int ipw_set_tx_power(struct ipw_priv *priv)
2215 {
2216         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
2217         struct ipw_tx_power tx_power;
2218         s8 max_power;
2219         int i;
2220
2221         memset(&tx_power, 0, sizeof(tx_power));
2222
2223         /* configure device for 'G' band */
2224         tx_power.ieee_mode = IPW_G_MODE;
2225         tx_power.num_channels = geo->bg_channels;
2226         for (i = 0; i < geo->bg_channels; i++) {
2227                 max_power = geo->bg[i].max_power;
2228                 tx_power.channels_tx_power[i].channel_number =
2229                     geo->bg[i].channel;
2230                 tx_power.channels_tx_power[i].tx_power = max_power ?
2231                     min(max_power, priv->tx_power) : priv->tx_power;
2232         }
2233         if (ipw_send_tx_power(priv, &tx_power))
2234                 return -EIO;
2235
2236         /* configure device to also handle 'B' band */
2237         tx_power.ieee_mode = IPW_B_MODE;
2238         if (ipw_send_tx_power(priv, &tx_power))
2239                 return -EIO;
2240
2241         /* configure device to also handle 'A' band */
2242         if (priv->ieee->abg_true) {
2243                 tx_power.ieee_mode = IPW_A_MODE;
2244                 tx_power.num_channels = geo->a_channels;
2245                 for (i = 0; i < tx_power.num_channels; i++) {
2246                         max_power = geo->a[i].max_power;
2247                         tx_power.channels_tx_power[i].channel_number =
2248                             geo->a[i].channel;
2249                         tx_power.channels_tx_power[i].tx_power = max_power ?
2250                             min(max_power, priv->tx_power) : priv->tx_power;
2251                 }
2252                 if (ipw_send_tx_power(priv, &tx_power))
2253                         return -EIO;
2254         }
2255         return 0;
2256 }
2257
2258 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2259 {
2260         struct ipw_rts_threshold rts_threshold = {
2261                 .rts_threshold = rts,
2262         };
2263         struct host_cmd cmd = {
2264                 .cmd = IPW_CMD_RTS_THRESHOLD,
2265                 .len = sizeof(rts_threshold)
2266         };
2267
2268         if (!priv) {
2269                 IPW_ERROR("Invalid args\n");
2270                 return -1;
2271         }
2272
2273         memcpy(cmd.param, &rts_threshold, sizeof(rts_threshold));
2274         return ipw_send_cmd(priv, &cmd);
2275 }
2276
2277 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2278 {
2279         struct ipw_frag_threshold frag_threshold = {
2280                 .frag_threshold = frag,
2281         };
2282         struct host_cmd cmd = {
2283                 .cmd = IPW_CMD_FRAG_THRESHOLD,
2284                 .len = sizeof(frag_threshold)
2285         };
2286
2287         if (!priv) {
2288                 IPW_ERROR("Invalid args\n");
2289                 return -1;
2290         }
2291
2292         memcpy(cmd.param, &frag_threshold, sizeof(frag_threshold));
2293         return ipw_send_cmd(priv, &cmd);
2294 }
2295
2296 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2297 {
2298         struct host_cmd cmd = {
2299                 .cmd = IPW_CMD_POWER_MODE,
2300                 .len = sizeof(u32)
2301         };
2302         u32 *param = (u32 *) (&cmd.param);
2303
2304         if (!priv) {
2305                 IPW_ERROR("Invalid args\n");
2306                 return -1;
2307         }
2308
2309         /* If on battery, set to 3, if AC set to CAM, else user
2310          * level */
2311         switch (mode) {
2312         case IPW_POWER_BATTERY:
2313                 *param = IPW_POWER_INDEX_3;
2314                 break;
2315         case IPW_POWER_AC:
2316                 *param = IPW_POWER_MODE_CAM;
2317                 break;
2318         default:
2319                 *param = mode;
2320                 break;
2321         }
2322
2323         return ipw_send_cmd(priv, &cmd);
2324 }
2325
2326 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2327 {
2328         struct ipw_retry_limit retry_limit = {
2329                 .short_retry_limit = slimit,
2330                 .long_retry_limit = llimit
2331         };
2332         struct host_cmd cmd = {
2333                 .cmd = IPW_CMD_RETRY_LIMIT,
2334                 .len = sizeof(retry_limit)
2335         };
2336
2337         if (!priv) {
2338                 IPW_ERROR("Invalid args\n");
2339                 return -1;
2340         }
2341
2342         memcpy(cmd.param, &retry_limit, sizeof(retry_limit));
2343         return ipw_send_cmd(priv, &cmd);
2344 }
2345
2346 /*
2347  * The IPW device contains a Microwire compatible EEPROM that stores
2348  * various data like the MAC address.  Usually the firmware has exclusive
2349  * access to the eeprom, but during device initialization (before the
2350  * device driver has sent the HostComplete command to the firmware) the
2351  * device driver has read access to the EEPROM by way of indirect addressing
2352  * through a couple of memory mapped registers.
2353  *
2354  * The following is a simplified implementation for pulling data out of the
2355  * the eeprom, along with some helper functions to find information in
2356  * the per device private data's copy of the eeprom.
2357  *
2358  * NOTE: To better understand how these functions work (i.e what is a chip
2359  *       select and why do have to keep driving the eeprom clock?), read
2360  *       just about any data sheet for a Microwire compatible EEPROM.
2361  */
2362
2363 /* write a 32 bit value into the indirect accessor register */
2364 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2365 {
2366         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2367
2368         /* the eeprom requires some time to complete the operation */
2369         udelay(p->eeprom_delay);
2370
2371         return;
2372 }
2373
2374 /* perform a chip select operation */
2375 static inline void eeprom_cs(struct ipw_priv *priv)
2376 {
2377         eeprom_write_reg(priv, 0);
2378         eeprom_write_reg(priv, EEPROM_BIT_CS);
2379         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2380         eeprom_write_reg(priv, EEPROM_BIT_CS);
2381 }
2382
2383 /* perform a chip select operation */
2384 static inline void eeprom_disable_cs(struct ipw_priv *priv)
2385 {
2386         eeprom_write_reg(priv, EEPROM_BIT_CS);
2387         eeprom_write_reg(priv, 0);
2388         eeprom_write_reg(priv, EEPROM_BIT_SK);
2389 }
2390
2391 /* push a single bit down to the eeprom */
2392 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2393 {
2394         int d = (bit ? EEPROM_BIT_DI : 0);
2395         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2396         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2397 }
2398
2399 /* push an opcode followed by an address down to the eeprom */
2400 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2401 {
2402         int i;
2403
2404         eeprom_cs(priv);
2405         eeprom_write_bit(priv, 1);
2406         eeprom_write_bit(priv, op & 2);
2407         eeprom_write_bit(priv, op & 1);
2408         for (i = 7; i >= 0; i--) {
2409                 eeprom_write_bit(priv, addr & (1 << i));
2410         }
2411 }
2412
2413 /* pull 16 bits off the eeprom, one bit at a time */
2414 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2415 {
2416         int i;
2417         u16 r = 0;
2418
2419         /* Send READ Opcode */
2420         eeprom_op(priv, EEPROM_CMD_READ, addr);
2421
2422         /* Send dummy bit */
2423         eeprom_write_reg(priv, EEPROM_BIT_CS);
2424
2425         /* Read the byte off the eeprom one bit at a time */
2426         for (i = 0; i < 16; i++) {
2427                 u32 data = 0;
2428                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2429                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2430                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2431                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2432         }
2433
2434         /* Send another dummy bit */
2435         eeprom_write_reg(priv, 0);
2436         eeprom_disable_cs(priv);
2437
2438         return r;
2439 }
2440
2441 /* helper function for pulling the mac address out of the private */
2442 /* data's copy of the eeprom data                                 */
2443 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2444 {
2445         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2446 }
2447
2448 /*
2449  * Either the device driver (i.e. the host) or the firmware can
2450  * load eeprom data into the designated region in SRAM.  If neither
2451  * happens then the FW will shutdown with a fatal error.
2452  *
2453  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2454  * bit needs region of shared SRAM needs to be non-zero.
2455  */
2456 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2457 {
2458         int i;
2459         u16 *eeprom = (u16 *) priv->eeprom;
2460
2461         IPW_DEBUG_TRACE(">>\n");
2462
2463         /* read entire contents of eeprom into private buffer */
2464         for (i = 0; i < 128; i++)
2465                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2466
2467         /*
2468            If the data looks correct, then copy it to our private
2469            copy.  Otherwise let the firmware know to perform the operation
2470            on it's own
2471          */
2472         if ((priv->eeprom + EEPROM_VERSION) != 0) {
2473                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2474
2475                 /* write the eeprom data to sram */
2476                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2477                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2478
2479                 /* Do not load eeprom data on fatal error or suspend */
2480                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2481         } else {
2482                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2483
2484                 /* Load eeprom data on fatal error or suspend */
2485                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2486         }
2487
2488         IPW_DEBUG_TRACE("<<\n");
2489 }
2490
2491 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2492 {
2493         count >>= 2;
2494         if (!count)
2495                 return;
2496         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2497         while (count--)
2498                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2499 }
2500
2501 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2502 {
2503         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2504                         CB_NUMBER_OF_ELEMENTS_SMALL *
2505                         sizeof(struct command_block));
2506 }
2507
2508 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2509 {                               /* start dma engine but no transfers yet */
2510
2511         IPW_DEBUG_FW(">> : \n");
2512
2513         /* Start the dma */
2514         ipw_fw_dma_reset_command_blocks(priv);
2515
2516         /* Write CB base address */
2517         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2518
2519         IPW_DEBUG_FW("<< : \n");
2520         return 0;
2521 }
2522
2523 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2524 {
2525         u32 control = 0;
2526
2527         IPW_DEBUG_FW(">> :\n");
2528
2529         //set the Stop and Abort bit
2530         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2531         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2532         priv->sram_desc.last_cb_index = 0;
2533
2534         IPW_DEBUG_FW("<< \n");
2535 }
2536
2537 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2538                                           struct command_block *cb)
2539 {
2540         u32 address =
2541             IPW_SHARED_SRAM_DMA_CONTROL +
2542             (sizeof(struct command_block) * index);
2543         IPW_DEBUG_FW(">> :\n");
2544
2545         ipw_write_indirect(priv, address, (u8 *) cb,
2546                            (int)sizeof(struct command_block));
2547
2548         IPW_DEBUG_FW("<< :\n");
2549         return 0;
2550
2551 }
2552
2553 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2554 {
2555         u32 control = 0;
2556         u32 index = 0;
2557
2558         IPW_DEBUG_FW(">> :\n");
2559
2560         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2561                 ipw_fw_dma_write_command_block(priv, index,
2562                                                &priv->sram_desc.cb_list[index]);
2563
2564         /* Enable the DMA in the CSR register */
2565         ipw_clear_bit(priv, IPW_RESET_REG,
2566                       IPW_RESET_REG_MASTER_DISABLED |
2567                       IPW_RESET_REG_STOP_MASTER);
2568
2569         /* Set the Start bit. */
2570         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2571         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2572
2573         IPW_DEBUG_FW("<< :\n");
2574         return 0;
2575 }
2576
2577 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2578 {
2579         u32 address;
2580         u32 register_value = 0;
2581         u32 cb_fields_address = 0;
2582
2583         IPW_DEBUG_FW(">> :\n");
2584         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2585         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2586
2587         /* Read the DMA Controlor register */
2588         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2589         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2590
2591         /* Print the CB values */
2592         cb_fields_address = address;
2593         register_value = ipw_read_reg32(priv, cb_fields_address);
2594         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2595
2596         cb_fields_address += sizeof(u32);
2597         register_value = ipw_read_reg32(priv, cb_fields_address);
2598         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2599
2600         cb_fields_address += sizeof(u32);
2601         register_value = ipw_read_reg32(priv, cb_fields_address);
2602         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2603                           register_value);
2604
2605         cb_fields_address += sizeof(u32);
2606         register_value = ipw_read_reg32(priv, cb_fields_address);
2607         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2608
2609         IPW_DEBUG_FW(">> :\n");
2610 }
2611
2612 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2613 {
2614         u32 current_cb_address = 0;
2615         u32 current_cb_index = 0;
2616
2617         IPW_DEBUG_FW("<< :\n");
2618         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2619
2620         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2621             sizeof(struct command_block);
2622
2623         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2624                           current_cb_index, current_cb_address);
2625
2626         IPW_DEBUG_FW(">> :\n");
2627         return current_cb_index;
2628
2629 }
2630
2631 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2632                                         u32 src_address,
2633                                         u32 dest_address,
2634                                         u32 length,
2635                                         int interrupt_enabled, int is_last)
2636 {
2637
2638         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2639             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2640             CB_DEST_SIZE_LONG;
2641         struct command_block *cb;
2642         u32 last_cb_element = 0;
2643
2644         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2645                           src_address, dest_address, length);
2646
2647         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2648                 return -1;
2649
2650         last_cb_element = priv->sram_desc.last_cb_index;
2651         cb = &priv->sram_desc.cb_list[last_cb_element];
2652         priv->sram_desc.last_cb_index++;
2653
2654         /* Calculate the new CB control word */
2655         if (interrupt_enabled)
2656                 control |= CB_INT_ENABLED;
2657
2658         if (is_last)
2659                 control |= CB_LAST_VALID;
2660
2661         control |= length;
2662
2663         /* Calculate the CB Element's checksum value */
2664         cb->status = control ^ src_address ^ dest_address;
2665
2666         /* Copy the Source and Destination addresses */
2667         cb->dest_addr = dest_address;
2668         cb->source_addr = src_address;
2669
2670         /* Copy the Control Word last */
2671         cb->control = control;
2672
2673         return 0;
2674 }
2675
2676 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2677                                  u32 src_phys, u32 dest_address, u32 length)
2678 {
2679         u32 bytes_left = length;
2680         u32 src_offset = 0;
2681         u32 dest_offset = 0;
2682         int status = 0;
2683         IPW_DEBUG_FW(">> \n");
2684         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2685                           src_phys, dest_address, length);
2686         while (bytes_left > CB_MAX_LENGTH) {
2687                 status = ipw_fw_dma_add_command_block(priv,
2688                                                       src_phys + src_offset,
2689                                                       dest_address +
2690                                                       dest_offset,
2691                                                       CB_MAX_LENGTH, 0, 0);
2692                 if (status) {
2693                         IPW_DEBUG_FW_INFO(": Failed\n");
2694                         return -1;
2695                 } else
2696                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2697
2698                 src_offset += CB_MAX_LENGTH;
2699                 dest_offset += CB_MAX_LENGTH;
2700                 bytes_left -= CB_MAX_LENGTH;
2701         }
2702
2703         /* add the buffer tail */
2704         if (bytes_left > 0) {
2705                 status =
2706                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2707                                                  dest_address + dest_offset,
2708                                                  bytes_left, 0, 0);
2709                 if (status) {
2710                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2711                         return -1;
2712                 } else
2713                         IPW_DEBUG_FW_INFO
2714                             (": Adding new cb - the buffer tail\n");
2715         }
2716
2717         IPW_DEBUG_FW("<< \n");
2718         return 0;
2719 }
2720
2721 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2722 {
2723         u32 current_index = 0;
2724         u32 watchdog = 0;
2725
2726         IPW_DEBUG_FW(">> : \n");
2727
2728         current_index = ipw_fw_dma_command_block_index(priv);
2729         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2730                           (int)priv->sram_desc.last_cb_index);
2731
2732         while (current_index < priv->sram_desc.last_cb_index) {
2733                 udelay(50);
2734                 current_index = ipw_fw_dma_command_block_index(priv);
2735
2736                 watchdog++;
2737
2738                 if (watchdog > 400) {
2739                         IPW_DEBUG_FW_INFO("Timeout\n");
2740                         ipw_fw_dma_dump_command_block(priv);
2741                         ipw_fw_dma_abort(priv);
2742                         return -1;
2743                 }
2744         }
2745
2746         ipw_fw_dma_abort(priv);
2747
2748         /*Disable the DMA in the CSR register */
2749         ipw_set_bit(priv, IPW_RESET_REG,
2750                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2751
2752         IPW_DEBUG_FW("<< dmaWaitSync \n");
2753         return 0;
2754 }
2755
2756 static void ipw_remove_current_network(struct ipw_priv *priv)
2757 {
2758         struct list_head *element, *safe;
2759         struct ieee80211_network *network = NULL;
2760         unsigned long flags;
2761
2762         spin_lock_irqsave(&priv->ieee->lock, flags);
2763         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2764                 network = list_entry(element, struct ieee80211_network, list);
2765                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2766                         list_del(element);
2767                         list_add_tail(&network->list,
2768                                       &priv->ieee->network_free_list);
2769                 }
2770         }
2771         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2772 }
2773
2774 /**
2775  * Check that card is still alive.
2776  * Reads debug register from domain0.
2777  * If card is present, pre-defined value should
2778  * be found there.
2779  *
2780  * @param priv
2781  * @return 1 if card is present, 0 otherwise
2782  */
2783 static inline int ipw_alive(struct ipw_priv *priv)
2784 {
2785         return ipw_read32(priv, 0x90) == 0xd55555d5;
2786 }
2787
2788 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2789                                int timeout)
2790 {
2791         int i = 0;
2792
2793         do {
2794                 if ((ipw_read32(priv, addr) & mask) == mask)
2795                         return i;
2796                 mdelay(10);
2797                 i += 10;
2798         } while (i < timeout);
2799
2800         return -ETIME;
2801 }
2802
2803 /* These functions load the firmware and micro code for the operation of
2804  * the ipw hardware.  It assumes the buffer has all the bits for the
2805  * image and the caller is handling the memory allocation and clean up.
2806  */
2807
2808 static int ipw_stop_master(struct ipw_priv *priv)
2809 {
2810         int rc;
2811
2812         IPW_DEBUG_TRACE(">> \n");
2813         /* stop master. typical delay - 0 */
2814         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2815
2816         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2817                           IPW_RESET_REG_MASTER_DISABLED, 100);
2818         if (rc < 0) {
2819                 IPW_ERROR("stop master failed in 10ms\n");
2820                 return -1;
2821         }
2822
2823         IPW_DEBUG_INFO("stop master %dms\n", rc);
2824
2825         return rc;
2826 }
2827
2828 static void ipw_arc_release(struct ipw_priv *priv)
2829 {
2830         IPW_DEBUG_TRACE(">> \n");
2831         mdelay(5);
2832
2833         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2834
2835         /* no one knows timing, for safety add some delay */
2836         mdelay(5);
2837 }
2838
2839 struct fw_header {
2840         u32 version;
2841         u32 mode;
2842 };
2843
2844 struct fw_chunk {
2845         u32 address;
2846         u32 length;
2847 };
2848
2849 #define IPW_FW_MAJOR_VERSION 2
2850 #define IPW_FW_MINOR_VERSION 3
2851
2852 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2853 #define IPW_FW_MAJOR(x) (x & 0xff)
2854
2855 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2856
2857 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2858 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2859
2860 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2861 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2862 #else
2863 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2864 #endif
2865
2866 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2867 {
2868         int rc = 0, i, addr;
2869         u8 cr = 0;
2870         u16 *image;
2871
2872         image = (u16 *) data;
2873
2874         IPW_DEBUG_TRACE(">> \n");
2875
2876         rc = ipw_stop_master(priv);
2877
2878         if (rc < 0)
2879                 return rc;
2880
2881 //      spin_lock_irqsave(&priv->lock, flags);
2882
2883         for (addr = IPW_SHARED_LOWER_BOUND;
2884              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2885                 ipw_write32(priv, addr, 0);
2886         }
2887
2888         /* no ucode (yet) */
2889         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2890         /* destroy DMA queues */
2891         /* reset sequence */
2892
2893         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2894         ipw_arc_release(priv);
2895         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2896         mdelay(1);
2897
2898         /* reset PHY */
2899         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2900         mdelay(1);
2901
2902         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2903         mdelay(1);
2904
2905         /* enable ucode store */
2906         ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2907         ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2908         mdelay(1);
2909
2910         /* write ucode */
2911         /**
2912          * @bug
2913          * Do NOT set indirect address register once and then
2914          * store data to indirect data register in the loop.
2915          * It seems very reasonable, but in this case DINO do not
2916          * accept ucode. It is essential to set address each time.
2917          */
2918         /* load new ipw uCode */
2919         for (i = 0; i < len / 2; i++)
2920                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2921                                 cpu_to_le16(image[i]));
2922
2923         /* enable DINO */
2924         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2925         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2926
2927         /* this is where the igx / win driver deveates from the VAP driver. */
2928
2929         /* wait for alive response */
2930         for (i = 0; i < 100; i++) {
2931                 /* poll for incoming data */
2932                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2933                 if (cr & DINO_RXFIFO_DATA)
2934                         break;
2935                 mdelay(1);
2936         }
2937
2938         if (cr & DINO_RXFIFO_DATA) {
2939                 /* alive_command_responce size is NOT multiple of 4 */
2940                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2941
2942                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2943                         response_buffer[i] =
2944                             le32_to_cpu(ipw_read_reg32(priv,
2945                                                        IPW_BASEBAND_RX_FIFO_READ));
2946                 memcpy(&priv->dino_alive, response_buffer,
2947                        sizeof(priv->dino_alive));
2948                 if (priv->dino_alive.alive_command == 1
2949                     && priv->dino_alive.ucode_valid == 1) {
2950                         rc = 0;
2951                         IPW_DEBUG_INFO
2952                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2953                              "of %02d/%02d/%02d %02d:%02d\n",
2954                              priv->dino_alive.software_revision,
2955                              priv->dino_alive.software_revision,
2956                              priv->dino_alive.device_identifier,
2957                              priv->dino_alive.device_identifier,
2958                              priv->dino_alive.time_stamp[0],
2959                              priv->dino_alive.time_stamp[1],
2960                              priv->dino_alive.time_stamp[2],
2961                              priv->dino_alive.time_stamp[3],
2962                              priv->dino_alive.time_stamp[4]);
2963                 } else {
2964                         IPW_DEBUG_INFO("Microcode is not alive\n");
2965                         rc = -EINVAL;
2966                 }
2967         } else {
2968                 IPW_DEBUG_INFO("No alive response from DINO\n");
2969                 rc = -ETIME;
2970         }
2971
2972         /* disable DINO, otherwise for some reason
2973            firmware have problem getting alive resp. */
2974         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2975
2976 //      spin_unlock_irqrestore(&priv->lock, flags);
2977
2978         return rc;
2979 }
2980
2981 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2982 {
2983         int rc = -1;
2984         int offset = 0;
2985         struct fw_chunk *chunk;
2986         dma_addr_t shared_phys;
2987         u8 *shared_virt;
2988
2989         IPW_DEBUG_TRACE("<< : \n");
2990         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2991
2992         if (!shared_virt)
2993                 return -ENOMEM;
2994
2995         memmove(shared_virt, data, len);
2996
2997         /* Start the Dma */
2998         rc = ipw_fw_dma_enable(priv);
2999
3000         if (priv->sram_desc.last_cb_index > 0) {
3001                 /* the DMA is already ready this would be a bug. */
3002                 BUG();
3003                 goto out;
3004         }
3005
3006         do {
3007                 chunk = (struct fw_chunk *)(data + offset);
3008                 offset += sizeof(struct fw_chunk);
3009                 /* build DMA packet and queue up for sending */
3010                 /* dma to chunk->address, the chunk->length bytes from data +
3011                  * offeset*/
3012                 /* Dma loading */
3013                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3014                                            le32_to_cpu(chunk->address),
3015                                            le32_to_cpu(chunk->length));
3016                 if (rc) {
3017                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3018                         goto out;
3019                 }
3020
3021                 offset += le32_to_cpu(chunk->length);
3022         } while (offset < len);
3023
3024         /* Run the DMA and wait for the answer */
3025         rc = ipw_fw_dma_kick(priv);
3026         if (rc) {
3027                 IPW_ERROR("dmaKick Failed\n");
3028                 goto out;
3029         }
3030
3031         rc = ipw_fw_dma_wait(priv);
3032         if (rc) {
3033                 IPW_ERROR("dmaWaitSync Failed\n");
3034                 goto out;
3035         }
3036       out:
3037         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3038         return rc;
3039 }
3040
3041 /* stop nic */
3042 static int ipw_stop_nic(struct ipw_priv *priv)
3043 {
3044         int rc = 0;
3045
3046         /* stop */
3047         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3048
3049         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3050                           IPW_RESET_REG_MASTER_DISABLED, 500);
3051         if (rc < 0) {
3052                 IPW_ERROR("wait for reg master disabled failed\n");
3053                 return rc;
3054         }
3055
3056         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3057
3058         return rc;
3059 }
3060
3061 static void ipw_start_nic(struct ipw_priv *priv)
3062 {
3063         IPW_DEBUG_TRACE(">>\n");
3064
3065         /* prvHwStartNic  release ARC */
3066         ipw_clear_bit(priv, IPW_RESET_REG,
3067                       IPW_RESET_REG_MASTER_DISABLED |
3068                       IPW_RESET_REG_STOP_MASTER |
3069                       CBD_RESET_REG_PRINCETON_RESET);
3070
3071         /* enable power management */
3072         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3073                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3074
3075         IPW_DEBUG_TRACE("<<\n");
3076 }
3077
3078 static int ipw_init_nic(struct ipw_priv *priv)
3079 {
3080         int rc;
3081
3082         IPW_DEBUG_TRACE(">>\n");
3083         /* reset */
3084         /*prvHwInitNic */
3085         /* set "initialization complete" bit to move adapter to D0 state */
3086         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3087
3088         /* low-level PLL activation */
3089         ipw_write32(priv, IPW_READ_INT_REGISTER,
3090                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3091
3092         /* wait for clock stabilization */
3093         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3094                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3095         if (rc < 0)
3096                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3097
3098         /* assert SW reset */
3099         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3100
3101         udelay(10);
3102
3103         /* set "initialization complete" bit to move adapter to D0 state */
3104         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3105
3106         IPW_DEBUG_TRACE(">>\n");
3107         return 0;
3108 }
3109
3110 /* Call this function from process context, it will sleep in request_firmware.
3111  * Probe is an ok place to call this from.
3112  */
3113 static int ipw_reset_nic(struct ipw_priv *priv)
3114 {
3115         int rc = 0;
3116         unsigned long flags;
3117
3118         IPW_DEBUG_TRACE(">>\n");
3119
3120         rc = ipw_init_nic(priv);
3121
3122         spin_lock_irqsave(&priv->lock, flags);
3123         /* Clear the 'host command active' bit... */
3124         priv->status &= ~STATUS_HCMD_ACTIVE;
3125         wake_up_interruptible(&priv->wait_command_queue);
3126         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3127         wake_up_interruptible(&priv->wait_state);
3128         spin_unlock_irqrestore(&priv->lock, flags);
3129
3130         IPW_DEBUG_TRACE("<<\n");
3131         return rc;
3132 }
3133
3134 static int ipw_get_fw(struct ipw_priv *priv,
3135                       const struct firmware **fw, const char *name)
3136 {
3137         struct fw_header *header;
3138         int rc;
3139
3140         /* ask firmware_class module to get the boot firmware off disk */
3141         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3142         if (rc < 0) {
3143                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3144                 return rc;
3145         }
3146
3147         header = (struct fw_header *)(*fw)->data;
3148         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3149                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3150                           name,
3151                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3152                           IPW_FW_MAJOR_VERSION);
3153                 return -EINVAL;
3154         }
3155
3156         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3157                        name,
3158                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3159                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3160                        (*fw)->size - sizeof(struct fw_header));
3161         return 0;
3162 }
3163
3164 #define IPW_RX_BUF_SIZE (3000)
3165
3166 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
3167                                       struct ipw_rx_queue *rxq)
3168 {
3169         unsigned long flags;
3170         int i;
3171
3172         spin_lock_irqsave(&rxq->lock, flags);
3173
3174         INIT_LIST_HEAD(&rxq->rx_free);
3175         INIT_LIST_HEAD(&rxq->rx_used);
3176
3177         /* Fill the rx_used queue with _all_ of the Rx buffers */
3178         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3179                 /* In the reset function, these buffers may have been allocated
3180                  * to an SKB, so we need to unmap and free potential storage */
3181                 if (rxq->pool[i].skb != NULL) {
3182                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3183                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3184                         dev_kfree_skb(rxq->pool[i].skb);
3185                         rxq->pool[i].skb = NULL;
3186                 }
3187                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3188         }
3189
3190         /* Set us so that we have processed and used all buffers, but have
3191          * not restocked the Rx queue with fresh buffers */
3192         rxq->read = rxq->write = 0;
3193         rxq->processed = RX_QUEUE_SIZE - 1;
3194         rxq->free_count = 0;
3195         spin_unlock_irqrestore(&rxq->lock, flags);
3196 }
3197
3198 #ifdef CONFIG_PM
3199 static int fw_loaded = 0;
3200 static const struct firmware *bootfw = NULL;
3201 static const struct firmware *firmware = NULL;
3202 static const struct firmware *ucode = NULL;
3203
3204 static void free_firmware(void)
3205 {
3206         if (fw_loaded) {
3207                 release_firmware(bootfw);
3208                 release_firmware(ucode);
3209                 release_firmware(firmware);
3210                 bootfw = ucode = firmware = NULL;
3211                 fw_loaded = 0;
3212         }
3213 }
3214 #else
3215 #define free_firmware() do {} while (0)
3216 #endif
3217
3218 static int ipw_load(struct ipw_priv *priv)
3219 {
3220 #ifndef CONFIG_PM
3221         const struct firmware *bootfw = NULL;
3222         const struct firmware *firmware = NULL;
3223         const struct firmware *ucode = NULL;
3224 #endif
3225         int rc = 0, retries = 3;
3226
3227 #ifdef CONFIG_PM
3228         if (!fw_loaded) {
3229 #endif
3230                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3231                 if (rc)
3232                         goto error;
3233
3234                 switch (priv->ieee->iw_mode) {
3235                 case IW_MODE_ADHOC:
3236                         rc = ipw_get_fw(priv, &ucode,
3237                                         IPW_FW_NAME("ibss_ucode"));
3238                         if (rc)
3239                                 goto error;
3240
3241                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
3242                         break;
3243
3244 #ifdef CONFIG_IPW2200_MONITOR
3245                 case IW_MODE_MONITOR:
3246                         rc = ipw_get_fw(priv, &ucode,
3247                                         IPW_FW_NAME("sniffer_ucode"));
3248                         if (rc)
3249                                 goto error;
3250
3251                         rc = ipw_get_fw(priv, &firmware,
3252                                         IPW_FW_NAME("sniffer"));
3253                         break;
3254 #endif
3255                 case IW_MODE_INFRA:
3256                         rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
3257                         if (rc)
3258                                 goto error;
3259
3260                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
3261                         break;
3262
3263                 default:
3264                         rc = -EINVAL;
3265                 }
3266
3267                 if (rc)
3268                         goto error;
3269
3270 #ifdef CONFIG_PM
3271                 fw_loaded = 1;
3272         }
3273 #endif
3274
3275         if (!priv->rxq)
3276                 priv->rxq = ipw_rx_queue_alloc(priv);
3277         else
3278                 ipw_rx_queue_reset(priv, priv->rxq);
3279         if (!priv->rxq) {
3280                 IPW_ERROR("Unable to initialize Rx queue\n");
3281                 goto error;
3282         }
3283
3284       retry:
3285         /* Ensure interrupts are disabled */
3286         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3287         priv->status &= ~STATUS_INT_ENABLED;
3288
3289         /* ack pending interrupts */
3290         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3291
3292         ipw_stop_nic(priv);
3293
3294         rc = ipw_reset_nic(priv);
3295         if (rc) {
3296                 IPW_ERROR("Unable to reset NIC\n");
3297                 goto error;
3298         }
3299
3300         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3301                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3302
3303         /* DMA the initial boot firmware into the device */
3304         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3305                                bootfw->size - sizeof(struct fw_header));
3306         if (rc < 0) {
3307                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3308                 goto error;
3309         }
3310
3311         /* kick start the device */
3312         ipw_start_nic(priv);
3313
3314         /* wait for the device to finish it's initial startup sequence */
3315         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3316                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3317         if (rc < 0) {
3318                 IPW_ERROR("device failed to boot initial fw image\n");
3319                 goto error;
3320         }
3321         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3322
3323         /* ack fw init done interrupt */
3324         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3325
3326         /* DMA the ucode into the device */
3327         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3328                             ucode->size - sizeof(struct fw_header));
3329         if (rc < 0) {
3330                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3331                 goto error;
3332         }
3333
3334         /* stop nic */
3335         ipw_stop_nic(priv);
3336
3337         /* DMA bss firmware into the device */
3338         rc = ipw_load_firmware(priv, firmware->data +
3339                                sizeof(struct fw_header),
3340                                firmware->size - sizeof(struct fw_header));
3341         if (rc < 0) {
3342                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3343                 goto error;
3344         }
3345
3346         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3347
3348         rc = ipw_queue_reset(priv);
3349         if (rc) {
3350                 IPW_ERROR("Unable to initialize queues\n");
3351                 goto error;
3352         }
3353
3354         /* Ensure interrupts are disabled */
3355         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3356         /* ack pending interrupts */
3357         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3358
3359         /* kick start the device */
3360         ipw_start_nic(priv);
3361
3362         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3363                 if (retries > 0) {
3364                         IPW_WARNING("Parity error.  Retrying init.\n");
3365                         retries--;
3366                         goto retry;
3367                 }
3368
3369                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3370                 rc = -EIO;
3371                 goto error;
3372         }
3373
3374         /* wait for the device */
3375         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3376                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3377         if (rc < 0) {
3378                 IPW_ERROR("device failed to start after 500ms\n");
3379                 goto error;
3380         }
3381         IPW_DEBUG_INFO("device response after %dms\n", rc);
3382
3383         /* ack fw init done interrupt */
3384         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3385
3386         /* read eeprom data and initialize the eeprom region of sram */
3387         priv->eeprom_delay = 1;
3388         ipw_eeprom_init_sram(priv);
3389
3390         /* enable interrupts */
3391         ipw_enable_interrupts(priv);
3392
3393         /* Ensure our queue has valid packets */
3394         ipw_rx_queue_replenish(priv);
3395
3396         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3397
3398         /* ack pending interrupts */
3399         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3400
3401 #ifndef CONFIG_PM
3402         release_firmware(bootfw);
3403         release_firmware(ucode);
3404         release_firmware(firmware);
3405 #endif
3406         return 0;
3407
3408       error:
3409         if (priv->rxq) {
3410                 ipw_rx_queue_free(priv, priv->rxq);
3411                 priv->rxq = NULL;
3412         }
3413         ipw_tx_queue_free(priv);
3414         if (bootfw)
3415                 release_firmware(bootfw);
3416         if (ucode)
3417                 release_firmware(ucode);
3418         if (firmware)
3419                 release_firmware(firmware);
3420 #ifdef CONFIG_PM
3421         fw_loaded = 0;
3422         bootfw = ucode = firmware = NULL;
3423 #endif
3424
3425         return rc;
3426 }
3427
3428 /**
3429  * DMA services
3430  *
3431  * Theory of operation
3432  *
3433  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3434  * 2 empty entries always kept in the buffer to protect from overflow.
3435  *
3436  * For Tx queue, there are low mark and high mark limits. If, after queuing
3437  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3438  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3439  * Tx queue resumed.
3440  *
3441  * The IPW operates with six queues, one receive queue in the device's
3442  * sram, one transmit queue for sending commands to the device firmware,
3443  * and four transmit queues for data.
3444  *
3445  * The four transmit queues allow for performing quality of service (qos)
3446  * transmissions as per the 802.11 protocol.  Currently Linux does not
3447  * provide a mechanism to the user for utilizing prioritized queues, so
3448  * we only utilize the first data transmit queue (queue1).
3449  */
3450
3451 /**
3452  * Driver allocates buffers of this size for Rx
3453  */
3454
3455 static inline int ipw_queue_space(const struct clx2_queue *q)
3456 {
3457         int s = q->last_used - q->first_empty;
3458         if (s <= 0)
3459                 s += q->n_bd;
3460         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3461         if (s < 0)
3462                 s = 0;
3463         return s;
3464 }
3465
3466 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3467 {
3468         return (++index == n_bd) ? 0 : index;
3469 }
3470
3471 /**
3472  * Initialize common DMA queue structure
3473  *
3474  * @param q                queue to init
3475  * @param count            Number of BD's to allocate. Should be power of 2
3476  * @param read_register    Address for 'read' register
3477  *                         (not offset within BAR, full address)
3478  * @param write_register   Address for 'write' register
3479  *                         (not offset within BAR, full address)
3480  * @param base_register    Address for 'base' register
3481  *                         (not offset within BAR, full address)
3482  * @param size             Address for 'size' register
3483  *                         (not offset within BAR, full address)
3484  */
3485 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3486                            int count, u32 read, u32 write, u32 base, u32 size)
3487 {
3488         q->n_bd = count;
3489
3490         q->low_mark = q->n_bd / 4;
3491         if (q->low_mark < 4)
3492                 q->low_mark = 4;
3493
3494         q->high_mark = q->n_bd / 8;
3495         if (q->high_mark < 2)
3496                 q->high_mark = 2;
3497
3498         q->first_empty = q->last_used = 0;
3499         q->reg_r = read;
3500         q->reg_w = write;
3501
3502         ipw_write32(priv, base, q->dma_addr);
3503         ipw_write32(priv, size, count);
3504         ipw_write32(priv, read, 0);
3505         ipw_write32(priv, write, 0);
3506
3507         _ipw_read32(priv, 0x90);
3508 }
3509
3510 static int ipw_queue_tx_init(struct ipw_priv *priv,
3511                              struct clx2_tx_queue *q,
3512                              int count, u32 read, u32 write, u32 base, u32 size)
3513 {
3514         struct pci_dev *dev = priv->pci_dev;
3515
3516         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3517         if (!q->txb) {
3518                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3519                 return -ENOMEM;
3520         }
3521
3522         q->bd =
3523             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3524         if (!q->bd) {
3525                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3526                           sizeof(q->bd[0]) * count);
3527                 kfree(q->txb);
3528                 q->txb = NULL;
3529                 return -ENOMEM;
3530         }
3531
3532         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3533         return 0;
3534 }
3535
3536 /**
3537  * Free one TFD, those at index [txq->q.last_used].
3538  * Do NOT advance any indexes
3539  *
3540  * @param dev
3541  * @param txq
3542  */
3543 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3544                                   struct clx2_tx_queue *txq)
3545 {
3546         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3547         struct pci_dev *dev = priv->pci_dev;
3548         int i;
3549
3550         /* classify bd */
3551         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3552                 /* nothing to cleanup after for host commands */
3553                 return;
3554
3555         /* sanity check */
3556         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3557                 IPW_ERROR("Too many chunks: %i\n",
3558                           le32_to_cpu(bd->u.data.num_chunks));
3559                 /** @todo issue fatal error, it is quite serious situation */
3560                 return;
3561         }
3562
3563         /* unmap chunks if any */
3564         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3565                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3566                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3567                                  PCI_DMA_TODEVICE);
3568                 if (txq->txb[txq->q.last_used]) {
3569                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3570                         txq->txb[txq->q.last_used] = NULL;
3571                 }
3572         }
3573 }
3574
3575 /**
3576  * Deallocate DMA queue.
3577  *
3578  * Empty queue by removing and destroying all BD's.
3579  * Free all buffers.
3580  *
3581  * @param dev
3582  * @param q
3583  */
3584 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3585 {
3586         struct clx2_queue *q = &txq->q;
3587         struct pci_dev *dev = priv->pci_dev;
3588
3589         if (q->n_bd == 0)
3590                 return;
3591
3592         /* first, empty all BD's */
3593         for (; q->first_empty != q->last_used;
3594              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3595                 ipw_queue_tx_free_tfd(priv, txq);
3596         }
3597
3598         /* free buffers belonging to queue itself */
3599         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3600                             q->dma_addr);
3601         kfree(txq->txb);
3602
3603         /* 0 fill whole structure */
3604         memset(txq, 0, sizeof(*txq));
3605 }
3606
3607 /**
3608  * Destroy all DMA queues and structures
3609  *
3610  * @param priv
3611  */
3612 static void ipw_tx_queue_free(struct ipw_priv *priv)
3613 {
3614         /* Tx CMD queue */
3615         ipw_queue_tx_free(priv, &priv->txq_cmd);
3616
3617         /* Tx queues */
3618         ipw_queue_tx_free(priv, &priv->txq[0]);
3619         ipw_queue_tx_free(priv, &priv->txq[1]);
3620         ipw_queue_tx_free(priv, &priv->txq[2]);
3621         ipw_queue_tx_free(priv, &priv->txq[3]);
3622 }
3623
3624 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3625 {
3626         /* First 3 bytes are manufacturer */
3627         bssid[0] = priv->mac_addr[0];
3628         bssid[1] = priv->mac_addr[1];
3629         bssid[2] = priv->mac_addr[2];
3630
3631         /* Last bytes are random */
3632         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3633
3634         bssid[0] &= 0xfe;       /* clear multicast bit */
3635         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3636 }
3637
3638 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3639 {
3640         struct ipw_station_entry entry;
3641         int i;
3642
3643         for (i = 0; i < priv->num_stations; i++) {
3644                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3645                         /* Another node is active in network */
3646                         priv->missed_adhoc_beacons = 0;
3647                         if (!(priv->config & CFG_STATIC_CHANNEL))
3648                                 /* when other nodes drop out, we drop out */
3649                                 priv->config &= ~CFG_ADHOC_PERSIST;
3650
3651                         return i;
3652                 }
3653         }
3654
3655         if (i == MAX_STATIONS)
3656                 return IPW_INVALID_STATION;
3657
3658         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3659
3660         entry.reserved = 0;
3661         entry.support_mode = 0;
3662         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3663         memcpy(priv->stations[i], bssid, ETH_ALEN);
3664         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3665                          &entry, sizeof(entry));
3666         priv->num_stations++;
3667
3668         return i;
3669 }
3670
3671 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3672 {
3673         int i;
3674
3675         for (i = 0; i < priv->num_stations; i++)
3676                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3677                         return i;
3678
3679         return IPW_INVALID_STATION;
3680 }
3681
3682 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3683 {
3684         int err;
3685
3686         if (priv->status & STATUS_ASSOCIATING) {
3687                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3688                 queue_work(priv->workqueue, &priv->disassociate);
3689                 return;
3690         }
3691
3692         if (!(priv->status & STATUS_ASSOCIATED)) {
3693                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3694                 return;
3695         }
3696
3697         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3698                         "on channel %d.\n",
3699                         MAC_ARG(priv->assoc_request.bssid),
3700                         priv->assoc_request.channel);
3701
3702         if (quiet)
3703                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3704         else
3705                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3706         err = ipw_send_associate(priv, &priv->assoc_request);
3707         if (err) {
3708                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3709                              "failed.\n");
3710                 return;
3711         }
3712
3713         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3714         priv->status |= STATUS_DISASSOCIATING;
3715
3716 }
3717
3718 static int ipw_disassociate(void *data)
3719 {
3720         struct ipw_priv *priv = data;
3721         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3722                 return 0;
3723         ipw_send_disassociate(data, 0);
3724         return 1;
3725 }
3726
3727 static void ipw_bg_disassociate(void *data)
3728 {
3729         struct ipw_priv *priv = data;
3730         down(&priv->sem);
3731         ipw_disassociate(data);
3732         up(&priv->sem);
3733 }
3734
3735 static void ipw_system_config(void *data)
3736 {
3737         struct ipw_priv *priv = data;
3738         ipw_send_system_config(priv, &priv->sys_config);
3739 }
3740
3741 struct ipw_status_code {
3742         u16 status;
3743         const char *reason;
3744 };
3745
3746 static const struct ipw_status_code ipw_status_codes[] = {
3747         {0x00, "Successful"},
3748         {0x01, "Unspecified failure"},
3749         {0x0A, "Cannot support all requested capabilities in the "
3750          "Capability information field"},
3751         {0x0B, "Reassociation denied due to inability to confirm that "
3752          "association exists"},
3753         {0x0C, "Association denied due to reason outside the scope of this "
3754          "standard"},
3755         {0x0D,
3756          "Responding station does not support the specified authentication "
3757          "algorithm"},
3758         {0x0E,
3759          "Received an Authentication frame with authentication sequence "
3760          "transaction sequence number out of expected sequence"},
3761         {0x0F, "Authentication rejected because of challenge failure"},
3762         {0x10, "Authentication rejected due to timeout waiting for next "
3763          "frame in sequence"},
3764         {0x11, "Association denied because AP is unable to handle additional "
3765          "associated stations"},
3766         {0x12,
3767          "Association denied due to requesting station not supporting all "
3768          "of the datarates in the BSSBasicServiceSet Parameter"},
3769         {0x13,
3770          "Association denied due to requesting station not supporting "
3771          "short preamble operation"},
3772         {0x14,
3773          "Association denied due to requesting station not supporting "
3774          "PBCC encoding"},
3775         {0x15,
3776          "Association denied due to requesting station not supporting "
3777          "channel agility"},
3778         {0x19,
3779          "Association denied due to requesting station not supporting "
3780          "short slot operation"},
3781         {0x1A,
3782          "Association denied due to requesting station not supporting "
3783          "DSSS-OFDM operation"},
3784         {0x28, "Invalid Information Element"},
3785         {0x29, "Group Cipher is not valid"},
3786         {0x2A, "Pairwise Cipher is not valid"},
3787         {0x2B, "AKMP is not valid"},
3788         {0x2C, "Unsupported RSN IE version"},
3789         {0x2D, "Invalid RSN IE Capabilities"},
3790         {0x2E, "Cipher suite is rejected per security policy"},
3791 };
3792
3793 #ifdef CONFIG_IPW_DEBUG
3794 static const char *ipw_get_status_code(u16 status)
3795 {
3796         int i;
3797         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3798                 if (ipw_status_codes[i].status == (status & 0xff))
3799                         return ipw_status_codes[i].reason;
3800         return "Unknown status value.";
3801 }
3802 #endif
3803
3804 static void inline average_init(struct average *avg)
3805 {
3806         memset(avg, 0, sizeof(*avg));
3807 }
3808
3809 static void inline average_add(struct average *avg, s16 val)
3810 {
3811         avg->sum -= avg->entries[avg->pos];
3812         avg->sum += val;
3813         avg->entries[avg->pos++] = val;
3814         if (unlikely(avg->pos == AVG_ENTRIES)) {
3815                 avg->init = 1;
3816                 avg->pos = 0;
3817         }
3818 }
3819
3820 static s16 inline average_value(struct average *avg)
3821 {
3822         if (!unlikely(avg->init)) {
3823                 if (avg->pos)
3824                         return avg->sum / avg->pos;
3825                 return 0;
3826         }
3827
3828         return avg->sum / AVG_ENTRIES;
3829 }
3830
3831 static void ipw_reset_stats(struct ipw_priv *priv)
3832 {
3833         u32 len = sizeof(u32);
3834
3835         priv->quality = 0;
3836
3837         average_init(&priv->average_missed_beacons);
3838         average_init(&priv->average_rssi);
3839         average_init(&priv->average_noise);
3840
3841         priv->last_rate = 0;
3842         priv->last_missed_beacons = 0;
3843         priv->last_rx_packets = 0;
3844         priv->last_tx_packets = 0;
3845         priv->last_tx_failures = 0;
3846
3847         /* Firmware managed, reset only when NIC is restarted, so we have to
3848          * normalize on the current value */
3849         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3850                         &priv->last_rx_err, &len);
3851         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3852                         &priv->last_tx_failures, &len);
3853
3854         /* Driver managed, reset with each association */
3855         priv->missed_adhoc_beacons = 0;
3856         priv->missed_beacons = 0;
3857         priv->tx_packets = 0;
3858         priv->rx_packets = 0;
3859
3860 }
3861
3862 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3863 {
3864         u32 i = 0x80000000;
3865         u32 mask = priv->rates_mask;
3866         /* If currently associated in B mode, restrict the maximum
3867          * rate match to B rates */
3868         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3869                 mask &= IEEE80211_CCK_RATES_MASK;
3870
3871         /* TODO: Verify that the rate is supported by the current rates
3872          * list. */
3873
3874         while (i && !(mask & i))
3875                 i >>= 1;
3876         switch (i) {
3877         case IEEE80211_CCK_RATE_1MB_MASK:
3878                 return 1000000;
3879         case IEEE80211_CCK_RATE_2MB_MASK:
3880                 return 2000000;
3881         case IEEE80211_CCK_RATE_5MB_MASK:
3882                 return 5500000;
3883         case IEEE80211_OFDM_RATE_6MB_MASK:
3884                 return 6000000;
3885         case IEEE80211_OFDM_RATE_9MB_MASK:
3886                 return 9000000;
3887         case IEEE80211_CCK_RATE_11MB_MASK:
3888                 return 11000000;
3889         case IEEE80211_OFDM_RATE_12MB_MASK:
3890                 return 12000000;
3891         case IEEE80211_OFDM_RATE_18MB_MASK:
3892                 return 18000000;
3893         case IEEE80211_OFDM_RATE_24MB_MASK:
3894                 return 24000000;
3895         case IEEE80211_OFDM_RATE_36MB_MASK:
3896                 return 36000000;
3897         case IEEE80211_OFDM_RATE_48MB_MASK:
3898                 return 48000000;
3899         case IEEE80211_OFDM_RATE_54MB_MASK:
3900                 return 54000000;
3901         }
3902
3903         if (priv->ieee->mode == IEEE_B)
3904                 return 11000000;
3905         else
3906                 return 54000000;
3907 }
3908
3909 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3910 {
3911         u32 rate, len = sizeof(rate);
3912         int err;
3913
3914         if (!(priv->status & STATUS_ASSOCIATED))
3915                 return 0;
3916
3917         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3918                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3919                                       &len);
3920                 if (err) {
3921                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3922                         return 0;
3923                 }
3924         } else
3925                 return ipw_get_max_rate(priv);
3926
3927         switch (rate) {
3928         case IPW_TX_RATE_1MB:
3929                 return 1000000;
3930         case IPW_TX_RATE_2MB:
3931                 return 2000000;
3932         case IPW_TX_RATE_5MB:
3933                 return 5500000;
3934         case IPW_TX_RATE_6MB:
3935                 return 6000000;
3936         case IPW_TX_RATE_9MB:
3937                 return 9000000;
3938         case IPW_TX_RATE_11MB:
3939                 return 11000000;
3940         case IPW_TX_RATE_12MB:
3941                 return 12000000;
3942         case IPW_TX_RATE_18MB:
3943                 return 18000000;
3944         case IPW_TX_RATE_24MB:
3945                 return 24000000;
3946         case IPW_TX_RATE_36MB:
3947                 return 36000000;
3948         case IPW_TX_RATE_48MB:
3949                 return 48000000;
3950         case IPW_TX_RATE_54MB:
3951                 return 54000000;
3952         }
3953
3954         return 0;
3955 }
3956
3957 #define IPW_STATS_INTERVAL (2 * HZ)
3958 static void ipw_gather_stats(struct ipw_priv *priv)
3959 {
3960         u32 rx_err, rx_err_delta, rx_packets_delta;
3961         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3962         u32 missed_beacons_percent, missed_beacons_delta;
3963         u32 quality = 0;
3964         u32 len = sizeof(u32);
3965         s16 rssi;
3966         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3967             rate_quality;
3968         u32 max_rate;
3969
3970         if (!(priv->status & STATUS_ASSOCIATED)) {
3971                 priv->quality = 0;
3972                 return;
3973         }
3974
3975         /* Update the statistics */
3976         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3977                         &priv->missed_beacons, &len);
3978         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3979         priv->last_missed_beacons = priv->missed_beacons;
3980         if (priv->assoc_request.beacon_interval) {
3981                 missed_beacons_percent = missed_beacons_delta *
3982                     (HZ * priv->assoc_request.beacon_interval) /
3983                     (IPW_STATS_INTERVAL * 10);
3984         } else {
3985                 missed_beacons_percent = 0;
3986         }
3987         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3988
3989         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3990         rx_err_delta = rx_err - priv->last_rx_err;
3991         priv->last_rx_err = rx_err;
3992
3993         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3994         tx_failures_delta = tx_failures - priv->last_tx_failures;
3995         priv->last_tx_failures = tx_failures;
3996
3997         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3998         priv->last_rx_packets = priv->rx_packets;
3999
4000         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4001         priv->last_tx_packets = priv->tx_packets;
4002
4003         /* Calculate quality based on the following:
4004          *
4005          * Missed beacon: 100% = 0, 0% = 70% missed
4006          * Rate: 60% = 1Mbs, 100% = Max
4007          * Rx and Tx errors represent a straight % of total Rx/Tx
4008          * RSSI: 100% = > -50,  0% = < -80
4009          * Rx errors: 100% = 0, 0% = 50% missed
4010          *
4011          * The lowest computed quality is used.
4012          *
4013          */
4014 #define BEACON_THRESHOLD 5
4015         beacon_quality = 100 - missed_beacons_percent;
4016         if (beacon_quality < BEACON_THRESHOLD)
4017                 beacon_quality = 0;
4018         else
4019                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4020                     (100 - BEACON_THRESHOLD);
4021         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4022                         beacon_quality, missed_beacons_percent);
4023
4024         priv->last_rate = ipw_get_current_rate(priv);
4025         max_rate = ipw_get_max_rate(priv);
4026         rate_quality = priv->last_rate * 40 / max_rate + 60;
4027         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4028                         rate_quality, priv->last_rate / 1000000);
4029
4030         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4031                 rx_quality = 100 - (rx_err_delta * 100) /
4032                     (rx_packets_delta + rx_err_delta);
4033         else
4034                 rx_quality = 100;
4035         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4036                         rx_quality, rx_err_delta, rx_packets_delta);
4037
4038         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4039                 tx_quality = 100 - (tx_failures_delta * 100) /
4040                     (tx_packets_delta + tx_failures_delta);
4041         else
4042                 tx_quality = 100;
4043         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4044                         tx_quality, tx_failures_delta, tx_packets_delta);
4045
4046         rssi = average_value(&priv->average_rssi);
4047         signal_quality =
4048             (100 *
4049              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4050              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4051              (priv->ieee->perfect_rssi - rssi) *
4052              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4053               62 * (priv->ieee->perfect_rssi - rssi))) /
4054             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4055              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4056         if (signal_quality > 100)
4057                 signal_quality = 100;
4058         else if (signal_quality < 1)
4059                 signal_quality = 0;
4060
4061         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4062                         signal_quality, rssi);
4063
4064         quality = min(beacon_quality,
4065                       min(rate_quality,
4066                           min(tx_quality, min(rx_quality, signal_quality))));
4067         if (quality == beacon_quality)
4068                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4069                                 quality);
4070         if (quality == rate_quality)
4071                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4072                                 quality);
4073         if (quality == tx_quality)
4074                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4075                                 quality);
4076         if (quality == rx_quality)
4077                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4078                                 quality);
4079         if (quality == signal_quality)
4080                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4081                                 quality);
4082
4083         priv->quality = quality;
4084
4085         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4086                            IPW_STATS_INTERVAL);
4087 }
4088
4089 static void ipw_bg_gather_stats(void *data)
4090 {
4091         struct ipw_priv *priv = data;
4092         down(&priv->sem);
4093         ipw_gather_stats(data);
4094         up(&priv->sem);
4095 }
4096
4097 static inline void ipw_handle_missed_beacon(struct ipw_priv *priv,
4098                                             int missed_count)
4099 {
4100         priv->notif_missed_beacons = missed_count;
4101
4102         if (missed_count > priv->disassociate_threshold &&
4103             priv->status & STATUS_ASSOCIATED) {
4104                 /* If associated and we've hit the missed
4105                  * beacon threshold, disassociate, turn
4106                  * off roaming, and abort any active scans */
4107                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4108                           IPW_DL_STATE | IPW_DL_ASSOC,
4109                           "Missed beacon: %d - disassociate\n", missed_count);
4110                 priv->status &= ~STATUS_ROAMING;
4111                 if (priv->status & STATUS_SCANNING) {
4112                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4113                                   IPW_DL_STATE,
4114                                   "Aborting scan with missed beacon.\n");
4115                         queue_work(priv->workqueue, &priv->abort_scan);
4116                 }
4117
4118                 queue_work(priv->workqueue, &priv->disassociate);
4119                 return;
4120         }
4121
4122         if (priv->status & STATUS_ROAMING) {
4123                 /* If we are currently roaming, then just
4124                  * print a debug statement... */
4125                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4126                           "Missed beacon: %d - roam in progress\n",
4127                           missed_count);
4128                 return;
4129         }
4130
4131         if (missed_count > priv->roaming_threshold) {
4132                 /* If we are not already roaming, set the ROAM
4133                  * bit in the status and kick off a scan */
4134                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4135                           "Missed beacon: %d - initiate "
4136                           "roaming\n", missed_count);
4137                 if (!(priv->status & STATUS_ROAMING)) {
4138                         priv->status |= STATUS_ROAMING;
4139                         if (!(priv->status & STATUS_SCANNING))
4140                                 queue_work(priv->workqueue,
4141                                            &priv->request_scan);
4142                 }
4143                 return;
4144         }
4145
4146         if (priv->status & STATUS_SCANNING) {
4147                 /* Stop scan to keep fw from getting
4148                  * stuck (only if we aren't roaming --
4149                  * otherwise we'll never scan more than 2 or 3
4150                  * channels..) */
4151                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4152                           "Aborting scan with missed beacon.\n");
4153                 queue_work(priv->workqueue, &priv->abort_scan);
4154         }
4155
4156         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4157
4158 }
4159
4160 /**
4161  * Handle host notification packet.
4162  * Called from interrupt routine
4163  */
4164 static inline void ipw_rx_notification(struct ipw_priv *priv,
4165                                        struct ipw_rx_notification *notif)
4166 {
4167         notif->size = le16_to_cpu(notif->size);
4168
4169         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4170
4171         switch (notif->subtype) {
4172         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4173                         struct notif_association *assoc = &notif->u.assoc;
4174
4175                         switch (assoc->state) {
4176                         case CMAS_ASSOCIATED:{
4177                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4178                                                   IPW_DL_ASSOC,
4179                                                   "associated: '%s' " MAC_FMT
4180                                                   " \n",
4181                                                   escape_essid(priv->essid,
4182                                                                priv->essid_len),
4183                                                   MAC_ARG(priv->bssid));
4184
4185                                         switch (priv->ieee->iw_mode) {
4186                                         case IW_MODE_INFRA:
4187                                                 memcpy(priv->ieee->bssid,
4188                                                        priv->bssid, ETH_ALEN);
4189                                                 break;
4190
4191                                         case IW_MODE_ADHOC:
4192                                                 memcpy(priv->ieee->bssid,
4193                                                        priv->bssid, ETH_ALEN);
4194
4195                                                 /* clear out the station table */
4196                                                 priv->num_stations = 0;
4197
4198                                                 IPW_DEBUG_ASSOC
4199                                                     ("queueing adhoc check\n");
4200                                                 queue_delayed_work(priv->
4201                                                                    workqueue,
4202                                                                    &priv->
4203                                                                    adhoc_check,
4204                                                                    priv->
4205                                                                    assoc_request.
4206                                                                    beacon_interval);
4207                                                 break;
4208                                         }
4209
4210                                         priv->status &= ~STATUS_ASSOCIATING;
4211                                         priv->status |= STATUS_ASSOCIATED;
4212                                         queue_work(priv->workqueue,
4213                                                    &priv->system_config);
4214
4215 #ifdef CONFIG_IPW_QOS
4216 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4217                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4218                                         if ((priv->status & STATUS_AUTH) &&
4219                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4220                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4221                                                 if ((sizeof
4222                                                      (struct
4223                                                       ieee80211_assoc_response)
4224                                                      <= notif->size)
4225                                                     && (notif->size <= 2314)) {
4226                                                         struct
4227                                                         ieee80211_rx_stats
4228                                                             stats = {
4229                                                                 .len =
4230                                                                     notif->
4231                                                                     size - 1,
4232                                                         };
4233
4234                                                         IPW_DEBUG_QOS
4235                                                             ("QoS Associate "
4236                                                              "size %d\n",
4237                                                              notif->size);
4238                                                         ieee80211_rx_mgt(priv->
4239                                                                          ieee,
4240                                                                          (struct
4241                                                                           ieee80211_hdr_4addr
4242                                                                           *)
4243                                                                          &notif->u.raw, &stats);
4244                                                 }
4245                                         }
4246 #endif
4247
4248                                         schedule_work(&priv->link_up);
4249
4250                                         break;
4251                                 }
4252
4253                         case CMAS_AUTHENTICATED:{
4254                                         if (priv->
4255                                             status & (STATUS_ASSOCIATED |
4256                                                       STATUS_AUTH)) {
4257 #ifdef CONFIG_IPW_DEBUG
4258                                                 struct notif_authenticate *auth
4259                                                     = &notif->u.auth;
4260                                                 IPW_DEBUG(IPW_DL_NOTIF |
4261                                                           IPW_DL_STATE |
4262                                                           IPW_DL_ASSOC,
4263                                                           "deauthenticated: '%s' "
4264                                                           MAC_FMT
4265                                                           ": (0x%04X) - %s \n",
4266                                                           escape_essid(priv->
4267                                                                        essid,
4268                                                                        priv->
4269                                                                        essid_len),
4270                                                           MAC_ARG(priv->bssid),
4271                                                           ntohs(auth->status),
4272                                                           ipw_get_status_code
4273                                                           (ntohs
4274                                                            (auth->status)));
4275 #endif
4276
4277                                                 priv->status &=
4278                                                     ~(STATUS_ASSOCIATING |
4279                                                       STATUS_AUTH |
4280                                                       STATUS_ASSOCIATED);
4281
4282                                                 schedule_work(&priv->link_down);
4283                                                 break;
4284                                         }
4285
4286                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4287                                                   IPW_DL_ASSOC,
4288                                                   "authenticated: '%s' " MAC_FMT
4289                                                   "\n",
4290                                                   escape_essid(priv->essid,
4291                                                                priv->essid_len),
4292                                                   MAC_ARG(priv->bssid));
4293                                         break;
4294                                 }
4295
4296                         case CMAS_INIT:{
4297                                         if (priv->status & STATUS_AUTH) {
4298                                                 struct
4299                                                     ieee80211_assoc_response
4300                                                 *resp;
4301                                                 resp =
4302                                                     (struct
4303                                                      ieee80211_assoc_response
4304                                                      *)&notif->u.raw;
4305                                                 IPW_DEBUG(IPW_DL_NOTIF |
4306                                                           IPW_DL_STATE |
4307                                                           IPW_DL_ASSOC,
4308                                                           "association failed (0x%04X): %s\n",
4309                                                           ntohs(resp->status),
4310                                                           ipw_get_status_code
4311                                                           (ntohs
4312                                                            (resp->status)));
4313                                         }
4314
4315                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4316                                                   IPW_DL_ASSOC,
4317                                                   "disassociated: '%s' " MAC_FMT
4318                                                   " \n",
4319                                                   escape_essid(priv->essid,
4320                                                                priv->essid_len),
4321                                                   MAC_ARG(priv->bssid));
4322
4323                                         priv->status &=
4324                                             ~(STATUS_DISASSOCIATING |
4325                                               STATUS_ASSOCIATING |
4326                                               STATUS_ASSOCIATED | STATUS_AUTH);
4327                                         if (priv->assoc_network
4328                                             && (priv->assoc_network->
4329                                                 capability &
4330                                                 WLAN_CAPABILITY_IBSS))
4331                                                 ipw_remove_current_network
4332                                                     (priv);
4333
4334                                         schedule_work(&priv->link_down);
4335
4336                                         break;
4337                                 }
4338
4339                         case CMAS_RX_ASSOC_RESP:
4340                                 break;
4341
4342                         default:
4343                                 IPW_ERROR("assoc: unknown (%d)\n",
4344                                           assoc->state);
4345                                 break;
4346                         }
4347
4348                         break;
4349                 }
4350
4351         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4352                         struct notif_authenticate *auth = &notif->u.auth;
4353                         switch (auth->state) {
4354                         case CMAS_AUTHENTICATED:
4355                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4356                                           "authenticated: '%s' " MAC_FMT " \n",
4357                                           escape_essid(priv->essid,
4358                                                        priv->essid_len),
4359                                           MAC_ARG(priv->bssid));
4360                                 priv->status |= STATUS_AUTH;
4361                                 break;
4362
4363                         case CMAS_INIT:
4364                                 if (priv->status & STATUS_AUTH) {
4365                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4366                                                   IPW_DL_ASSOC,
4367                                                   "authentication failed (0x%04X): %s\n",
4368                                                   ntohs(auth->status),
4369                                                   ipw_get_status_code(ntohs
4370                                                                       (auth->
4371                                                                        status)));
4372                                 }
4373                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4374                                           IPW_DL_ASSOC,
4375                                           "deauthenticated: '%s' " MAC_FMT "\n",
4376                                           escape_essid(priv->essid,
4377                                                        priv->essid_len),
4378                                           MAC_ARG(priv->bssid));
4379
4380                                 priv->status &= ~(STATUS_ASSOCIATING |
4381                                                   STATUS_AUTH |
4382                                                   STATUS_ASSOCIATED);
4383
4384                                 schedule_work(&priv->link_down);
4385                                 break;
4386
4387                         case CMAS_TX_AUTH_SEQ_1:
4388                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4389                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4390                                 break;
4391                         case CMAS_RX_AUTH_SEQ_2:
4392                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4393                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4394                                 break;
4395                         case CMAS_AUTH_SEQ_1_PASS:
4396                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4397                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4398                                 break;
4399                         case CMAS_AUTH_SEQ_1_FAIL:
4400                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4401                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4402                                 break;
4403                         case CMAS_TX_AUTH_SEQ_3:
4404                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4405                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4406                                 break;
4407                         case CMAS_RX_AUTH_SEQ_4:
4408                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4410                                 break;
4411                         case CMAS_AUTH_SEQ_2_PASS:
4412                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4414                                 break;
4415                         case CMAS_AUTH_SEQ_2_FAIL:
4416                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4418                                 break;
4419                         case CMAS_TX_ASSOC:
4420                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4421                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4422                                 break;
4423                         case CMAS_RX_ASSOC_RESP:
4424                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4426
4427                                 break;
4428                         case CMAS_ASSOCIATED:
4429                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4430                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4431                                 break;
4432                         default:
4433                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4434                                                 auth->state);
4435                                 break;
4436                         }
4437                         break;
4438                 }
4439
4440         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4441                         struct notif_channel_result *x =
4442                             &notif->u.channel_result;
4443
4444                         if (notif->size == sizeof(*x)) {
4445                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4446                                                x->channel_num);
4447                         } else {
4448                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4449                                                "(should be %zd)\n",
4450                                                notif->size, sizeof(*x));
4451                         }
4452                         break;
4453                 }
4454
4455         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4456                         struct notif_scan_complete *x = &notif->u.scan_complete;
4457                         if (notif->size == sizeof(*x)) {
4458                                 IPW_DEBUG_SCAN
4459                                     ("Scan completed: type %d, %d channels, "
4460                                      "%d status\n", x->scan_type,
4461                                      x->num_channels, x->status);
4462                         } else {
4463                                 IPW_ERROR("Scan completed of wrong size %d "
4464                                           "(should be %zd)\n",
4465                                           notif->size, sizeof(*x));
4466                         }
4467
4468                         priv->status &=
4469                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4470
4471                         wake_up_interruptible(&priv->wait_state);
4472                         cancel_delayed_work(&priv->scan_check);
4473
4474                         if (priv->status & STATUS_EXIT_PENDING)
4475                                 break;
4476
4477                         priv->ieee->scans++;
4478
4479 #ifdef CONFIG_IPW2200_MONITOR
4480                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4481                                 priv->status |= STATUS_SCAN_FORCED;
4482                                 queue_work(priv->workqueue,
4483                                            &priv->request_scan);
4484                                 break;
4485                         }
4486                         priv->status &= ~STATUS_SCAN_FORCED;
4487 #endif                          /* CONFIG_IPW2200_MONITOR */
4488
4489                         if (!(priv->status & (STATUS_ASSOCIATED |
4490                                               STATUS_ASSOCIATING |
4491                                               STATUS_ROAMING |
4492                                               STATUS_DISASSOCIATING)))
4493                                 queue_work(priv->workqueue, &priv->associate);
4494                         else if (priv->status & STATUS_ROAMING) {
4495                                 /* If a scan completed and we are in roam mode, then
4496                                  * the scan that completed was the one requested as a
4497                                  * result of entering roam... so, schedule the
4498                                  * roam work */
4499                                 queue_work(priv->workqueue, &priv->roam);
4500                         } else if (priv->status & STATUS_SCAN_PENDING)
4501                                 queue_work(priv->workqueue,
4502                                            &priv->request_scan);
4503                         else if (priv->config & CFG_BACKGROUND_SCAN
4504                                  && priv->status & STATUS_ASSOCIATED)
4505                                 queue_delayed_work(priv->workqueue,
4506                                                    &priv->request_scan, HZ);
4507                         break;
4508                 }
4509
4510         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4511                         struct notif_frag_length *x = &notif->u.frag_len;
4512
4513                         if (notif->size == sizeof(*x))
4514                                 IPW_ERROR("Frag length: %d\n",
4515                                           le16_to_cpu(x->frag_length));
4516                         else
4517                                 IPW_ERROR("Frag length of wrong size %d "
4518                                           "(should be %zd)\n",
4519                                           notif->size, sizeof(*x));
4520                         break;
4521                 }
4522
4523         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4524                         struct notif_link_deterioration *x =
4525                             &notif->u.link_deterioration;
4526
4527                         if (notif->size == sizeof(*x)) {
4528                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4529                                           "link deterioration: '%s' " MAC_FMT
4530                                           " \n", escape_essid(priv->essid,
4531                                                               priv->essid_len),
4532                                           MAC_ARG(priv->bssid));
4533                                 memcpy(&priv->last_link_deterioration, x,
4534                                        sizeof(*x));
4535                         } else {
4536                                 IPW_ERROR("Link Deterioration of wrong size %d "
4537                                           "(should be %zd)\n",
4538                                           notif->size, sizeof(*x));
4539                         }
4540                         break;
4541                 }
4542
4543         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4544                         IPW_ERROR("Dino config\n");
4545                         if (priv->hcmd
4546                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4547                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4548
4549                         break;
4550                 }
4551
4552         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4553                         struct notif_beacon_state *x = &notif->u.beacon_state;
4554                         if (notif->size != sizeof(*x)) {
4555                                 IPW_ERROR
4556                                     ("Beacon state of wrong size %d (should "
4557                                      "be %zd)\n", notif->size, sizeof(*x));
4558                                 break;
4559                         }
4560
4561                         if (le32_to_cpu(x->state) ==
4562                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4563                                 ipw_handle_missed_beacon(priv,
4564                                                          le32_to_cpu(x->
4565                                                                      number));
4566
4567                         break;
4568                 }
4569
4570         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4571                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4572                         if (notif->size == sizeof(*x)) {
4573                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4574                                           "0x%02x station %d\n",
4575                                           x->key_state, x->security_type,
4576                                           x->station_index);
4577                                 break;
4578                         }
4579
4580                         IPW_ERROR
4581                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4582                              notif->size, sizeof(*x));
4583                         break;
4584                 }
4585
4586         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4587                         struct notif_calibration *x = &notif->u.calibration;
4588
4589                         if (notif->size == sizeof(*x)) {
4590                                 memcpy(&priv->calib, x, sizeof(*x));
4591                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4592                                 break;
4593                         }
4594
4595                         IPW_ERROR
4596                             ("Calibration of wrong size %d (should be %zd)\n",
4597                              notif->size, sizeof(*x));
4598                         break;
4599                 }
4600
4601         case HOST_NOTIFICATION_NOISE_STATS:{
4602                         if (notif->size == sizeof(u32)) {
4603                                 priv->last_noise =
4604                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4605                                           0xff);
4606                                 average_add(&priv->average_noise,
4607                                             priv->last_noise);
4608                                 break;
4609                         }
4610
4611                         IPW_ERROR
4612                             ("Noise stat is wrong size %d (should be %zd)\n",
4613                              notif->size, sizeof(u32));
4614                         break;
4615                 }
4616
4617         default:
4618                 IPW_ERROR("Unknown notification: "
4619                           "subtype=%d,flags=0x%2x,size=%d\n",
4620                           notif->subtype, notif->flags, notif->size);
4621         }
4622 }
4623
4624 /**
4625  * Destroys all DMA structures and initialise them again
4626  *
4627  * @param priv
4628  * @return error code
4629  */
4630 static int ipw_queue_reset(struct ipw_priv *priv)
4631 {
4632         int rc = 0;
4633         /** @todo customize queue sizes */
4634         int nTx = 64, nTxCmd = 8;
4635         ipw_tx_queue_free(priv);
4636         /* Tx CMD queue */
4637         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4638                                IPW_TX_CMD_QUEUE_READ_INDEX,
4639                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4640                                IPW_TX_CMD_QUEUE_BD_BASE,
4641                                IPW_TX_CMD_QUEUE_BD_SIZE);
4642         if (rc) {
4643                 IPW_ERROR("Tx Cmd queue init failed\n");
4644                 goto error;
4645         }
4646         /* Tx queue(s) */
4647         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4648                                IPW_TX_QUEUE_0_READ_INDEX,
4649                                IPW_TX_QUEUE_0_WRITE_INDEX,
4650                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4651         if (rc) {
4652                 IPW_ERROR("Tx 0 queue init failed\n");
4653                 goto error;
4654         }
4655         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4656                                IPW_TX_QUEUE_1_READ_INDEX,
4657                                IPW_TX_QUEUE_1_WRITE_INDEX,
4658                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4659         if (rc) {
4660                 IPW_ERROR("Tx 1 queue init failed\n");
4661                 goto error;
4662         }
4663         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4664                                IPW_TX_QUEUE_2_READ_INDEX,
4665                                IPW_TX_QUEUE_2_WRITE_INDEX,
4666                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4667         if (rc) {
4668                 IPW_ERROR("Tx 2 queue init failed\n");
4669                 goto error;
4670         }
4671         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4672                                IPW_TX_QUEUE_3_READ_INDEX,
4673                                IPW_TX_QUEUE_3_WRITE_INDEX,
4674                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4675         if (rc) {
4676                 IPW_ERROR("Tx 3 queue init failed\n");
4677                 goto error;
4678         }
4679         /* statistics */
4680         priv->rx_bufs_min = 0;
4681         priv->rx_pend_max = 0;
4682         return rc;
4683
4684       error:
4685         ipw_tx_queue_free(priv);
4686         return rc;
4687 }
4688
4689 /**
4690  * Reclaim Tx queue entries no more used by NIC.
4691  *
4692  * When FW adwances 'R' index, all entries between old and
4693  * new 'R' index need to be reclaimed. As result, some free space
4694  * forms. If there is enough free space (> low mark), wake Tx queue.
4695  *
4696  * @note Need to protect against garbage in 'R' index
4697  * @param priv
4698  * @param txq
4699  * @param qindex
4700  * @return Number of used entries remains in the queue
4701  */
4702 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4703                                 struct clx2_tx_queue *txq, int qindex)
4704 {
4705         u32 hw_tail;
4706         int used;
4707         struct clx2_queue *q = &txq->q;
4708
4709         hw_tail = ipw_read32(priv, q->reg_r);
4710         if (hw_tail >= q->n_bd) {
4711                 IPW_ERROR
4712                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4713                      hw_tail, q->n_bd);
4714                 goto done;
4715         }
4716         for (; q->last_used != hw_tail;
4717              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4718                 ipw_queue_tx_free_tfd(priv, txq);
4719                 priv->tx_packets++;
4720         }
4721       done:
4722         if ((ipw_queue_space(q) > q->low_mark) &&
4723             (qindex >= 0) &&
4724             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4725                 netif_wake_queue(priv->net_dev);
4726         used = q->first_empty - q->last_used;
4727         if (used < 0)
4728                 used += q->n_bd;
4729
4730         return used;
4731 }
4732
4733 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4734                              int len, int sync)
4735 {
4736         struct clx2_tx_queue *txq = &priv->txq_cmd;
4737         struct clx2_queue *q = &txq->q;
4738         struct tfd_frame *tfd;
4739
4740         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4741                 IPW_ERROR("No space for Tx\n");
4742                 return -EBUSY;
4743         }
4744
4745         tfd = &txq->bd[q->first_empty];
4746         txq->txb[q->first_empty] = NULL;
4747
4748         memset(tfd, 0, sizeof(*tfd));
4749         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4750         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4751         priv->hcmd_seq++;
4752         tfd->u.cmd.index = hcmd;
4753         tfd->u.cmd.length = len;
4754         memcpy(tfd->u.cmd.payload, buf, len);
4755         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4756         ipw_write32(priv, q->reg_w, q->first_empty);
4757         _ipw_read32(priv, 0x90);
4758
4759         return 0;
4760 }
4761
4762 /*
4763  * Rx theory of operation
4764  *
4765  * The host allocates 32 DMA target addresses and passes the host address
4766  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4767  * 0 to 31
4768  *
4769  * Rx Queue Indexes
4770  * The host/firmware share two index registers for managing the Rx buffers.
4771  *
4772  * The READ index maps to the first position that the firmware may be writing
4773  * to -- the driver can read up to (but not including) this position and get
4774  * good data.
4775  * The READ index is managed by the firmware once the card is enabled.
4776  *
4777  * The WRITE index maps to the last position the driver has read from -- the
4778  * position preceding WRITE is the last slot the firmware can place a packet.
4779  *
4780  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4781  * WRITE = READ.
4782  *
4783  * During initialization the host sets up the READ queue position to the first
4784  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4785  *
4786  * When the firmware places a packet in a buffer it will advance the READ index
4787  * and fire the RX interrupt.  The driver can then query the READ index and
4788  * process as many packets as possible, moving the WRITE index forward as it
4789  * resets the Rx queue buffers with new memory.
4790  *
4791  * The management in the driver is as follows:
4792  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4793  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4794  *   to replensish the ipw->rxq->rx_free.
4795  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4796  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4797  *   'processed' and 'read' driver indexes as well)
4798  * + A received packet is processed and handed to the kernel network stack,
4799  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4800  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4801  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4802  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4803  *   were enough free buffers and RX_STALLED is set it is cleared.
4804  *
4805  *
4806  * Driver sequence:
4807  *
4808  * ipw_rx_queue_alloc()       Allocates rx_free
4809  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4810  *                            ipw_rx_queue_restock
4811  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4812  *                            queue, updates firmware pointers, and updates
4813  *                            the WRITE index.  If insufficient rx_free buffers
4814  *                            are available, schedules ipw_rx_queue_replenish
4815  *
4816  * -- enable interrupts --
4817  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4818  *                            READ INDEX, detaching the SKB from the pool.
4819  *                            Moves the packet buffer from queue to rx_used.
4820  *                            Calls ipw_rx_queue_restock to refill any empty
4821  *                            slots.
4822  * ...
4823  *
4824  */
4825
4826 /*
4827  * If there are slots in the RX queue that  need to be restocked,
4828  * and we have free pre-allocated buffers, fill the ranks as much
4829  * as we can pulling from rx_free.
4830  *
4831  * This moves the 'write' index forward to catch up with 'processed', and
4832  * also updates the memory address in the firmware to reference the new
4833  * target buffer.
4834  */
4835 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4836 {
4837         struct ipw_rx_queue *rxq = priv->rxq;
4838         struct list_head *element;
4839         struct ipw_rx_mem_buffer *rxb;
4840         unsigned long flags;
4841         int write;
4842
4843         spin_lock_irqsave(&rxq->lock, flags);
4844         write = rxq->write;
4845         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4846                 element = rxq->rx_free.next;
4847                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4848                 list_del(element);
4849
4850                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4851                             rxb->dma_addr);
4852                 rxq->queue[rxq->write] = rxb;
4853                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4854                 rxq->free_count--;
4855         }
4856         spin_unlock_irqrestore(&rxq->lock, flags);
4857
4858         /* If the pre-allocated buffer pool is dropping low, schedule to
4859          * refill it */
4860         if (rxq->free_count <= RX_LOW_WATERMARK)
4861                 queue_work(priv->workqueue, &priv->rx_replenish);
4862
4863         /* If we've added more space for the firmware to place data, tell it */
4864         if (write != rxq->write)
4865                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4866 }
4867
4868 /*
4869  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4870  * Also restock the Rx queue via ipw_rx_queue_restock.
4871  *
4872  * This is called as a scheduled work item (except for during intialization)
4873  */
4874 static void ipw_rx_queue_replenish(void *data)
4875 {
4876         struct ipw_priv *priv = data;
4877         struct ipw_rx_queue *rxq = priv->rxq;
4878         struct list_head *element;
4879         struct ipw_rx_mem_buffer *rxb;
4880         unsigned long flags;
4881
4882         spin_lock_irqsave(&rxq->lock, flags);
4883         while (!list_empty(&rxq->rx_used)) {
4884                 element = rxq->rx_used.next;
4885                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4886                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4887                 if (!rxb->skb) {
4888                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4889                                priv->net_dev->name);
4890                         /* We don't reschedule replenish work here -- we will
4891                          * call the restock method and if it still needs
4892                          * more buffers it will schedule replenish */
4893                         break;
4894                 }
4895                 list_del(element);
4896
4897                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4898                 rxb->dma_addr =
4899                     pci_map_single(priv->pci_dev, rxb->skb->data,
4900                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4901
4902                 list_add_tail(&rxb->list, &rxq->rx_free);
4903                 rxq->free_count++;
4904         }
4905         spin_unlock_irqrestore(&rxq->lock, flags);
4906
4907         ipw_rx_queue_restock(priv);
4908 }
4909
4910 static void ipw_bg_rx_queue_replenish(void *data)
4911 {
4912         struct ipw_priv *priv = data;
4913         down(&priv->sem);
4914         ipw_rx_queue_replenish(data);
4915         up(&priv->sem);
4916 }
4917
4918 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4919  * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4920  * This free routine walks the list of POOL entries and if SKB is set to
4921  * non NULL it is unmapped and freed
4922  */
4923 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4924 {
4925         int i;
4926
4927         if (!rxq)
4928                 return;
4929
4930         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4931                 if (rxq->pool[i].skb != NULL) {
4932                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4933                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4934                         dev_kfree_skb(rxq->pool[i].skb);
4935                 }
4936         }
4937
4938         kfree(rxq);
4939 }
4940
4941 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4942 {
4943         struct ipw_rx_queue *rxq;
4944         int i;
4945
4946         rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4947         if (unlikely(!rxq)) {
4948                 IPW_ERROR("memory allocation failed\n");
4949                 return NULL;
4950         }
4951         memset(rxq, 0, sizeof(*rxq));
4952         spin_lock_init(&rxq->lock);
4953         INIT_LIST_HEAD(&rxq->rx_free);
4954         INIT_LIST_HEAD(&rxq->rx_used);
4955
4956         /* Fill the rx_used queue with _all_ of the Rx buffers */
4957         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4958                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4959
4960         /* Set us so that we have processed and used all buffers, but have
4961          * not restocked the Rx queue with fresh buffers */
4962         rxq->read = rxq->write = 0;
4963         rxq->processed = RX_QUEUE_SIZE - 1;
4964         rxq->free_count = 0;
4965
4966         return rxq;
4967 }
4968
4969 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4970 {
4971         rate &= ~IEEE80211_BASIC_RATE_MASK;
4972         if (ieee_mode == IEEE_A) {
4973                 switch (rate) {
4974                 case IEEE80211_OFDM_RATE_6MB:
4975                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4976                             1 : 0;
4977                 case IEEE80211_OFDM_RATE_9MB:
4978                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4979                             1 : 0;
4980                 case IEEE80211_OFDM_RATE_12MB:
4981                         return priv->
4982                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4983                 case IEEE80211_OFDM_RATE_18MB:
4984                         return priv->
4985                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4986                 case IEEE80211_OFDM_RATE_24MB:
4987                         return priv->
4988                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4989                 case IEEE80211_OFDM_RATE_36MB:
4990                         return priv->
4991                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4992                 case IEEE80211_OFDM_RATE_48MB:
4993                         return priv->
4994                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4995                 case IEEE80211_OFDM_RATE_54MB:
4996                         return priv->
4997                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4998                 default:
4999                         return 0;
5000                 }
5001         }
5002
5003         /* B and G mixed */
5004         switch (rate) {
5005         case IEEE80211_CCK_RATE_1MB:
5006                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5007         case IEEE80211_CCK_RATE_2MB:
5008                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5009         case IEEE80211_CCK_RATE_5MB:
5010                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5011         case IEEE80211_CCK_RATE_11MB:
5012                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5013         }
5014
5015         /* If we are limited to B modulations, bail at this point */
5016         if (ieee_mode == IEEE_B)
5017                 return 0;
5018
5019         /* G */
5020         switch (rate) {
5021         case IEEE80211_OFDM_RATE_6MB:
5022                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5023         case IEEE80211_OFDM_RATE_9MB:
5024                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5025         case IEEE80211_OFDM_RATE_12MB:
5026                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5027         case IEEE80211_OFDM_RATE_18MB:
5028                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5029         case IEEE80211_OFDM_RATE_24MB:
5030                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5031         case IEEE80211_OFDM_RATE_36MB:
5032                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5033         case IEEE80211_OFDM_RATE_48MB:
5034                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5035         case IEEE80211_OFDM_RATE_54MB:
5036                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5037         }
5038
5039         return 0;
5040 }
5041
5042 static int ipw_compatible_rates(struct ipw_priv *priv,
5043                                 const struct ieee80211_network *network,
5044                                 struct ipw_supported_rates *rates)
5045 {
5046         int num_rates, i;
5047
5048         memset(rates, 0, sizeof(*rates));
5049         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5050         rates->num_rates = 0;
5051         for (i = 0; i < num_rates; i++) {
5052                 if (!ipw_is_rate_in_mask(priv, network->mode,
5053                                          network->rates[i])) {
5054
5055                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5056                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5057                                                "rate %02X\n",
5058                                                network->rates[i]);
5059                                 rates->supported_rates[rates->num_rates++] =
5060                                     network->rates[i];
5061                                 continue;
5062                         }
5063
5064                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5065                                        network->rates[i], priv->rates_mask);
5066                         continue;
5067                 }
5068
5069                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5070         }
5071
5072         num_rates = min(network->rates_ex_len,
5073                         (u8) (IPW_MAX_RATES - num_rates));
5074         for (i = 0; i < num_rates; i++) {
5075                 if (!ipw_is_rate_in_mask(priv, network->mode,
5076                                          network->rates_ex[i])) {
5077                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5078                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5079                                                "rate %02X\n",
5080                                                network->rates_ex[i]);
5081                                 rates->supported_rates[rates->num_rates++] =
5082                                     network->rates[i];
5083                                 continue;
5084                         }
5085
5086                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5087                                        network->rates_ex[i], priv->rates_mask);
5088                         continue;
5089                 }
5090
5091                 rates->supported_rates[rates->num_rates++] =
5092                     network->rates_ex[i];
5093         }
5094
5095         return 1;
5096 }
5097
5098 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
5099                                   const struct ipw_supported_rates *src)
5100 {
5101         u8 i;
5102         for (i = 0; i < src->num_rates; i++)
5103                 dest->supported_rates[i] = src->supported_rates[i];
5104         dest->num_rates = src->num_rates;
5105 }
5106
5107 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5108  * mask should ever be used -- right now all callers to add the scan rates are
5109  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5110 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5111                                    u8 modulation, u32 rate_mask)
5112 {
5113         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5114             IEEE80211_BASIC_RATE_MASK : 0;
5115
5116         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5117                 rates->supported_rates[rates->num_rates++] =
5118                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5119
5120         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5121                 rates->supported_rates[rates->num_rates++] =
5122                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5123
5124         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5125                 rates->supported_rates[rates->num_rates++] = basic_mask |
5126                     IEEE80211_CCK_RATE_5MB;
5127
5128         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5129                 rates->supported_rates[rates->num_rates++] = basic_mask |
5130                     IEEE80211_CCK_RATE_11MB;
5131 }
5132
5133 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5134                                     u8 modulation, u32 rate_mask)
5135 {
5136         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5137             IEEE80211_BASIC_RATE_MASK : 0;
5138
5139         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5140                 rates->supported_rates[rates->num_rates++] = basic_mask |
5141                     IEEE80211_OFDM_RATE_6MB;
5142
5143         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5144                 rates->supported_rates[rates->num_rates++] =
5145                     IEEE80211_OFDM_RATE_9MB;
5146
5147         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5148                 rates->supported_rates[rates->num_rates++] = basic_mask |
5149                     IEEE80211_OFDM_RATE_12MB;
5150
5151         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5152                 rates->supported_rates[rates->num_rates++] =
5153                     IEEE80211_OFDM_RATE_18MB;
5154
5155         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5156                 rates->supported_rates[rates->num_rates++] = basic_mask |
5157                     IEEE80211_OFDM_RATE_24MB;
5158
5159         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5160                 rates->supported_rates[rates->num_rates++] =
5161                     IEEE80211_OFDM_RATE_36MB;
5162
5163         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5164                 rates->supported_rates[rates->num_rates++] =
5165                     IEEE80211_OFDM_RATE_48MB;
5166
5167         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5168                 rates->supported_rates[rates->num_rates++] =
5169                     IEEE80211_OFDM_RATE_54MB;
5170 }
5171
5172 struct ipw_network_match {
5173         struct ieee80211_network *network;
5174         struct ipw_supported_rates rates;
5175 };
5176
5177 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5178                                   struct ipw_network_match *match,
5179                                   struct ieee80211_network *network,
5180                                   int roaming)
5181 {
5182         struct ipw_supported_rates rates;
5183
5184         /* Verify that this network's capability is compatible with the
5185          * current mode (AdHoc or Infrastructure) */
5186         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5187              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5188                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5189                                 "capability mismatch.\n",
5190                                 escape_essid(network->ssid, network->ssid_len),
5191                                 MAC_ARG(network->bssid));
5192                 return 0;
5193         }
5194
5195         /* If we do not have an ESSID for this AP, we can not associate with
5196          * it */
5197         if (network->flags & NETWORK_EMPTY_ESSID) {
5198                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5199                                 "because of hidden ESSID.\n",
5200                                 escape_essid(network->ssid, network->ssid_len),
5201                                 MAC_ARG(network->bssid));
5202                 return 0;
5203         }
5204
5205         if (unlikely(roaming)) {
5206                 /* If we are roaming, then ensure check if this is a valid
5207                  * network to try and roam to */
5208                 if ((network->ssid_len != match->network->ssid_len) ||
5209                     memcmp(network->ssid, match->network->ssid,
5210                            network->ssid_len)) {
5211                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5212                                         "because of non-network ESSID.\n",
5213                                         escape_essid(network->ssid,
5214                                                      network->ssid_len),
5215                                         MAC_ARG(network->bssid));
5216                         return 0;
5217                 }
5218         } else {
5219                 /* If an ESSID has been configured then compare the broadcast
5220                  * ESSID to ours */
5221                 if ((priv->config & CFG_STATIC_ESSID) &&
5222                     ((network->ssid_len != priv->essid_len) ||
5223                      memcmp(network->ssid, priv->essid,
5224                             min(network->ssid_len, priv->essid_len)))) {
5225                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5226
5227                         strncpy(escaped,
5228                                 escape_essid(network->ssid, network->ssid_len),
5229                                 sizeof(escaped));
5230                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5231                                         "because of ESSID mismatch: '%s'.\n",
5232                                         escaped, MAC_ARG(network->bssid),
5233                                         escape_essid(priv->essid,
5234                                                      priv->essid_len));
5235                         return 0;
5236                 }
5237         }
5238
5239         /* If the old network rate is better than this one, don't bother
5240          * testing everything else. */
5241
5242         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5243                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5244                                 "current network.\n",
5245                                 escape_essid(match->network->ssid,
5246                                              match->network->ssid_len));
5247                 return 0;
5248         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5249                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5250                                 "current network.\n",
5251                                 escape_essid(match->network->ssid,
5252                                              match->network->ssid_len));
5253                 return 0;
5254         }
5255
5256         /* Now go through and see if the requested network is valid... */
5257         if (priv->ieee->scan_age != 0 &&
5258             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5259                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5260                                 "because of age: %lums.\n",
5261                                 escape_essid(network->ssid, network->ssid_len),
5262                                 MAC_ARG(network->bssid),
5263                                 1000 * (jiffies - network->last_scanned) / HZ);
5264                 return 0;
5265         }
5266
5267         if ((priv->config & CFG_STATIC_CHANNEL) &&
5268             (network->channel != priv->channel)) {
5269                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5270                                 "because of channel mismatch: %d != %d.\n",
5271                                 escape_essid(network->ssid, network->ssid_len),
5272                                 MAC_ARG(network->bssid),
5273                                 network->channel, priv->channel);
5274                 return 0;
5275         }
5276
5277         /* Verify privacy compatability */
5278         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5279             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5280                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5281                                 "because of privacy mismatch: %s != %s.\n",
5282                                 escape_essid(network->ssid, network->ssid_len),
5283                                 MAC_ARG(network->bssid),
5284                                 priv->
5285                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5286                                 network->
5287                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5288                                 "off");
5289                 return 0;
5290         }
5291
5292         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5293                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5294                                 "because of the same BSSID match: " MAC_FMT
5295                                 ".\n", escape_essid(network->ssid,
5296                                                     network->ssid_len),
5297                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5298                 return 0;
5299         }
5300
5301         /* Filter out any incompatible freq / mode combinations */
5302         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5303                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5304                                 "because of invalid frequency/mode "
5305                                 "combination.\n",
5306                                 escape_essid(network->ssid, network->ssid_len),
5307                                 MAC_ARG(network->bssid));
5308                 return 0;
5309         }
5310
5311         /* Ensure that the rates supported by the driver are compatible with
5312          * this AP, including verification of basic rates (mandatory) */
5313         if (!ipw_compatible_rates(priv, network, &rates)) {
5314                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5315                                 "because configured rate mask excludes "
5316                                 "AP mandatory rate.\n",
5317                                 escape_essid(network->ssid, network->ssid_len),
5318                                 MAC_ARG(network->bssid));
5319                 return 0;
5320         }
5321
5322         if (rates.num_rates == 0) {
5323                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5324                                 "because of no compatible rates.\n",
5325                                 escape_essid(network->ssid, network->ssid_len),
5326                                 MAC_ARG(network->bssid));
5327                 return 0;
5328         }
5329
5330         /* TODO: Perform any further minimal comparititive tests.  We do not
5331          * want to put too much policy logic here; intelligent scan selection
5332          * should occur within a generic IEEE 802.11 user space tool.  */
5333
5334         /* Set up 'new' AP to this network */
5335         ipw_copy_rates(&match->rates, &rates);
5336         match->network = network;
5337         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5338                         escape_essid(network->ssid, network->ssid_len),
5339                         MAC_ARG(network->bssid));
5340
5341         return 1;
5342 }
5343
5344 static void ipw_merge_adhoc_network(void *data)
5345 {
5346         struct ipw_priv *priv = data;
5347         struct ieee80211_network *network = NULL;
5348         struct ipw_network_match match = {
5349                 .network = priv->assoc_network
5350         };
5351
5352         if ((priv->status & STATUS_ASSOCIATED) &&
5353             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5354                 /* First pass through ROAM process -- look for a better
5355                  * network */
5356                 unsigned long flags;
5357
5358                 spin_lock_irqsave(&priv->ieee->lock, flags);
5359                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5360                         if (network != priv->assoc_network)
5361                                 ipw_find_adhoc_network(priv, &match, network,
5362                                                        1);
5363                 }
5364                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5365
5366                 if (match.network == priv->assoc_network) {
5367                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5368                                         "merge to.\n");
5369                         return;
5370                 }
5371
5372                 down(&priv->sem);
5373                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5374                         IPW_DEBUG_MERGE("remove network %s\n",
5375                                         escape_essid(priv->essid,
5376                                                      priv->essid_len));
5377                         ipw_remove_current_network(priv);
5378                 }
5379
5380                 ipw_disassociate(priv);
5381                 priv->assoc_network = match.network;
5382                 up(&priv->sem);
5383                 return;
5384         }
5385 }
5386
5387 static int ipw_best_network(struct ipw_priv *priv,
5388                             struct ipw_network_match *match,
5389                             struct ieee80211_network *network, int roaming)
5390 {
5391         struct ipw_supported_rates rates;
5392
5393         /* Verify that this network's capability is compatible with the
5394          * current mode (AdHoc or Infrastructure) */
5395         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5396              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5397             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5398              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5399                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5400                                 "capability mismatch.\n",
5401                                 escape_essid(network->ssid, network->ssid_len),
5402                                 MAC_ARG(network->bssid));
5403                 return 0;
5404         }
5405
5406         /* If we do not have an ESSID for this AP, we can not associate with
5407          * it */
5408         if (network->flags & NETWORK_EMPTY_ESSID) {
5409                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5410                                 "because of hidden ESSID.\n",
5411                                 escape_essid(network->ssid, network->ssid_len),
5412                                 MAC_ARG(network->bssid));
5413                 return 0;
5414         }
5415
5416         if (unlikely(roaming)) {
5417                 /* If we are roaming, then ensure check if this is a valid
5418                  * network to try and roam to */
5419                 if ((network->ssid_len != match->network->ssid_len) ||
5420                     memcmp(network->ssid, match->network->ssid,
5421                            network->ssid_len)) {
5422                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5423                                         "because of non-network ESSID.\n",
5424                                         escape_essid(network->ssid,
5425                                                      network->ssid_len),
5426                                         MAC_ARG(network->bssid));
5427                         return 0;
5428                 }
5429         } else {
5430                 /* If an ESSID has been configured then compare the broadcast
5431                  * ESSID to ours */
5432                 if ((priv->config & CFG_STATIC_ESSID) &&
5433                     ((network->ssid_len != priv->essid_len) ||
5434                      memcmp(network->ssid, priv->essid,
5435                             min(network->ssid_len, priv->essid_len)))) {
5436                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5437                         strncpy(escaped,
5438                                 escape_essid(network->ssid, network->ssid_len),
5439                                 sizeof(escaped));
5440                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5441                                         "because of ESSID mismatch: '%s'.\n",
5442                                         escaped, MAC_ARG(network->bssid),
5443                                         escape_essid(priv->essid,
5444                                                      priv->essid_len));
5445                         return 0;
5446                 }
5447         }
5448
5449         /* If the old network rate is better than this one, don't bother
5450          * testing everything else. */
5451         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5452                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5453                 strncpy(escaped,
5454                         escape_essid(network->ssid, network->ssid_len),
5455                         sizeof(escaped));
5456                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5457                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5458                                 escaped, MAC_ARG(network->bssid),
5459                                 escape_essid(match->network->ssid,
5460                                              match->network->ssid_len),
5461                                 MAC_ARG(match->network->bssid));
5462                 return 0;
5463         }
5464
5465         /* If this network has already had an association attempt within the
5466          * last 3 seconds, do not try and associate again... */
5467         if (network->last_associate &&
5468             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5469                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5470                                 "because of storming (%lus since last "
5471                                 "assoc attempt).\n",
5472                                 escape_essid(network->ssid, network->ssid_len),
5473                                 MAC_ARG(network->bssid),
5474                                 (jiffies - network->last_associate) / HZ);
5475                 return 0;
5476         }
5477
5478         /* Now go through and see if the requested network is valid... */
5479         if (priv->ieee->scan_age != 0 &&
5480             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5481                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5482                                 "because of age: %lums.\n",
5483                                 escape_essid(network->ssid, network->ssid_len),
5484                                 MAC_ARG(network->bssid),
5485                                 1000 * (jiffies - network->last_scanned) / HZ);
5486                 return 0;
5487         }
5488
5489         if ((priv->config & CFG_STATIC_CHANNEL) &&
5490             (network->channel != priv->channel)) {
5491                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5492                                 "because of channel mismatch: %d != %d.\n",
5493                                 escape_essid(network->ssid, network->ssid_len),
5494                                 MAC_ARG(network->bssid),
5495                                 network->channel, priv->channel);
5496                 return 0;
5497         }
5498
5499         /* Verify privacy compatability */
5500         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5501             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5502                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5503                                 "because of privacy mismatch: %s != %s.\n",
5504                                 escape_essid(network->ssid, network->ssid_len),
5505                                 MAC_ARG(network->bssid),
5506                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5507                                 "off",
5508                                 network->capability &
5509                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5510                 return 0;
5511         }
5512
5513         if ((priv->config & CFG_STATIC_BSSID) &&
5514             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5515                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5516                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5517                                 escape_essid(network->ssid, network->ssid_len),
5518                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5519                 return 0;
5520         }
5521
5522         /* Filter out any incompatible freq / mode combinations */
5523         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5524                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5525                                 "because of invalid frequency/mode "
5526                                 "combination.\n",
5527                                 escape_essid(network->ssid, network->ssid_len),
5528                                 MAC_ARG(network->bssid));
5529                 return 0;
5530         }
5531
5532         /* Filter out invalid channel in current GEO */
5533         if (!ipw_is_valid_channel(priv->ieee, network->channel)) {
5534                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5535                                 "because of invalid channel in current GEO\n",
5536                                 escape_essid(network->ssid, network->ssid_len),
5537                                 MAC_ARG(network->bssid));
5538                 return 0;
5539         }
5540
5541         /* Ensure that the rates supported by the driver are compatible with
5542          * this AP, including verification of basic rates (mandatory) */
5543         if (!ipw_compatible_rates(priv, network, &rates)) {
5544                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5545                                 "because configured rate mask excludes "
5546                                 "AP mandatory rate.\n",
5547                                 escape_essid(network->ssid, network->ssid_len),
5548                                 MAC_ARG(network->bssid));
5549                 return 0;
5550         }
5551
5552         if (rates.num_rates == 0) {
5553                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5554                                 "because of no compatible rates.\n",
5555                                 escape_essid(network->ssid, network->ssid_len),
5556                                 MAC_ARG(network->bssid));
5557                 return 0;
5558         }
5559
5560         /* TODO: Perform any further minimal comparititive tests.  We do not
5561          * want to put too much policy logic here; intelligent scan selection
5562          * should occur within a generic IEEE 802.11 user space tool.  */
5563
5564         /* Set up 'new' AP to this network */
5565         ipw_copy_rates(&match->rates, &rates);
5566         match->network = network;
5567
5568         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5569                         escape_essid(network->ssid, network->ssid_len),
5570                         MAC_ARG(network->bssid));
5571
5572         return 1;
5573 }
5574
5575 static void ipw_adhoc_create(struct ipw_priv *priv,
5576                              struct ieee80211_network *network)
5577 {
5578         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
5579         int i;
5580
5581         /*
5582          * For the purposes of scanning, we can set our wireless mode
5583          * to trigger scans across combinations of bands, but when it
5584          * comes to creating a new ad-hoc network, we have tell the FW
5585          * exactly which band to use.
5586          *
5587          * We also have the possibility of an invalid channel for the
5588          * chossen band.  Attempting to create a new ad-hoc network
5589          * with an invalid channel for wireless mode will trigger a
5590          * FW fatal error.
5591          *
5592          */
5593         switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
5594         case IEEE80211_52GHZ_BAND:
5595                 network->mode = IEEE_A;
5596                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5597                 if (i == -1)
5598                         BUG();
5599                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5600                         IPW_WARNING("Overriding invalid channel\n");
5601                         priv->channel = geo->a[0].channel;
5602                 }
5603                 break;
5604
5605         case IEEE80211_24GHZ_BAND:
5606                 if (priv->ieee->mode & IEEE_G)
5607                         network->mode = IEEE_G;
5608                 else
5609                         network->mode = IEEE_B;
5610                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5611                 if (i == -1)
5612                         BUG();
5613                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5614                         IPW_WARNING("Overriding invalid channel\n");
5615                         priv->channel = geo->bg[0].channel;
5616                 }
5617                 break;
5618
5619         default:
5620                 IPW_WARNING("Overriding invalid channel\n");
5621                 if (priv->ieee->mode & IEEE_A) {
5622                         network->mode = IEEE_A;
5623                         priv->channel = geo->a[0].channel;
5624                 } else if (priv->ieee->mode & IEEE_G) {
5625                         network->mode = IEEE_G;
5626                         priv->channel = geo->bg[0].channel;
5627                 } else {
5628                         network->mode = IEEE_B;
5629                         priv->channel = geo->bg[0].channel;
5630                 }
5631                 break;
5632         }
5633
5634         network->channel = priv->channel;
5635         priv->config |= CFG_ADHOC_PERSIST;
5636         ipw_create_bssid(priv, network->bssid);
5637         network->ssid_len = priv->essid_len;
5638         memcpy(network->ssid, priv->essid, priv->essid_len);
5639         memset(&network->stats, 0, sizeof(network->stats));
5640         network->capability = WLAN_CAPABILITY_IBSS;
5641         if (!(priv->config & CFG_PREAMBLE_LONG))
5642                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5643         if (priv->capability & CAP_PRIVACY_ON)
5644                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5645         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5646         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5647         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5648         memcpy(network->rates_ex,
5649                &priv->rates.supported_rates[network->rates_len],
5650                network->rates_ex_len);
5651         network->last_scanned = 0;
5652         network->flags = 0;
5653         network->last_associate = 0;
5654         network->time_stamp[0] = 0;
5655         network->time_stamp[1] = 0;
5656         network->beacon_interval = 100; /* Default */
5657         network->listen_interval = 10;  /* Default */
5658         network->atim_window = 0;       /* Default */
5659         network->wpa_ie_len = 0;
5660         network->rsn_ie_len = 0;
5661 }
5662
5663 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5664 {
5665         struct ipw_tgi_tx_key *key;
5666         struct host_cmd cmd = {
5667                 .cmd = IPW_CMD_TGI_TX_KEY,
5668                 .len = sizeof(*key)
5669         };
5670
5671         if (!(priv->ieee->sec.flags & (1 << index)))
5672                 return;
5673
5674         key = (struct ipw_tgi_tx_key *)&cmd.param;
5675         key->key_id = index;
5676         memcpy(key->key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5677         key->security_type = type;
5678         key->station_index = 0; /* always 0 for BSS */
5679         key->flags = 0;
5680         /* 0 for new key; previous value of counter (after fatal error) */
5681         key->tx_counter[0] = 0;
5682         key->tx_counter[1] = 0;
5683
5684         ipw_send_cmd(priv, &cmd);
5685 }
5686
5687 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5688 {
5689         struct ipw_wep_key *key;
5690         int i;
5691         struct host_cmd cmd = {
5692                 .cmd = IPW_CMD_WEP_KEY,
5693                 .len = sizeof(*key)
5694         };
5695
5696         key = (struct ipw_wep_key *)&cmd.param;
5697         key->cmd_id = DINO_CMD_WEP_KEY;
5698         key->seq_num = 0;
5699
5700         /* Note: AES keys cannot be set for multiple times.
5701          * Only set it at the first time. */
5702         for (i = 0; i < 4; i++) {
5703                 key->key_index = i | type;
5704                 if (!(priv->ieee->sec.flags & (1 << i))) {
5705                         key->key_size = 0;
5706                         continue;
5707                 }
5708
5709                 key->key_size = priv->ieee->sec.key_sizes[i];
5710                 memcpy(key->key, priv->ieee->sec.keys[i], key->key_size);
5711
5712                 ipw_send_cmd(priv, &cmd);
5713         }
5714 }
5715
5716 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5717 {
5718         if (priv->ieee->host_encrypt)
5719                 return;
5720
5721         switch (level) {
5722         case SEC_LEVEL_3:
5723                 priv->sys_config.disable_unicast_decryption = 0;
5724                 priv->ieee->host_decrypt = 0;
5725                 break;
5726         case SEC_LEVEL_2:
5727                 priv->sys_config.disable_unicast_decryption = 1;
5728                 priv->ieee->host_decrypt = 1;
5729                 break;
5730         case SEC_LEVEL_1:
5731                 priv->sys_config.disable_unicast_decryption = 0;
5732                 priv->ieee->host_decrypt = 0;
5733                 break;
5734         case SEC_LEVEL_0:
5735                 priv->sys_config.disable_unicast_decryption = 1;
5736                 break;
5737         default:
5738                 break;
5739         }
5740 }
5741
5742 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5743 {
5744         if (priv->ieee->host_encrypt)
5745                 return;
5746
5747         switch (level) {
5748         case SEC_LEVEL_3:
5749                 priv->sys_config.disable_multicast_decryption = 0;
5750                 break;
5751         case SEC_LEVEL_2:
5752                 priv->sys_config.disable_multicast_decryption = 1;
5753                 break;
5754         case SEC_LEVEL_1:
5755                 priv->sys_config.disable_multicast_decryption = 0;
5756                 break;
5757         case SEC_LEVEL_0:
5758                 priv->sys_config.disable_multicast_decryption = 1;
5759                 break;
5760         default:
5761                 break;
5762         }
5763 }
5764
5765 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5766 {
5767         switch (priv->ieee->sec.level) {
5768         case SEC_LEVEL_3:
5769                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5770                         ipw_send_tgi_tx_key(priv,
5771                                             DCT_FLAG_EXT_SECURITY_CCM,
5772                                             priv->ieee->sec.active_key);
5773
5774                 if (!priv->ieee->host_mc_decrypt)
5775                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5776                 break;
5777         case SEC_LEVEL_2:
5778                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5779                         ipw_send_tgi_tx_key(priv,
5780                                             DCT_FLAG_EXT_SECURITY_TKIP,
5781                                             priv->ieee->sec.active_key);
5782                 break;
5783         case SEC_LEVEL_1:
5784                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5785                 break;
5786         case SEC_LEVEL_0:
5787         default:
5788                 break;
5789         }
5790 }
5791
5792 static void ipw_adhoc_check(void *data)
5793 {
5794         struct ipw_priv *priv = data;
5795
5796         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5797             !(priv->config & CFG_ADHOC_PERSIST)) {
5798                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5799                           IPW_DL_STATE | IPW_DL_ASSOC,
5800                           "Missed beacon: %d - disassociate\n",
5801                           priv->missed_adhoc_beacons);
5802                 ipw_remove_current_network(priv);
5803                 ipw_disassociate(priv);
5804                 return;
5805         }
5806
5807         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5808                            priv->assoc_request.beacon_interval);
5809 }
5810
5811 static void ipw_bg_adhoc_check(void *data)
5812 {
5813         struct ipw_priv *priv = data;
5814         down(&priv->sem);
5815         ipw_adhoc_check(data);
5816         up(&priv->sem);
5817 }
5818
5819 #ifdef CONFIG_IPW_DEBUG
5820 static void ipw_debug_config(struct ipw_priv *priv)
5821 {
5822         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5823                        "[CFG 0x%08X]\n", priv->config);
5824         if (priv->config & CFG_STATIC_CHANNEL)
5825                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5826         else
5827                 IPW_DEBUG_INFO("Channel unlocked.\n");
5828         if (priv->config & CFG_STATIC_ESSID)
5829                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5830                                escape_essid(priv->essid, priv->essid_len));
5831         else
5832                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5833         if (priv->config & CFG_STATIC_BSSID)
5834                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5835                                MAC_ARG(priv->bssid));
5836         else
5837                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5838         if (priv->capability & CAP_PRIVACY_ON)
5839                 IPW_DEBUG_INFO("PRIVACY on\n");
5840         else
5841                 IPW_DEBUG_INFO("PRIVACY off\n");
5842         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5843 }
5844 #else
5845 #define ipw_debug_config(x) do {} while (0)
5846 #endif
5847
5848 static inline void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5849 {
5850         /* TODO: Verify that this works... */
5851         struct ipw_fixed_rate fr = {
5852                 .tx_rates = priv->rates_mask
5853         };
5854         u32 reg;
5855         u16 mask = 0;
5856
5857         /* Identify 'current FW band' and match it with the fixed
5858          * Tx rates */
5859
5860         switch (priv->ieee->freq_band) {
5861         case IEEE80211_52GHZ_BAND:      /* A only */
5862                 /* IEEE_A */
5863                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5864                         /* Invalid fixed rate mask */
5865                         IPW_DEBUG_WX
5866                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5867                         fr.tx_rates = 0;
5868                         break;
5869                 }
5870
5871                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5872                 break;
5873
5874         default:                /* 2.4Ghz or Mixed */
5875                 /* IEEE_B */
5876                 if (mode == IEEE_B) {
5877                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5878                                 /* Invalid fixed rate mask */
5879                                 IPW_DEBUG_WX
5880                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5881                                 fr.tx_rates = 0;
5882                         }
5883                         break;
5884                 }
5885
5886                 /* IEEE_G */
5887                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5888                                     IEEE80211_OFDM_RATES_MASK)) {
5889                         /* Invalid fixed rate mask */
5890                         IPW_DEBUG_WX
5891                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5892                         fr.tx_rates = 0;
5893                         break;
5894                 }
5895
5896                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5897                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5898                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5899                 }
5900
5901                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5902                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5903                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5904                 }
5905
5906                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5907                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5908                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5909                 }
5910
5911                 fr.tx_rates |= mask;
5912                 break;
5913         }
5914
5915         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5916         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5917 }
5918
5919 static void ipw_abort_scan(struct ipw_priv *priv)
5920 {
5921         int err;
5922
5923         if (priv->status & STATUS_SCAN_ABORTING) {
5924                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5925                 return;
5926         }
5927         priv->status |= STATUS_SCAN_ABORTING;
5928
5929         err = ipw_send_scan_abort(priv);
5930         if (err)
5931                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5932 }
5933
5934 static void ipw_add_scan_channels(struct ipw_priv *priv,
5935                                   struct ipw_scan_request_ext *scan,
5936                                   int scan_type)
5937 {
5938         int channel_index = 0;
5939         const struct ieee80211_geo *geo;
5940         int i;
5941
5942         geo = ipw_get_geo(priv->ieee);
5943
5944         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5945                 int start = channel_index;
5946                 for (i = 0; i < geo->a_channels; i++) {
5947                         if ((priv->status & STATUS_ASSOCIATED) &&
5948                             geo->a[i].channel == priv->channel)
5949                                 continue;
5950                         channel_index++;
5951                         scan->channels_list[channel_index] = geo->a[i].channel;
5952                         ipw_set_scan_type(scan, channel_index,
5953                                           geo->a[i].
5954                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5955                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5956                                           scan_type);
5957                 }
5958
5959                 if (start != channel_index) {
5960                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5961                             (channel_index - start);
5962                         channel_index++;
5963                 }
5964         }
5965
5966         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5967                 int start = channel_index;
5968                 if (priv->config & CFG_SPEED_SCAN) {
5969                         int index;
5970                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5971                                 /* nop out the list */
5972                                 [0] = 0
5973                         };
5974
5975                         u8 channel;
5976                         while (channel_index < IPW_SCAN_CHANNELS) {
5977                                 channel =
5978                                     priv->speed_scan[priv->speed_scan_pos];
5979                                 if (channel == 0) {
5980                                         priv->speed_scan_pos = 0;
5981                                         channel = priv->speed_scan[0];
5982                                 }
5983                                 if ((priv->status & STATUS_ASSOCIATED) &&
5984                                     channel == priv->channel) {
5985                                         priv->speed_scan_pos++;
5986                                         continue;
5987                                 }
5988
5989                                 /* If this channel has already been
5990                                  * added in scan, break from loop
5991                                  * and this will be the first channel
5992                                  * in the next scan.
5993                                  */
5994                                 if (channels[channel - 1] != 0)
5995                                         break;
5996
5997                                 channels[channel - 1] = 1;
5998                                 priv->speed_scan_pos++;
5999                                 channel_index++;
6000                                 scan->channels_list[channel_index] = channel;
6001                                 index =
6002                                     ipw_channel_to_index(priv->ieee, channel);
6003                                 ipw_set_scan_type(scan, channel_index,
6004                                                   geo->bg[index].
6005                                                   flags &
6006                                                   IEEE80211_CH_PASSIVE_ONLY ?
6007                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6008                                                   : scan_type);
6009                         }
6010                 } else {
6011                         for (i = 0; i < geo->bg_channels; i++) {
6012                                 if ((priv->status & STATUS_ASSOCIATED) &&
6013                                     geo->bg[i].channel == priv->channel)
6014                                         continue;
6015                                 channel_index++;
6016                                 scan->channels_list[channel_index] =
6017                                     geo->bg[i].channel;
6018                                 ipw_set_scan_type(scan, channel_index,
6019                                                   geo->bg[i].
6020                                                   flags &
6021                                                   IEEE80211_CH_PASSIVE_ONLY ?
6022                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6023                                                   : scan_type);
6024                         }
6025                 }
6026
6027                 if (start != channel_index) {
6028                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6029                             (channel_index - start);
6030                 }
6031         }
6032 }
6033
6034 static int ipw_request_scan(struct ipw_priv *priv)
6035 {
6036         struct ipw_scan_request_ext scan;
6037         int err = 0, scan_type;
6038
6039         if (!(priv->status & STATUS_INIT) ||
6040             (priv->status & STATUS_EXIT_PENDING))
6041                 return 0;
6042
6043         down(&priv->sem);
6044
6045         if (priv->status & STATUS_SCANNING) {
6046                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6047                 priv->status |= STATUS_SCAN_PENDING;
6048                 goto done;
6049         }
6050
6051         if (!(priv->status & STATUS_SCAN_FORCED) &&
6052             priv->status & STATUS_SCAN_ABORTING) {
6053                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6054                 priv->status |= STATUS_SCAN_PENDING;
6055                 goto done;
6056         }
6057
6058         if (priv->status & STATUS_RF_KILL_MASK) {
6059                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6060                 priv->status |= STATUS_SCAN_PENDING;
6061                 goto done;
6062         }
6063
6064         memset(&scan, 0, sizeof(scan));
6065
6066         if (priv->config & CFG_SPEED_SCAN)
6067                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6068                     cpu_to_le16(30);
6069         else
6070                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6071                     cpu_to_le16(20);
6072
6073         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6074             cpu_to_le16(20);
6075         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6076
6077         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6078
6079 #ifdef CONFIG_IPW2200_MONITOR
6080         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6081                 u8 channel;
6082                 u8 band = 0;
6083
6084                 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
6085                 case IEEE80211_52GHZ_BAND:
6086                         band = (u8) (IPW_A_MODE << 6) | 1;
6087                         channel = priv->channel;
6088                         break;
6089
6090                 case IEEE80211_24GHZ_BAND:
6091                         band = (u8) (IPW_B_MODE << 6) | 1;
6092                         channel = priv->channel;
6093                         break;
6094
6095                 default:
6096                         band = (u8) (IPW_B_MODE << 6) | 1;
6097                         channel = 9;
6098                         break;
6099                 }
6100
6101                 scan.channels_list[0] = band;
6102                 scan.channels_list[1] = channel;
6103                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6104
6105                 /* NOTE:  The card will sit on this channel for this time
6106                  * period.  Scan aborts are timing sensitive and frequently
6107                  * result in firmware restarts.  As such, it is best to
6108                  * set a small dwell_time here and just keep re-issuing
6109                  * scans.  Otherwise fast channel hopping will not actually
6110                  * hop channels.
6111                  *
6112                  * TODO: Move SPEED SCAN support to all modes and bands */
6113                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6114                     cpu_to_le16(2000);
6115         } else {
6116 #endif                          /* CONFIG_IPW2200_MONITOR */
6117                 /* If we are roaming, then make this a directed scan for the
6118                  * current network.  Otherwise, ensure that every other scan
6119                  * is a fast channel hop scan */
6120                 if ((priv->status & STATUS_ROAMING)
6121                     || (!(priv->status & STATUS_ASSOCIATED)
6122                         && (priv->config & CFG_STATIC_ESSID)
6123                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6124                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6125                         if (err) {
6126                                 IPW_DEBUG_HC("Attempt to send SSID command "
6127                                              "failed.\n");
6128                                 goto done;
6129                         }
6130
6131                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6132                 } else
6133                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6134
6135                 ipw_add_scan_channels(priv, &scan, scan_type);
6136 #ifdef CONFIG_IPW2200_MONITOR
6137         }
6138 #endif
6139
6140         err = ipw_send_scan_request_ext(priv, &scan);
6141         if (err) {
6142                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6143                 goto done;
6144         }
6145
6146         priv->status |= STATUS_SCANNING;
6147         priv->status &= ~STATUS_SCAN_PENDING;
6148         queue_delayed_work(priv->workqueue, &priv->scan_check,
6149                            IPW_SCAN_CHECK_WATCHDOG);
6150       done:
6151         up(&priv->sem);
6152         return err;
6153 }
6154
6155 static void ipw_bg_abort_scan(void *data)
6156 {
6157         struct ipw_priv *priv = data;
6158         down(&priv->sem);
6159         ipw_abort_scan(data);
6160         up(&priv->sem);
6161 }
6162
6163 #if WIRELESS_EXT < 18
6164 /* Support for wpa_supplicant before WE-18, deprecated. */
6165
6166 /* following definitions must match definitions in driver_ipw.c */
6167
6168 #define IPW_IOCTL_WPA_SUPPLICANT                SIOCIWFIRSTPRIV+30
6169
6170 #define IPW_CMD_SET_WPA_PARAM                   1
6171 #define IPW_CMD_SET_WPA_IE                      2
6172 #define IPW_CMD_SET_ENCRYPTION                  3
6173 #define IPW_CMD_MLME                            4
6174
6175 #define IPW_PARAM_WPA_ENABLED                   1
6176 #define IPW_PARAM_TKIP_COUNTERMEASURES          2
6177 #define IPW_PARAM_DROP_UNENCRYPTED              3
6178 #define IPW_PARAM_PRIVACY_INVOKED               4
6179 #define IPW_PARAM_AUTH_ALGS                     5
6180 #define IPW_PARAM_IEEE_802_1X                   6
6181
6182 #define IPW_MLME_STA_DEAUTH                     1
6183 #define IPW_MLME_STA_DISASSOC                   2
6184
6185 #define IPW_CRYPT_ERR_UNKNOWN_ALG               2
6186 #define IPW_CRYPT_ERR_UNKNOWN_ADDR              3
6187 #define IPW_CRYPT_ERR_CRYPT_INIT_FAILED         4
6188 #define IPW_CRYPT_ERR_KEY_SET_FAILED            5
6189 #define IPW_CRYPT_ERR_TX_KEY_SET_FAILED         6
6190 #define IPW_CRYPT_ERR_CARD_CONF_FAILED          7
6191
6192 #define IPW_CRYPT_ALG_NAME_LEN                  16
6193
6194 struct ipw_param {
6195         u32 cmd;
6196         u8 sta_addr[ETH_ALEN];
6197         union {
6198                 struct {
6199                         u8 name;
6200                         u32 value;
6201                 } wpa_param;
6202                 struct {
6203                         u32 len;
6204                         u8 reserved[32];
6205                         u8 data[0];
6206                 } wpa_ie;
6207                 struct {
6208                         u32 command;
6209                         u32 reason_code;
6210                 } mlme;
6211                 struct {
6212                         u8 alg[IPW_CRYPT_ALG_NAME_LEN];
6213                         u8 set_tx;
6214                         u32 err;
6215                         u8 idx;
6216                         u8 seq[8];      /* sequence counter (set: RX, get: TX) */
6217                         u16 key_len;
6218                         u8 key[0];
6219                 } crypt;
6220
6221         } u;
6222 };
6223
6224 /* end of driver_ipw.c code */
6225 #endif
6226
6227 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6228 {
6229         /* This is called when wpa_supplicant loads and closes the driver
6230          * interface. */
6231         return 0;
6232 }
6233
6234 #if WIRELESS_EXT < 18
6235 #define IW_AUTH_ALG_OPEN_SYSTEM                 0x1
6236 #define IW_AUTH_ALG_SHARED_KEY                  0x2
6237 #endif
6238
6239 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6240 {
6241         struct ieee80211_device *ieee = priv->ieee;
6242         struct ieee80211_security sec = {
6243                 .flags = SEC_AUTH_MODE,
6244         };
6245         int ret = 0;
6246
6247         if (value & IW_AUTH_ALG_SHARED_KEY) {
6248                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6249                 ieee->open_wep = 0;
6250         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6251                 sec.auth_mode = WLAN_AUTH_OPEN;
6252                 ieee->open_wep = 1;
6253         } else
6254                 return -EINVAL;
6255
6256         if (ieee->set_security)
6257                 ieee->set_security(ieee->dev, &sec);
6258         else
6259                 ret = -EOPNOTSUPP;
6260
6261         return ret;
6262 }
6263
6264 void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, int wpa_ie_len)
6265 {
6266         /* make sure WPA is enabled */
6267         ipw_wpa_enable(priv, 1);
6268
6269         ipw_disassociate(priv);
6270 }
6271
6272 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6273                             char *capabilities, int length)
6274 {
6275         struct host_cmd cmd = {
6276                 .cmd = IPW_CMD_RSN_CAPABILITIES,
6277                 .len = length,
6278         };
6279
6280         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6281
6282         memcpy(cmd.param, capabilities, length);
6283         return ipw_send_cmd(priv, &cmd);
6284 }
6285
6286 #if WIRELESS_EXT < 18
6287 static int ipw_wpa_set_param(struct net_device *dev, u8 name, u32 value)
6288 {
6289         struct ipw_priv *priv = ieee80211_priv(dev);
6290         struct ieee80211_crypt_data *crypt;
6291         unsigned long flags;
6292         int ret = 0;
6293
6294         switch (name) {
6295         case IPW_PARAM_WPA_ENABLED:
6296                 ret = ipw_wpa_enable(priv, value);
6297                 break;
6298
6299         case IPW_PARAM_TKIP_COUNTERMEASURES:
6300                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6301                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6302                         IPW_WARNING("Can't set TKIP countermeasures: "
6303                                     "crypt not set!\n");
6304                         break;
6305                 }
6306
6307                 flags = crypt->ops->get_flags(crypt->priv);
6308
6309                 if (value)
6310                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6311                 else
6312                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6313
6314                 crypt->ops->set_flags(flags, crypt->priv);
6315
6316                 break;
6317
6318         case IPW_PARAM_DROP_UNENCRYPTED:{
6319                         /* HACK:
6320                          *
6321                          * wpa_supplicant calls set_wpa_enabled when the driver
6322                          * is loaded and unloaded, regardless of if WPA is being
6323                          * used.  No other calls are made which can be used to
6324                          * determine if encryption will be used or not prior to
6325                          * association being expected.  If encryption is not being
6326                          * used, drop_unencrypted is set to false, else true -- we
6327                          * can use this to determine if the CAP_PRIVACY_ON bit should
6328                          * be set.
6329                          */
6330                         struct ieee80211_security sec = {
6331                                 .flags = SEC_ENABLED,
6332                                 .enabled = value,
6333                         };
6334                         priv->ieee->drop_unencrypted = value;
6335                         /* We only change SEC_LEVEL for open mode. Others
6336                          * are set by ipw_wpa_set_encryption.
6337                          */
6338                         if (!value) {
6339                                 sec.flags |= SEC_LEVEL;
6340                                 sec.level = SEC_LEVEL_0;
6341                         } else {
6342                                 sec.flags |= SEC_LEVEL;
6343                                 sec.level = SEC_LEVEL_1;
6344                         }
6345                         if (priv->ieee->set_security)
6346                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6347                         break;
6348                 }
6349
6350         case IPW_PARAM_PRIVACY_INVOKED:
6351                 priv->ieee->privacy_invoked = value;
6352                 break;
6353
6354         case IPW_PARAM_AUTH_ALGS:
6355                 ret = ipw_wpa_set_auth_algs(priv, value);
6356                 break;
6357
6358         case IPW_PARAM_IEEE_802_1X:
6359                 priv->ieee->ieee802_1x = value;
6360                 break;
6361
6362         default:
6363                 IPW_ERROR("%s: Unknown WPA param: %d\n", dev->name, name);
6364                 ret = -EOPNOTSUPP;
6365         }
6366
6367         return ret;
6368 }
6369
6370 static int ipw_wpa_mlme(struct net_device *dev, int command, int reason)
6371 {
6372         struct ipw_priv *priv = ieee80211_priv(dev);
6373         int ret = 0;
6374
6375         switch (command) {
6376         case IPW_MLME_STA_DEAUTH:
6377                 // silently ignore
6378                 break;
6379
6380         case IPW_MLME_STA_DISASSOC:
6381                 ipw_disassociate(priv);
6382                 break;
6383
6384         default:
6385                 IPW_ERROR("%s: Unknown MLME request: %d\n", dev->name, command);
6386                 ret = -EOPNOTSUPP;
6387         }
6388
6389         return ret;
6390 }
6391
6392 static int ipw_wpa_ie_cipher2level(u8 cipher)
6393 {
6394         switch (cipher) {
6395         case 4:         /* CCMP */
6396                 return SEC_LEVEL_3;
6397         case 2:         /* TKIP */
6398                 return SEC_LEVEL_2;
6399         case 5:         /* WEP104 */
6400         case 1:         /* WEP40 */
6401                 return SEC_LEVEL_1;
6402         case 0:         /* NONE */
6403                 return SEC_LEVEL_0;
6404         default:
6405                 return -1;
6406         }
6407 }
6408
6409 static int ipw_wpa_set_wpa_ie(struct net_device *dev,
6410                               struct ipw_param *param, int plen)
6411 {
6412         struct ipw_priv *priv = ieee80211_priv(dev);
6413         struct ieee80211_device *ieee = priv->ieee;
6414         u8 *buf;
6415         u8 *ptk, *gtk;
6416         int level;
6417
6418         if (param->u.wpa_ie.len > MAX_WPA_IE_LEN ||
6419             (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL))
6420                 return -EINVAL;
6421
6422         if (param->u.wpa_ie.len) {
6423                 buf = kmalloc(param->u.wpa_ie.len, GFP_KERNEL);
6424                 if (buf == NULL)
6425                         return -ENOMEM;
6426
6427                 memcpy(buf, param->u.wpa_ie.data, param->u.wpa_ie.len);
6428                 kfree(ieee->wpa_ie);
6429                 ieee->wpa_ie = buf;
6430                 ieee->wpa_ie_len = param->u.wpa_ie.len;
6431         } else {
6432                 kfree(ieee->wpa_ie);
6433                 ieee->wpa_ie = NULL;
6434                 ieee->wpa_ie_len = 0;
6435                 goto done;
6436         }
6437
6438         if (priv->ieee->host_encrypt)
6439                 goto done;
6440
6441         /* HACK: Parse wpa_ie here to get pairwise suite, otherwise
6442          * we need to change driver_ipw.c from wpa_supplicant. This
6443          * is OK since -Dipw is deprecated. The -Dwext driver has a
6444          * clean way to handle this. */
6445         gtk = ptk = (u8 *) ieee->wpa_ie;
6446         if (ieee->wpa_ie[0] == 0x30) {  /* RSN IE */
6447                 gtk += 4 + 3;
6448                 ptk += 4 + 4 + 2 + 3;
6449         } else {                /* WPA IE */
6450                 gtk += 8 + 3;
6451                 ptk += 8 + 4 + 2 + 3;
6452         }
6453
6454         if (ptk - (u8 *) ieee->wpa_ie > ieee->wpa_ie_len)
6455                 return -EINVAL;
6456
6457         level = ipw_wpa_ie_cipher2level(*gtk);
6458         ipw_set_hw_decrypt_multicast(priv, level);
6459
6460         level = ipw_wpa_ie_cipher2level(*ptk);
6461         ipw_set_hw_decrypt_unicast(priv, level);
6462
6463       done:
6464         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6465         return 0;
6466 }
6467
6468 /* implementation borrowed from hostap driver */
6469
6470 static int ipw_wpa_set_encryption(struct net_device *dev,
6471                                   struct ipw_param *param, int param_len)
6472 {
6473         int ret = 0;
6474         int group_key = 0;
6475         struct ipw_priv *priv = ieee80211_priv(dev);
6476         struct ieee80211_device *ieee = priv->ieee;
6477         struct ieee80211_crypto_ops *ops;
6478         struct ieee80211_crypt_data **crypt;
6479
6480         struct ieee80211_security sec = {
6481                 .flags = 0,
6482         };
6483
6484         param->u.crypt.err = 0;
6485         param->u.crypt.alg[IPW_CRYPT_ALG_NAME_LEN - 1] = '\0';
6486
6487         if (param_len !=
6488             (int)((char *)param->u.crypt.key - (char *)param) +
6489             param->u.crypt.key_len) {
6490                 IPW_DEBUG_INFO("Len mismatch %d, %d\n", param_len,
6491                                param->u.crypt.key_len);
6492                 return -EINVAL;
6493         }
6494         if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
6495             param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
6496             param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
6497                 if (param->u.crypt.idx >= WEP_KEYS)
6498                         return -EINVAL;
6499                 crypt = &ieee->crypt[param->u.crypt.idx];
6500         } else {
6501                 return -EINVAL;
6502         }
6503
6504         if (param->u.crypt.idx != 0)
6505                 group_key = 1;
6506
6507         sec.flags |= SEC_ENABLED | SEC_ENCRYPT;
6508         if (strcmp(param->u.crypt.alg, "none") == 0) {
6509                 if (crypt) {
6510                         sec.enabled = 0;
6511                         sec.encrypt = 0;
6512                         sec.level = SEC_LEVEL_0;
6513                         sec.flags |= SEC_LEVEL;
6514                         ieee80211_crypt_delayed_deinit(ieee, crypt);
6515                 }
6516                 goto done;
6517         }
6518         sec.enabled = 1;
6519         sec.encrypt = 1;
6520
6521         /* IPW HW cannot build TKIP MIC, host decryption still needed. */
6522         if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
6523                 if (group_key)
6524                         ieee->host_mc_decrypt = 1;
6525                 else
6526                         ieee->host_encrypt_msdu = 1;
6527         }
6528
6529         /*if (!(ieee->host_encrypt || ieee->host_encrypt_msdu ||
6530            ieee->host_decrypt))
6531            goto skip_host_crypt; */
6532         if (group_key ? !ieee->host_mc_decrypt :
6533             !(ieee->host_encrypt || ieee->host_decrypt ||
6534               ieee->host_encrypt_msdu))
6535                 goto skip_host_crypt;
6536
6537         ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6538         if (ops == NULL && strcmp(param->u.crypt.alg, "WEP") == 0) {
6539                 request_module("ieee80211_crypt_wep");
6540                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6541         } else if (ops == NULL && strcmp(param->u.crypt.alg, "TKIP") == 0) {
6542                 request_module("ieee80211_crypt_tkip");
6543                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6544         } else if (ops == NULL && strcmp(param->u.crypt.alg, "CCMP") == 0) {
6545                 request_module("ieee80211_crypt_ccmp");
6546                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6547         }
6548         if (ops == NULL) {
6549                 IPW_DEBUG_INFO("%s: unknown crypto alg '%s'\n",
6550                                dev->name, param->u.crypt.alg);
6551                 param->u.crypt.err = IPW_CRYPT_ERR_UNKNOWN_ALG;
6552                 ret = -EINVAL;
6553                 goto done;
6554         }
6555
6556         if (*crypt == NULL || (*crypt)->ops != ops) {
6557                 struct ieee80211_crypt_data *new_crypt;
6558
6559                 ieee80211_crypt_delayed_deinit(ieee, crypt);
6560
6561                 new_crypt = (struct ieee80211_crypt_data *)
6562                     kmalloc(sizeof(*new_crypt), GFP_KERNEL);
6563                 if (new_crypt == NULL) {
6564                         ret = -ENOMEM;
6565                         goto done;
6566                 }
6567                 memset(new_crypt, 0, sizeof(struct ieee80211_crypt_data));
6568                 new_crypt->ops = ops;
6569                 if (new_crypt->ops && try_module_get(new_crypt->ops->owner))
6570                         new_crypt->priv =
6571                             new_crypt->ops->init(param->u.crypt.idx);
6572
6573                 if (new_crypt->priv == NULL) {
6574                         kfree(new_crypt);
6575                         param->u.crypt.err = IPW_CRYPT_ERR_CRYPT_INIT_FAILED;
6576                         ret = -EINVAL;
6577                         goto done;
6578                 }
6579
6580                 *crypt = new_crypt;
6581         }
6582
6583         if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key &&
6584             (*crypt)->ops->set_key(param->u.crypt.key,
6585                                    param->u.crypt.key_len, param->u.crypt.seq,
6586                                    (*crypt)->priv) < 0) {
6587                 IPW_DEBUG_INFO("%s: key setting failed\n", dev->name);
6588                 param->u.crypt.err = IPW_CRYPT_ERR_KEY_SET_FAILED;
6589                 ret = -EINVAL;
6590                 goto done;
6591         }
6592
6593       skip_host_crypt:
6594         if (param->u.crypt.set_tx) {
6595                 ieee->tx_keyidx = param->u.crypt.idx;
6596                 sec.active_key = param->u.crypt.idx;
6597                 sec.flags |= SEC_ACTIVE_KEY;
6598         } else
6599                 sec.flags &= ~SEC_ACTIVE_KEY;
6600
6601         if (param->u.crypt.alg != NULL) {
6602                 memcpy(sec.keys[param->u.crypt.idx],
6603                        param->u.crypt.key, param->u.crypt.key_len);
6604                 sec.key_sizes[param->u.crypt.idx] = param->u.crypt.key_len;
6605                 sec.flags |= (1 << param->u.crypt.idx);
6606
6607                 if (strcmp(param->u.crypt.alg, "WEP") == 0) {
6608                         sec.flags |= SEC_LEVEL;
6609                         sec.level = SEC_LEVEL_1;
6610                 } else if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
6611                         sec.flags |= SEC_LEVEL;
6612                         sec.level = SEC_LEVEL_2;
6613                 } else if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
6614                         sec.flags |= SEC_LEVEL;
6615                         sec.level = SEC_LEVEL_3;
6616                 }
6617                 /* Don't set sec level for group keys. */
6618                 if (group_key)
6619                         sec.flags &= ~SEC_LEVEL;
6620         }
6621       done:
6622         if (ieee->set_security)
6623                 ieee->set_security(ieee->dev, &sec);
6624
6625         /* Do not reset port if card is in Managed mode since resetting will
6626          * generate new IEEE 802.11 authentication which may end up in looping
6627          * with IEEE 802.1X.  If your hardware requires a reset after WEP
6628          * configuration (for example... Prism2), implement the reset_port in
6629          * the callbacks structures used to initialize the 802.11 stack. */
6630         if (ieee->reset_on_keychange &&
6631             ieee->iw_mode != IW_MODE_INFRA &&
6632             ieee->reset_port && ieee->reset_port(dev)) {
6633                 IPW_DEBUG_INFO("%s: reset_port failed\n", dev->name);
6634                 param->u.crypt.err = IPW_CRYPT_ERR_CARD_CONF_FAILED;
6635                 return -EINVAL;
6636         }
6637
6638         return ret;
6639 }
6640
6641 static int ipw_wpa_supplicant(struct net_device *dev, struct iw_point *p)
6642 {
6643         struct ipw_param *param;
6644         struct ipw_priv *priv = ieee80211_priv(dev);
6645         int ret = 0;
6646
6647         IPW_DEBUG_INFO("wpa_supplicant: len=%d\n", p->length);
6648
6649         if (p->length < sizeof(struct ipw_param) || !p->pointer)
6650                 return -EINVAL;
6651
6652         param = (struct ipw_param *)kmalloc(p->length, GFP_KERNEL);
6653         if (param == NULL)
6654                 return -ENOMEM;
6655
6656         if (copy_from_user(param, p->pointer, p->length)) {
6657                 kfree(param);
6658                 return -EFAULT;
6659         }
6660
6661         down(&priv->sem);
6662         switch (param->cmd) {
6663
6664         case IPW_CMD_SET_WPA_PARAM:
6665                 ret = ipw_wpa_set_param(dev, param->u.wpa_param.name,
6666                                         param->u.wpa_param.value);
6667                 break;
6668
6669         case IPW_CMD_SET_WPA_IE:
6670                 ret = ipw_wpa_set_wpa_ie(dev, param, p->length);
6671                 break;
6672
6673         case IPW_CMD_SET_ENCRYPTION:
6674                 ret = ipw_wpa_set_encryption(dev, param, p->length);
6675                 break;
6676
6677         case IPW_CMD_MLME:
6678                 ret = ipw_wpa_mlme(dev, param->u.mlme.command,
6679                                    param->u.mlme.reason_code);
6680                 break;
6681
6682         default:
6683                 IPW_ERROR("%s: Unknown WPA supplicant request: %d\n",
6684                           dev->name, param->cmd);
6685                 ret = -EOPNOTSUPP;
6686         }
6687
6688         up(&priv->sem);
6689         if (ret == 0 && copy_to_user(p->pointer, param, p->length))
6690                 ret = -EFAULT;
6691
6692         kfree(param);
6693         return ret;
6694 }
6695 #else
6696 /*
6697  * WE-18 support
6698  */
6699
6700 /* SIOCSIWGENIE */
6701 static int ipw_wx_set_genie(struct net_device *dev,
6702                             struct iw_request_info *info,
6703                             union iwreq_data *wrqu, char *extra)
6704 {
6705         struct ipw_priv *priv = ieee80211_priv(dev);
6706         struct ieee80211_device *ieee = priv->ieee;
6707         u8 *buf;
6708         int err = 0;
6709
6710         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6711             (wrqu->data.length && extra == NULL))
6712                 return -EINVAL;
6713
6714         //down(&priv->sem);
6715
6716         //if (!ieee->wpa_enabled) {
6717         //      err = -EOPNOTSUPP;
6718         //      goto out;
6719         //}
6720
6721         if (wrqu->data.length) {
6722                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6723                 if (buf == NULL) {
6724                         err = -ENOMEM;
6725                         goto out;
6726                 }
6727
6728                 memcpy(buf, extra, wrqu->data.length);
6729                 kfree(ieee->wpa_ie);
6730                 ieee->wpa_ie = buf;
6731                 ieee->wpa_ie_len = wrqu->data.length;
6732         } else {
6733                 kfree(ieee->wpa_ie);
6734                 ieee->wpa_ie = NULL;
6735                 ieee->wpa_ie_len = 0;
6736         }
6737
6738         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6739       out:
6740         //up(&priv->sem);
6741         return err;
6742 }
6743
6744 /* SIOCGIWGENIE */
6745 static int ipw_wx_get_genie(struct net_device *dev,
6746                             struct iw_request_info *info,
6747                             union iwreq_data *wrqu, char *extra)
6748 {
6749         struct ipw_priv *priv = ieee80211_priv(dev);
6750         struct ieee80211_device *ieee = priv->ieee;
6751         int err = 0;
6752
6753         //down(&priv->sem);
6754
6755         //if (!ieee->wpa_enabled) {
6756         //      err = -EOPNOTSUPP;
6757         //      goto out;
6758         //}
6759
6760         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6761                 wrqu->data.length = 0;
6762                 goto out;
6763         }
6764
6765         if (wrqu->data.length < ieee->wpa_ie_len) {
6766                 err = -E2BIG;
6767                 goto out;
6768         }
6769
6770         wrqu->data.length = ieee->wpa_ie_len;
6771         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6772
6773       out:
6774         //up(&priv->sem);
6775         return err;
6776 }
6777
6778 static int wext_cipher2level(int cipher)
6779 {
6780         switch (cipher) {
6781         case IW_AUTH_CIPHER_NONE:
6782                 return SEC_LEVEL_0;
6783         case IW_AUTH_CIPHER_WEP40:
6784         case IW_AUTH_CIPHER_WEP104:
6785                 return SEC_LEVEL_1;
6786         case IW_AUTH_CIPHER_TKIP:
6787                 return SEC_LEVEL_2;
6788         case IW_AUTH_CIPHER_CCMP:
6789                 return SEC_LEVEL_3;
6790         default:
6791                 return -1;
6792         }
6793 }
6794
6795 /* SIOCSIWAUTH */
6796 static int ipw_wx_set_auth(struct net_device *dev,
6797                            struct iw_request_info *info,
6798                            union iwreq_data *wrqu, char *extra)
6799 {
6800         struct ipw_priv *priv = ieee80211_priv(dev);
6801         struct ieee80211_device *ieee = priv->ieee;
6802         struct iw_param *param = &wrqu->param;
6803         struct ieee80211_crypt_data *crypt;
6804         unsigned long flags;
6805         int ret = 0;
6806
6807         switch (param->flags & IW_AUTH_INDEX) {
6808         case IW_AUTH_WPA_VERSION:
6809                 break;
6810         case IW_AUTH_CIPHER_PAIRWISE:
6811                 ipw_set_hw_decrypt_unicast(priv,
6812                                            wext_cipher2level(param->value));
6813                 break;
6814         case IW_AUTH_CIPHER_GROUP:
6815                 ipw_set_hw_decrypt_multicast(priv,
6816                                              wext_cipher2level(param->value));
6817                 break;
6818         case IW_AUTH_KEY_MGMT:
6819                 /*
6820                  * ipw2200 does not use these parameters
6821                  */
6822                 break;
6823
6824         case IW_AUTH_TKIP_COUNTERMEASURES:
6825                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6826                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6827                         IPW_WARNING("Can't set TKIP countermeasures: "
6828                                     "crypt not set!\n");
6829                         break;
6830                 }
6831
6832                 flags = crypt->ops->get_flags(crypt->priv);
6833
6834                 if (param->value)
6835                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6836                 else
6837                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6838
6839                 crypt->ops->set_flags(flags, crypt->priv);
6840
6841                 break;
6842
6843         case IW_AUTH_DROP_UNENCRYPTED:{
6844                         /* HACK:
6845                          *
6846                          * wpa_supplicant calls set_wpa_enabled when the driver
6847                          * is loaded and unloaded, regardless of if WPA is being
6848                          * used.  No other calls are made which can be used to
6849                          * determine if encryption will be used or not prior to
6850                          * association being expected.  If encryption is not being
6851                          * used, drop_unencrypted is set to false, else true -- we
6852                          * can use this to determine if the CAP_PRIVACY_ON bit should
6853                          * be set.
6854                          */
6855                         struct ieee80211_security sec = {
6856                                 .flags = SEC_ENABLED,
6857                                 .enabled = param->value,
6858                         };
6859                         priv->ieee->drop_unencrypted = param->value;
6860                         /* We only change SEC_LEVEL for open mode. Others
6861                          * are set by ipw_wpa_set_encryption.
6862                          */
6863                         if (!param->value) {
6864                                 sec.flags |= SEC_LEVEL;
6865                                 sec.level = SEC_LEVEL_0;
6866                         } else {
6867                                 sec.flags |= SEC_LEVEL;
6868                                 sec.level = SEC_LEVEL_1;
6869                         }
6870                         if (priv->ieee->set_security)
6871                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6872                         break;
6873                 }
6874
6875         case IW_AUTH_80211_AUTH_ALG:
6876                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6877                 break;
6878
6879         case IW_AUTH_WPA_ENABLED:
6880                 ret = ipw_wpa_enable(priv, param->value);
6881                 break;
6882
6883         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6884                 ieee->ieee802_1x = param->value;
6885                 break;
6886
6887                 //case IW_AUTH_ROAMING_CONTROL:
6888         case IW_AUTH_PRIVACY_INVOKED:
6889                 ieee->privacy_invoked = param->value;
6890                 break;
6891
6892         default:
6893                 return -EOPNOTSUPP;
6894         }
6895         return ret;
6896 }
6897
6898 /* SIOCGIWAUTH */
6899 static int ipw_wx_get_auth(struct net_device *dev,
6900                            struct iw_request_info *info,
6901                            union iwreq_data *wrqu, char *extra)
6902 {
6903         struct ipw_priv *priv = ieee80211_priv(dev);
6904         struct ieee80211_device *ieee = priv->ieee;
6905         struct ieee80211_crypt_data *crypt;
6906         struct iw_param *param = &wrqu->param;
6907         int ret = 0;
6908
6909         switch (param->flags & IW_AUTH_INDEX) {
6910         case IW_AUTH_WPA_VERSION:
6911         case IW_AUTH_CIPHER_PAIRWISE:
6912         case IW_AUTH_CIPHER_GROUP:
6913         case IW_AUTH_KEY_MGMT:
6914                 /*
6915                  * wpa_supplicant will control these internally
6916                  */
6917                 ret = -EOPNOTSUPP;
6918                 break;
6919
6920         case IW_AUTH_TKIP_COUNTERMEASURES:
6921                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6922                 if (!crypt || !crypt->ops->get_flags) {
6923                         IPW_WARNING("Can't get TKIP countermeasures: "
6924                                     "crypt not set!\n");
6925                         break;
6926                 }
6927
6928                 param->value = (crypt->ops->get_flags(crypt->priv) &
6929                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6930
6931                 break;
6932
6933         case IW_AUTH_DROP_UNENCRYPTED:
6934                 param->value = ieee->drop_unencrypted;
6935                 break;
6936
6937         case IW_AUTH_80211_AUTH_ALG:
6938                 param->value = ieee->sec.auth_mode;
6939                 break;
6940
6941         case IW_AUTH_WPA_ENABLED:
6942                 param->value = ieee->wpa_enabled;
6943                 break;
6944
6945         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6946                 param->value = ieee->ieee802_1x;
6947                 break;
6948
6949         case IW_AUTH_ROAMING_CONTROL:
6950         case IW_AUTH_PRIVACY_INVOKED:
6951                 param->value = ieee->privacy_invoked;
6952                 break;
6953
6954         default:
6955                 return -EOPNOTSUPP;
6956         }
6957         return 0;
6958 }
6959
6960 /* SIOCSIWENCODEEXT */
6961 static int ipw_wx_set_encodeext(struct net_device *dev,
6962                                 struct iw_request_info *info,
6963                                 union iwreq_data *wrqu, char *extra)
6964 {
6965         struct ipw_priv *priv = ieee80211_priv(dev);
6966         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6967
6968         if (hwcrypto) {
6969                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6970                         /* IPW HW can't build TKIP MIC,
6971                            host decryption still needed */
6972                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6973                                 priv->ieee->host_mc_decrypt = 1;
6974                         else {
6975                                 priv->ieee->host_encrypt = 0;
6976                                 priv->ieee->host_encrypt_msdu = 1;
6977                                 priv->ieee->host_decrypt = 1;
6978                         }
6979                 } else {
6980                         priv->ieee->host_encrypt = 0;
6981                         priv->ieee->host_encrypt_msdu = 0;
6982                         priv->ieee->host_decrypt = 0;
6983                         priv->ieee->host_mc_decrypt = 0;
6984                 }
6985         }
6986
6987         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6988 }
6989
6990 /* SIOCGIWENCODEEXT */
6991 static int ipw_wx_get_encodeext(struct net_device *dev,
6992                                 struct iw_request_info *info,
6993                                 union iwreq_data *wrqu, char *extra)
6994 {
6995         struct ipw_priv *priv = ieee80211_priv(dev);
6996         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6997 }
6998
6999 /* SIOCSIWMLME */
7000 static int ipw_wx_set_mlme(struct net_device *dev,
7001                            struct iw_request_info *info,
7002                            union iwreq_data *wrqu, char *extra)
7003 {
7004         struct ipw_priv *priv = ieee80211_priv(dev);
7005         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7006         u16 reason;
7007
7008         reason = cpu_to_le16(mlme->reason_code);
7009
7010         switch (mlme->cmd) {
7011         case IW_MLME_DEAUTH:
7012                 // silently ignore
7013                 break;
7014
7015         case IW_MLME_DISASSOC:
7016                 ipw_disassociate(priv);
7017                 break;
7018
7019         default:
7020                 return -EOPNOTSUPP;
7021         }
7022         return 0;
7023 }
7024 #endif
7025
7026 #ifdef CONFIG_IPW_QOS
7027
7028 /* QoS */
7029 /*
7030 * get the modulation type of the current network or
7031 * the card current mode
7032 */
7033 u8 ipw_qos_current_mode(struct ipw_priv * priv)
7034 {
7035         u8 mode = 0;
7036
7037         if (priv->status & STATUS_ASSOCIATED) {
7038                 unsigned long flags;
7039
7040                 spin_lock_irqsave(&priv->ieee->lock, flags);
7041                 mode = priv->assoc_network->mode;
7042                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7043         } else {
7044                 mode = priv->ieee->mode;
7045         }
7046         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
7047         return mode;
7048 }
7049
7050 /*
7051 * Handle management frame beacon and probe response
7052 */
7053 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
7054                                          int active_network,
7055                                          struct ieee80211_network *network)
7056 {
7057         u32 size = sizeof(struct ieee80211_qos_parameters);
7058
7059         if (network->capability & WLAN_CAPABILITY_IBSS)
7060                 network->qos_data.active = network->qos_data.supported;
7061
7062         if (network->flags & NETWORK_HAS_QOS_MASK) {
7063                 if (active_network &&
7064                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
7065                         network->qos_data.active = network->qos_data.supported;
7066
7067                 if ((network->qos_data.active == 1) && (active_network == 1) &&
7068                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
7069                     (network->qos_data.old_param_count !=
7070                      network->qos_data.param_count)) {
7071                         network->qos_data.old_param_count =
7072                             network->qos_data.param_count;
7073                         schedule_work(&priv->qos_activate);
7074                         IPW_DEBUG_QOS("QoS parameters change call "
7075                                       "qos_activate\n");
7076                 }
7077         } else {
7078                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
7079                         memcpy(&network->qos_data.parameters,
7080                                &def_parameters_CCK, size);
7081                 else
7082                         memcpy(&network->qos_data.parameters,
7083                                &def_parameters_OFDM, size);
7084
7085                 if ((network->qos_data.active == 1) && (active_network == 1)) {
7086                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
7087                         schedule_work(&priv->qos_activate);
7088                 }
7089
7090                 network->qos_data.active = 0;
7091                 network->qos_data.supported = 0;
7092         }
7093         if ((priv->status & STATUS_ASSOCIATED) &&
7094             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
7095                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
7096                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
7097                             !(network->flags & NETWORK_EMPTY_ESSID))
7098                                 if ((network->ssid_len ==
7099                                      priv->assoc_network->ssid_len) &&
7100                                     !memcmp(network->ssid,
7101                                             priv->assoc_network->ssid,
7102                                             network->ssid_len)) {
7103                                         queue_work(priv->workqueue,
7104                                                    &priv->merge_networks);
7105                                 }
7106         }
7107
7108         return 0;
7109 }
7110
7111 /*
7112 * This function set up the firmware to support QoS. It sends
7113 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7114 */
7115 static int ipw_qos_activate(struct ipw_priv *priv,
7116                             struct ieee80211_qos_data *qos_network_data)
7117 {
7118         int err;
7119         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
7120         struct ieee80211_qos_parameters *active_one = NULL;
7121         u32 size = sizeof(struct ieee80211_qos_parameters);
7122         u32 burst_duration;
7123         int i;
7124         u8 type;
7125
7126         type = ipw_qos_current_mode(priv);
7127
7128         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7129         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7130         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7131         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7132
7133         if (qos_network_data == NULL) {
7134                 if (type == IEEE_B) {
7135                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7136                         active_one = &def_parameters_CCK;
7137                 } else
7138                         active_one = &def_parameters_OFDM;
7139
7140                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7141                 burst_duration = ipw_qos_get_burst_duration(priv);
7142                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7143                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7144                             (u16) burst_duration;
7145         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7146                 if (type == IEEE_B) {
7147                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7148                                       type);
7149                         if (priv->qos_data.qos_enable == 0)
7150                                 active_one = &def_parameters_CCK;
7151                         else
7152                                 active_one = priv->qos_data.def_qos_parm_CCK;
7153                 } else {
7154                         if (priv->qos_data.qos_enable == 0)
7155                                 active_one = &def_parameters_OFDM;
7156                         else
7157                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7158                 }
7159                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7160         } else {
7161                 unsigned long flags;
7162                 int active;
7163
7164                 spin_lock_irqsave(&priv->ieee->lock, flags);
7165                 active_one = &(qos_network_data->parameters);
7166                 qos_network_data->old_param_count =
7167                     qos_network_data->param_count;
7168                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7169                 active = qos_network_data->supported;
7170                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7171
7172                 if (active == 0) {
7173                         burst_duration = ipw_qos_get_burst_duration(priv);
7174                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7175                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7176                                     tx_op_limit[i] = (u16) burst_duration;
7177                 }
7178         }
7179
7180         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7181         err = ipw_send_qos_params_command(priv,
7182                                           (struct ieee80211_qos_parameters *)
7183                                           &(qos_parameters[0]));
7184         if (err)
7185                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7186
7187         return err;
7188 }
7189
7190 /*
7191 * send IPW_CMD_WME_INFO to the firmware
7192 */
7193 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7194 {
7195         int ret = 0;
7196         struct ieee80211_qos_information_element qos_info;
7197
7198         if (priv == NULL)
7199                 return -1;
7200
7201         qos_info.elementID = QOS_ELEMENT_ID;
7202         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7203
7204         qos_info.version = QOS_VERSION_1;
7205         qos_info.ac_info = 0;
7206
7207         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7208         qos_info.qui_type = QOS_OUI_TYPE;
7209         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7210
7211         ret = ipw_send_qos_info_command(priv, &qos_info);
7212         if (ret != 0) {
7213                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7214         }
7215         return ret;
7216 }
7217
7218 /*
7219 * Set the QoS parameter with the association request structure
7220 */
7221 static int ipw_qos_association(struct ipw_priv *priv,
7222                                struct ieee80211_network *network)
7223 {
7224         int err = 0;
7225         struct ieee80211_qos_data *qos_data = NULL;
7226         struct ieee80211_qos_data ibss_data = {
7227                 .supported = 1,
7228                 .active = 1,
7229         };
7230
7231         switch (priv->ieee->iw_mode) {
7232         case IW_MODE_ADHOC:
7233                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
7234                         BUG();
7235
7236                 qos_data = &ibss_data;
7237                 break;
7238
7239         case IW_MODE_INFRA:
7240                 qos_data = &network->qos_data;
7241                 break;
7242
7243         default:
7244                 BUG();
7245                 break;
7246         }
7247
7248         err = ipw_qos_activate(priv, qos_data);
7249         if (err) {
7250                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7251                 return err;
7252         }
7253
7254         if (priv->qos_data.qos_enable && qos_data->supported) {
7255                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7256                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7257                 return ipw_qos_set_info_element(priv);
7258         }
7259
7260         return 0;
7261 }
7262
7263 /*
7264 * handling the beaconing responces. if we get different QoS setting
7265 * of the network from the the associated setting adjust the QoS
7266 * setting
7267 */
7268 static int ipw_qos_association_resp(struct ipw_priv *priv,
7269                                     struct ieee80211_network *network)
7270 {
7271         int ret = 0;
7272         unsigned long flags;
7273         u32 size = sizeof(struct ieee80211_qos_parameters);
7274         int set_qos_param = 0;
7275
7276         if ((priv == NULL) || (network == NULL) ||
7277             (priv->assoc_network == NULL))
7278                 return ret;
7279
7280         if (!(priv->status & STATUS_ASSOCIATED))
7281                 return ret;
7282
7283         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7284                 return ret;
7285
7286         spin_lock_irqsave(&priv->ieee->lock, flags);
7287         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7288                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7289                        sizeof(struct ieee80211_qos_data));
7290                 priv->assoc_network->qos_data.active = 1;
7291                 if ((network->qos_data.old_param_count !=
7292                      network->qos_data.param_count)) {
7293                         set_qos_param = 1;
7294                         network->qos_data.old_param_count =
7295                             network->qos_data.param_count;
7296                 }
7297
7298         } else {
7299                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7300                         memcpy(&priv->assoc_network->qos_data.parameters,
7301                                &def_parameters_CCK, size);
7302                 else
7303                         memcpy(&priv->assoc_network->qos_data.parameters,
7304                                &def_parameters_OFDM, size);
7305                 priv->assoc_network->qos_data.active = 0;
7306                 priv->assoc_network->qos_data.supported = 0;
7307                 set_qos_param = 1;
7308         }
7309
7310         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7311
7312         if (set_qos_param == 1)
7313                 schedule_work(&priv->qos_activate);
7314
7315         return ret;
7316 }
7317
7318 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7319 {
7320         u32 ret = 0;
7321
7322         if ((priv == NULL))
7323                 return 0;
7324
7325         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7326                 ret = priv->qos_data.burst_duration_CCK;
7327         else
7328                 ret = priv->qos_data.burst_duration_OFDM;
7329
7330         return ret;
7331 }
7332
7333 /*
7334 * Initialize the setting of QoS global
7335 */
7336 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7337                          int burst_enable, u32 burst_duration_CCK,
7338                          u32 burst_duration_OFDM)
7339 {
7340         priv->qos_data.qos_enable = enable;
7341
7342         if (priv->qos_data.qos_enable) {
7343                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7344                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7345                 IPW_DEBUG_QOS("QoS is enabled\n");
7346         } else {
7347                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7348                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7349                 IPW_DEBUG_QOS("QoS is not enabled\n");
7350         }
7351
7352         priv->qos_data.burst_enable = burst_enable;
7353
7354         if (burst_enable) {
7355                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7356                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7357         } else {
7358                 priv->qos_data.burst_duration_CCK = 0;
7359                 priv->qos_data.burst_duration_OFDM = 0;
7360         }
7361 }
7362
7363 /*
7364 * map the packet priority to the right TX Queue
7365 */
7366 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7367 {
7368         if (priority > 7 || !priv->qos_data.qos_enable)
7369                 priority = 0;
7370
7371         return from_priority_to_tx_queue[priority] - 1;
7372 }
7373
7374 /*
7375 * add QoS parameter to the TX command
7376 */
7377 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7378                                         u16 priority,
7379                                         struct tfd_data *tfd, u8 unicast)
7380 {
7381         int ret = 0;
7382         int tx_queue_id = 0;
7383         struct ieee80211_qos_data *qos_data = NULL;
7384         int active, supported;
7385         unsigned long flags;
7386
7387         if (!(priv->status & STATUS_ASSOCIATED))
7388                 return 0;
7389
7390         qos_data = &priv->assoc_network->qos_data;
7391
7392         spin_lock_irqsave(&priv->ieee->lock, flags);
7393
7394         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7395                 if (unicast == 0)
7396                         qos_data->active = 0;
7397                 else
7398                         qos_data->active = qos_data->supported;
7399         }
7400
7401         active = qos_data->active;
7402         supported = qos_data->supported;
7403
7404         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7405
7406         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7407                       "unicast %d\n",
7408                       priv->qos_data.qos_enable, active, supported, unicast);
7409         if (active && priv->qos_data.qos_enable) {
7410                 ret = from_priority_to_tx_queue[priority];
7411                 tx_queue_id = ret - 1;
7412                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
7413                 if (priority <= 7) {
7414                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7415                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
7416                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
7417                             IEEE80211_STYPE_QOS_DATA;
7418
7419                         if (priv->qos_data.qos_no_ack_mask &
7420                             (1UL << tx_queue_id)) {
7421                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7422                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
7423                                     CTRL_QOS_NO_ACK;
7424                         }
7425                 }
7426         }
7427
7428         return ret;
7429 }
7430
7431 /*
7432 * background support to run QoS activate functionality
7433 */
7434 static void ipw_bg_qos_activate(void *data)
7435 {
7436         struct ipw_priv *priv = data;
7437
7438         if (priv == NULL)
7439                 return;
7440
7441         down(&priv->sem);
7442
7443         if (priv->status & STATUS_ASSOCIATED)
7444                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7445
7446         up(&priv->sem);
7447 }
7448
7449 static int ipw_handle_probe_response(struct net_device *dev,
7450                                      struct ieee80211_probe_response *resp,
7451                                      struct ieee80211_network *network)
7452 {
7453         struct ipw_priv *priv = ieee80211_priv(dev);
7454         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7455                               (network == priv->assoc_network));
7456
7457         ipw_qos_handle_probe_response(priv, active_network, network);
7458
7459         return 0;
7460 }
7461
7462 static int ipw_handle_beacon(struct net_device *dev,
7463                              struct ieee80211_beacon *resp,
7464                              struct ieee80211_network *network)
7465 {
7466         struct ipw_priv *priv = ieee80211_priv(dev);
7467         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7468                               (network == priv->assoc_network));
7469
7470         ipw_qos_handle_probe_response(priv, active_network, network);
7471
7472         return 0;
7473 }
7474
7475 static int ipw_handle_assoc_response(struct net_device *dev,
7476                                      struct ieee80211_assoc_response *resp,
7477                                      struct ieee80211_network *network)
7478 {
7479         struct ipw_priv *priv = ieee80211_priv(dev);
7480         ipw_qos_association_resp(priv, network);
7481         return 0;
7482 }
7483
7484 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7485                                        *qos_param)
7486 {
7487         struct host_cmd cmd = {
7488                 .cmd = IPW_CMD_QOS_PARAMETERS,
7489                 .len = (sizeof(struct ieee80211_qos_parameters) * 3)
7490         };
7491
7492         memcpy(cmd.param, qos_param, sizeof(*qos_param) * 3);
7493         return ipw_send_cmd(priv, &cmd);
7494 }
7495
7496 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7497                                      *qos_param)
7498 {
7499         struct host_cmd cmd = {
7500                 .cmd = IPW_CMD_WME_INFO,
7501                 .len = sizeof(*qos_param)
7502         };
7503
7504         memcpy(cmd.param, qos_param, sizeof(*qos_param));
7505         return ipw_send_cmd(priv, &cmd);
7506 }
7507
7508 #endif                          /* CONFIG_IPW_QOS */
7509
7510 static int ipw_associate_network(struct ipw_priv *priv,
7511                                  struct ieee80211_network *network,
7512                                  struct ipw_supported_rates *rates, int roaming)
7513 {
7514         int err;
7515
7516         if (priv->config & CFG_FIXED_RATE)
7517                 ipw_set_fixed_rate(priv, network->mode);
7518
7519         if (!(priv->config & CFG_STATIC_ESSID)) {
7520                 priv->essid_len = min(network->ssid_len,
7521                                       (u8) IW_ESSID_MAX_SIZE);
7522                 memcpy(priv->essid, network->ssid, priv->essid_len);
7523         }
7524
7525         network->last_associate = jiffies;
7526
7527         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7528         priv->assoc_request.channel = network->channel;
7529         if ((priv->capability & CAP_PRIVACY_ON) &&
7530             (priv->capability & CAP_SHARED_KEY)) {
7531                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7532                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7533
7534                 if ((priv->capability & CAP_PRIVACY_ON) &&
7535                     (priv->ieee->sec.level == SEC_LEVEL_1) &&
7536                     !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
7537                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7538         } else {
7539                 priv->assoc_request.auth_type = AUTH_OPEN;
7540                 priv->assoc_request.auth_key = 0;
7541         }
7542
7543         if (priv->ieee->wpa_ie_len) {
7544                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7545                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7546                                  priv->ieee->wpa_ie_len);
7547         }
7548
7549         /*
7550          * It is valid for our ieee device to support multiple modes, but
7551          * when it comes to associating to a given network we have to choose
7552          * just one mode.
7553          */
7554         if (network->mode & priv->ieee->mode & IEEE_A)
7555                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7556         else if (network->mode & priv->ieee->mode & IEEE_G)
7557                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7558         else if (network->mode & priv->ieee->mode & IEEE_B)
7559                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7560
7561         priv->assoc_request.capability = network->capability;
7562         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7563             && !(priv->config & CFG_PREAMBLE_LONG)) {
7564                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7565         } else {
7566                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7567
7568                 /* Clear the short preamble if we won't be supporting it */
7569                 priv->assoc_request.capability &=
7570                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7571         }
7572
7573         /* Clear capability bits that aren't used in Ad Hoc */
7574         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7575                 priv->assoc_request.capability &=
7576                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7577
7578         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7579                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7580                         roaming ? "Rea" : "A",
7581                         escape_essid(priv->essid, priv->essid_len),
7582                         network->channel,
7583                         ipw_modes[priv->assoc_request.ieee_mode],
7584                         rates->num_rates,
7585                         (priv->assoc_request.preamble_length ==
7586                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7587                         network->capability &
7588                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7589                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7590                         priv->capability & CAP_PRIVACY_ON ?
7591                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7592                          "(open)") : "",
7593                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7594                         priv->capability & CAP_PRIVACY_ON ?
7595                         '1' + priv->ieee->sec.active_key : '.',
7596                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7597
7598         priv->assoc_request.beacon_interval = network->beacon_interval;
7599         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7600             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7601                 priv->assoc_request.assoc_type = HC_IBSS_START;
7602                 priv->assoc_request.assoc_tsf_msw = 0;
7603                 priv->assoc_request.assoc_tsf_lsw = 0;
7604         } else {
7605                 if (unlikely(roaming))
7606                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7607                 else
7608                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7609                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7610                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7611         }
7612
7613         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7614
7615         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7616                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7617                 priv->assoc_request.atim_window = network->atim_window;
7618         } else {
7619                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7620                 priv->assoc_request.atim_window = 0;
7621         }
7622
7623         priv->assoc_request.listen_interval = network->listen_interval;
7624
7625         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7626         if (err) {
7627                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7628                 return err;
7629         }
7630
7631         rates->ieee_mode = priv->assoc_request.ieee_mode;
7632         rates->purpose = IPW_RATE_CONNECT;
7633         ipw_send_supported_rates(priv, rates);
7634
7635         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7636                 priv->sys_config.dot11g_auto_detection = 1;
7637         else
7638                 priv->sys_config.dot11g_auto_detection = 0;
7639
7640         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7641                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7642         else
7643                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7644
7645         err = ipw_send_system_config(priv, &priv->sys_config);
7646         if (err) {
7647                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7648                 return err;
7649         }
7650
7651         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7652         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7653         if (err) {
7654                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7655                 return err;
7656         }
7657
7658         /*
7659          * If preemption is enabled, it is possible for the association
7660          * to complete before we return from ipw_send_associate.  Therefore
7661          * we have to be sure and update our priviate data first.
7662          */
7663         priv->channel = network->channel;
7664         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7665
7666         priv->assoc_network = network;
7667
7668 #ifdef CONFIG_IPW_QOS
7669         ipw_qos_association(priv, network);
7670 #endif
7671
7672         err = ipw_send_associate(priv, &priv->assoc_request);
7673         if (err) {
7674                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7675                 return err;
7676         }
7677
7678         priv->status |= STATUS_ASSOCIATING;
7679         priv->status &= ~STATUS_SECURITY_UPDATED;
7680
7681         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7682                   escape_essid(priv->essid, priv->essid_len),
7683                   MAC_ARG(priv->bssid));
7684
7685         return 0;
7686 }
7687
7688 static void ipw_roam(void *data)
7689 {
7690         struct ipw_priv *priv = data;
7691         struct ieee80211_network *network = NULL;
7692         struct ipw_network_match match = {
7693                 .network = priv->assoc_network
7694         };
7695
7696         /* The roaming process is as follows:
7697          *
7698          * 1.  Missed beacon threshold triggers the roaming process by
7699          *     setting the status ROAM bit and requesting a scan.
7700          * 2.  When the scan completes, it schedules the ROAM work
7701          * 3.  The ROAM work looks at all of the known networks for one that
7702          *     is a better network than the currently associated.  If none
7703          *     found, the ROAM process is over (ROAM bit cleared)
7704          * 4.  If a better network is found, a disassociation request is
7705          *     sent.
7706          * 5.  When the disassociation completes, the roam work is again
7707          *     scheduled.  The second time through, the driver is no longer
7708          *     associated, and the newly selected network is sent an
7709          *     association request.
7710          * 6.  At this point ,the roaming process is complete and the ROAM
7711          *     status bit is cleared.
7712          */
7713
7714         /* If we are no longer associated, and the roaming bit is no longer
7715          * set, then we are not actively roaming, so just return */
7716         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7717                 return;
7718
7719         if (priv->status & STATUS_ASSOCIATED) {
7720                 /* First pass through ROAM process -- look for a better
7721                  * network */
7722                 unsigned long flags;
7723                 u8 rssi = priv->assoc_network->stats.rssi;
7724                 priv->assoc_network->stats.rssi = -128;
7725                 spin_lock_irqsave(&priv->ieee->lock, flags);
7726                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7727                         if (network != priv->assoc_network)
7728                                 ipw_best_network(priv, &match, network, 1);
7729                 }
7730                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7731                 priv->assoc_network->stats.rssi = rssi;
7732
7733                 if (match.network == priv->assoc_network) {
7734                         IPW_DEBUG_ASSOC("No better APs in this network to "
7735                                         "roam to.\n");
7736                         priv->status &= ~STATUS_ROAMING;
7737                         ipw_debug_config(priv);
7738                         return;
7739                 }
7740
7741                 ipw_send_disassociate(priv, 1);
7742                 priv->assoc_network = match.network;
7743
7744                 return;
7745         }
7746
7747         /* Second pass through ROAM process -- request association */
7748         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7749         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7750         priv->status &= ~STATUS_ROAMING;
7751 }
7752
7753 static void ipw_bg_roam(void *data)
7754 {
7755         struct ipw_priv *priv = data;
7756         down(&priv->sem);
7757         ipw_roam(data);
7758         up(&priv->sem);
7759 }
7760
7761 static int ipw_associate(void *data)
7762 {
7763         struct ipw_priv *priv = data;
7764
7765         struct ieee80211_network *network = NULL;
7766         struct ipw_network_match match = {
7767                 .network = NULL
7768         };
7769         struct ipw_supported_rates *rates;
7770         struct list_head *element;
7771         unsigned long flags;
7772
7773         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7774                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7775                 return 0;
7776         }
7777
7778         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7779                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7780                                 "progress)\n");
7781                 return 0;
7782         }
7783
7784         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7785                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7786                                 "initialized)\n");
7787                 return 0;
7788         }
7789
7790         if (!(priv->config & CFG_ASSOCIATE) &&
7791             !(priv->config & (CFG_STATIC_ESSID |
7792                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7793                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7794                 return 0;
7795         }
7796
7797         /* Protect our use of the network_list */
7798         spin_lock_irqsave(&priv->ieee->lock, flags);
7799         list_for_each_entry(network, &priv->ieee->network_list, list)
7800             ipw_best_network(priv, &match, network, 0);
7801
7802         network = match.network;
7803         rates = &match.rates;
7804
7805         if (network == NULL &&
7806             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7807             priv->config & CFG_ADHOC_CREATE &&
7808             priv->config & CFG_STATIC_ESSID &&
7809             priv->config & CFG_STATIC_CHANNEL &&
7810             !list_empty(&priv->ieee->network_free_list)) {
7811                 element = priv->ieee->network_free_list.next;
7812                 network = list_entry(element, struct ieee80211_network, list);
7813                 ipw_adhoc_create(priv, network);
7814                 rates = &priv->rates;
7815                 list_del(element);
7816                 list_add_tail(&network->list, &priv->ieee->network_list);
7817         }
7818         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7819
7820         /* If we reached the end of the list, then we don't have any valid
7821          * matching APs */
7822         if (!network) {
7823                 ipw_debug_config(priv);
7824
7825                 if (!(priv->status & STATUS_SCANNING)) {
7826                         if (!(priv->config & CFG_SPEED_SCAN))
7827                                 queue_delayed_work(priv->workqueue,
7828                                                    &priv->request_scan,
7829                                                    SCAN_INTERVAL);
7830                         else
7831                                 queue_work(priv->workqueue,
7832                                            &priv->request_scan);
7833                 }
7834
7835                 return 0;
7836         }
7837
7838         ipw_associate_network(priv, network, rates, 0);
7839
7840         return 1;
7841 }
7842
7843 static void ipw_bg_associate(void *data)
7844 {
7845         struct ipw_priv *priv = data;
7846         down(&priv->sem);
7847         ipw_associate(data);
7848         up(&priv->sem);
7849 }
7850
7851 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7852                                       struct sk_buff *skb)
7853 {
7854         struct ieee80211_hdr *hdr;
7855         u16 fc;
7856
7857         hdr = (struct ieee80211_hdr *)skb->data;
7858         fc = le16_to_cpu(hdr->frame_ctl);
7859         if (!(fc & IEEE80211_FCTL_PROTECTED))
7860                 return;
7861
7862         fc &= ~IEEE80211_FCTL_PROTECTED;
7863         hdr->frame_ctl = cpu_to_le16(fc);
7864         switch (priv->ieee->sec.level) {
7865         case SEC_LEVEL_3:
7866                 /* Remove CCMP HDR */
7867                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7868                         skb->data + IEEE80211_3ADDR_LEN + 8,
7869                         skb->len - IEEE80211_3ADDR_LEN - 8);
7870                 if (fc & IEEE80211_FCTL_MOREFRAGS)
7871                         skb_trim(skb, skb->len - 16);   /* 2*MIC */
7872                 else
7873                         skb_trim(skb, skb->len - 8);    /* MIC */
7874                 break;
7875         case SEC_LEVEL_2:
7876                 break;
7877         case SEC_LEVEL_1:
7878                 /* Remove IV */
7879                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7880                         skb->data + IEEE80211_3ADDR_LEN + 4,
7881                         skb->len - IEEE80211_3ADDR_LEN - 4);
7882                 if (fc & IEEE80211_FCTL_MOREFRAGS)
7883                         skb_trim(skb, skb->len - 8);    /* 2*ICV */
7884                 else
7885                         skb_trim(skb, skb->len - 4);    /* ICV */
7886                 break;
7887         case SEC_LEVEL_0:
7888                 break;
7889         default:
7890                 printk(KERN_ERR "Unknow security level %d\n",
7891                        priv->ieee->sec.level);
7892                 break;
7893         }
7894 }
7895
7896 static void ipw_handle_data_packet(struct ipw_priv *priv,
7897                                    struct ipw_rx_mem_buffer *rxb,
7898                                    struct ieee80211_rx_stats *stats)
7899 {
7900         struct ieee80211_hdr_4addr *hdr;
7901         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7902
7903         /* We received data from the HW, so stop the watchdog */
7904         priv->net_dev->trans_start = jiffies;
7905
7906         /* We only process data packets if the
7907          * interface is open */
7908         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7909                      skb_tailroom(rxb->skb))) {
7910                 priv->ieee->stats.rx_errors++;
7911                 priv->wstats.discard.misc++;
7912                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7913                 return;
7914         } else if (unlikely(!netif_running(priv->net_dev))) {
7915                 priv->ieee->stats.rx_dropped++;
7916                 priv->wstats.discard.misc++;
7917                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7918                 return;
7919         }
7920
7921         /* Advance skb->data to the start of the actual payload */
7922         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7923
7924         /* Set the size of the skb to the size of the frame */
7925         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7926
7927         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7928
7929         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7930         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7931         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7932             (is_multicast_ether_addr(hdr->addr1) ?
7933              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7934                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7935
7936         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7937                 priv->ieee->stats.rx_errors++;
7938         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7939                 rxb->skb = NULL;
7940                 __ipw_led_activity_on(priv);
7941         }
7942 }
7943
7944 #ifdef CONFIG_IEEE80211_RADIOTAP
7945 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7946                                            struct ipw_rx_mem_buffer *rxb,
7947                                            struct ieee80211_rx_stats *stats)
7948 {
7949         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7950         struct ipw_rx_frame *frame = &pkt->u.frame;
7951
7952         /* initial pull of some data */
7953         u16 received_channel = frame->received_channel;
7954         u8 antennaAndPhy = frame->antennaAndPhy;
7955         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7956         u16 pktrate = frame->rate;
7957
7958         /* Magic struct that slots into the radiotap header -- no reason
7959          * to build this manually element by element, we can write it much
7960          * more efficiently than we can parse it. ORDER MATTERS HERE */
7961         struct ipw_rt_hdr {
7962                 struct ieee80211_radiotap_header rt_hdr;
7963                 u8 rt_flags;    /* radiotap packet flags */
7964                 u8 rt_rate;     /* rate in 500kb/s */
7965                 u16 rt_channel; /* channel in mhz */
7966                 u16 rt_chbitmask;       /* channel bitfield */
7967                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7968                 u8 rt_antenna;  /* antenna number */
7969         } *ipw_rt;
7970
7971         short len = le16_to_cpu(pkt->u.frame.length);
7972
7973         /* We received data from the HW, so stop the watchdog */
7974         priv->net_dev->trans_start = jiffies;
7975
7976         /* We only process data packets if the
7977          * interface is open */
7978         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7979                      skb_tailroom(rxb->skb))) {
7980                 priv->ieee->stats.rx_errors++;
7981                 priv->wstats.discard.misc++;
7982                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7983                 return;
7984         } else if (unlikely(!netif_running(priv->net_dev))) {
7985                 priv->ieee->stats.rx_dropped++;
7986                 priv->wstats.discard.misc++;
7987                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7988                 return;
7989         }
7990
7991         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7992          * that now */
7993         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7994                 /* FIXME: Should alloc bigger skb instead */
7995                 priv->ieee->stats.rx_dropped++;
7996                 priv->wstats.discard.misc++;
7997                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7998                 return;
7999         }
8000
8001         /* copy the frame itself */
8002         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
8003                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
8004
8005         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
8006          * part of our real header, saves a little time.
8007          *
8008          * No longer necessary since we fill in all our data.  Purge before merging
8009          * patch officially.
8010          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8011          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8012          */
8013
8014         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
8015
8016         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8017         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8018         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
8019
8020         /* Big bitfield of all the fields we provide in radiotap */
8021         ipw_rt->rt_hdr.it_present =
8022             ((1 << IEEE80211_RADIOTAP_FLAGS) |
8023              (1 << IEEE80211_RADIOTAP_RATE) |
8024              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8025              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8026              (1 << IEEE80211_RADIOTAP_ANTENNA));
8027
8028         /* Zero the flags, we'll add to them as we go */
8029         ipw_rt->rt_flags = 0;
8030
8031         /* Convert signal to DBM */
8032         ipw_rt->rt_dbmsignal = antsignal;
8033
8034         /* Convert the channel data and set the flags */
8035         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
8036         if (received_channel > 14) {    /* 802.11a */
8037                 ipw_rt->rt_chbitmask =
8038                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8039         } else if (antennaAndPhy & 32) {        /* 802.11b */
8040                 ipw_rt->rt_chbitmask =
8041                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8042         } else {                /* 802.11g */
8043                 ipw_rt->rt_chbitmask =
8044                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8045         }
8046
8047         /* set the rate in multiples of 500k/s */
8048         switch (pktrate) {
8049         case IPW_TX_RATE_1MB:
8050                 ipw_rt->rt_rate = 2;
8051                 break;
8052         case IPW_TX_RATE_2MB:
8053                 ipw_rt->rt_rate = 4;
8054                 break;
8055         case IPW_TX_RATE_5MB:
8056                 ipw_rt->rt_rate = 10;
8057                 break;
8058         case IPW_TX_RATE_6MB:
8059                 ipw_rt->rt_rate = 12;
8060                 break;
8061         case IPW_TX_RATE_9MB:
8062                 ipw_rt->rt_rate = 18;
8063                 break;
8064         case IPW_TX_RATE_11MB:
8065                 ipw_rt->rt_rate = 22;
8066                 break;
8067         case IPW_TX_RATE_12MB:
8068                 ipw_rt->rt_rate = 24;
8069                 break;
8070         case IPW_TX_RATE_18MB:
8071                 ipw_rt->rt_rate = 36;
8072                 break;
8073         case IPW_TX_RATE_24MB:
8074                 ipw_rt->rt_rate = 48;
8075                 break;
8076         case IPW_TX_RATE_36MB:
8077                 ipw_rt->rt_rate = 72;
8078                 break;
8079         case IPW_TX_RATE_48MB:
8080                 ipw_rt->rt_rate = 96;
8081                 break;
8082         case IPW_TX_RATE_54MB:
8083                 ipw_rt->rt_rate = 108;
8084                 break;
8085         default:
8086                 ipw_rt->rt_rate = 0;
8087                 break;
8088         }
8089
8090         /* antenna number */
8091         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
8092
8093         /* set the preamble flag if we have it */
8094         if ((antennaAndPhy & 64))
8095                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8096
8097         /* Set the size of the skb to the size of the frame */
8098         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
8099
8100         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
8101
8102         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
8103                 priv->ieee->stats.rx_errors++;
8104         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
8105                 rxb->skb = NULL;
8106                 /* no LED during capture */
8107         }
8108 }
8109 #endif
8110
8111 static inline int is_network_packet(struct ipw_priv *priv,
8112                                     struct ieee80211_hdr_4addr *header)
8113 {
8114         /* Filter incoming packets to determine if they are targetted toward
8115          * this network, discarding packets coming from ourselves */
8116         switch (priv->ieee->iw_mode) {
8117         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8118                 /* packets from our adapter are dropped (echo) */
8119                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8120                         return 0;
8121
8122                 /* {broad,multi}cast packets to our BSSID go through */
8123                 if (is_multicast_ether_addr(header->addr1) ||
8124                     is_broadcast_ether_addr(header->addr1))
8125                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8126
8127                 /* packets to our adapter go through */
8128                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8129                                ETH_ALEN);
8130
8131         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8132                 /* packets from our adapter are dropped (echo) */
8133                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8134                         return 0;
8135
8136                 /* {broad,multi}cast packets to our BSS go through */
8137                 if (is_multicast_ether_addr(header->addr1) ||
8138                     is_broadcast_ether_addr(header->addr1))
8139                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8140
8141                 /* packets to our adapter go through */
8142                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8143                                ETH_ALEN);
8144         }
8145
8146         return 1;
8147 }
8148
8149 #define IPW_PACKET_RETRY_TIME HZ
8150
8151 static inline int is_duplicate_packet(struct ipw_priv *priv,
8152                                       struct ieee80211_hdr_4addr *header)
8153 {
8154         u16 sc = le16_to_cpu(header->seq_ctl);
8155         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8156         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8157         u16 *last_seq, *last_frag;
8158         unsigned long *last_time;
8159
8160         switch (priv->ieee->iw_mode) {
8161         case IW_MODE_ADHOC:
8162                 {
8163                         struct list_head *p;
8164                         struct ipw_ibss_seq *entry = NULL;
8165                         u8 *mac = header->addr2;
8166                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8167
8168                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8169                                 entry =
8170                                     list_entry(p, struct ipw_ibss_seq, list);
8171                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8172                                         break;
8173                         }
8174                         if (p == &priv->ibss_mac_hash[index]) {
8175                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8176                                 if (!entry) {
8177                                         IPW_ERROR
8178                                             ("Cannot malloc new mac entry\n");
8179                                         return 0;
8180                                 }
8181                                 memcpy(entry->mac, mac, ETH_ALEN);
8182                                 entry->seq_num = seq;
8183                                 entry->frag_num = frag;
8184                                 entry->packet_time = jiffies;
8185                                 list_add(&entry->list,
8186                                          &priv->ibss_mac_hash[index]);
8187                                 return 0;
8188                         }
8189                         last_seq = &entry->seq_num;
8190                         last_frag = &entry->frag_num;
8191                         last_time = &entry->packet_time;
8192                         break;
8193                 }
8194         case IW_MODE_INFRA:
8195                 last_seq = &priv->last_seq_num;
8196                 last_frag = &priv->last_frag_num;
8197                 last_time = &priv->last_packet_time;
8198                 break;
8199         default:
8200                 return 0;
8201         }
8202         if ((*last_seq == seq) &&
8203             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8204                 if (*last_frag == frag)
8205                         goto drop;
8206                 if (*last_frag + 1 != frag)
8207                         /* out-of-order fragment */
8208                         goto drop;
8209         } else
8210                 *last_seq = seq;
8211
8212         *last_frag = frag;
8213         *last_time = jiffies;
8214         return 0;
8215
8216       drop:
8217         /* Comment this line now since we observed the card receives
8218          * duplicate packets but the FCTL_RETRY bit is not set in the
8219          * IBSS mode with fragmentation enabled.
8220          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8221         return 1;
8222 }
8223
8224 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8225                                    struct ipw_rx_mem_buffer *rxb,
8226                                    struct ieee80211_rx_stats *stats)
8227 {
8228         struct sk_buff *skb = rxb->skb;
8229         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8230         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8231             (skb->data + IPW_RX_FRAME_SIZE);
8232
8233         ieee80211_rx_mgt(priv->ieee, header, stats);
8234
8235         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8236             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8237               IEEE80211_STYPE_PROBE_RESP) ||
8238              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8239               IEEE80211_STYPE_BEACON))) {
8240                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8241                         ipw_add_station(priv, header->addr2);
8242         }
8243
8244         if (priv->config & CFG_NET_STATS) {
8245                 IPW_DEBUG_HC("sending stat packet\n");
8246
8247                 /* Set the size of the skb to the size of the full
8248                  * ipw header and 802.11 frame */
8249                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8250                         IPW_RX_FRAME_SIZE);
8251
8252                 /* Advance past the ipw packet header to the 802.11 frame */
8253                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8254
8255                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8256                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8257
8258                 skb->dev = priv->ieee->dev;
8259
8260                 /* Point raw at the ieee80211_stats */
8261                 skb->mac.raw = skb->data;
8262
8263                 skb->pkt_type = PACKET_OTHERHOST;
8264                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8265                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8266                 netif_rx(skb);
8267                 rxb->skb = NULL;
8268         }
8269 }
8270
8271 /*
8272  * Main entry function for recieving a packet with 80211 headers.  This
8273  * should be called when ever the FW has notified us that there is a new
8274  * skb in the recieve queue.
8275  */
8276 static void ipw_rx(struct ipw_priv *priv)
8277 {
8278         struct ipw_rx_mem_buffer *rxb;
8279         struct ipw_rx_packet *pkt;
8280         struct ieee80211_hdr_4addr *header;
8281         u32 r, w, i;
8282         u8 network_packet;
8283
8284         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8285         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8286         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8287
8288         while (i != r) {
8289                 rxb = priv->rxq->queue[i];
8290 #ifdef CONFIG_IPW_DEBUG
8291                 if (unlikely(rxb == NULL)) {
8292                         printk(KERN_CRIT "Queue not allocated!\n");
8293                         break;
8294                 }
8295 #endif
8296                 priv->rxq->queue[i] = NULL;
8297
8298                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8299                                             IPW_RX_BUF_SIZE,
8300                                             PCI_DMA_FROMDEVICE);
8301
8302                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8303                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8304                              pkt->header.message_type,
8305                              pkt->header.rx_seq_num, pkt->header.control_bits);
8306
8307                 switch (pkt->header.message_type) {
8308                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8309                                 struct ieee80211_rx_stats stats = {
8310                                         .rssi =
8311                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8312                                             IPW_RSSI_TO_DBM,
8313                                         .signal =
8314                                             le16_to_cpu(pkt->u.frame.signal),
8315                                         .noise =
8316                                             le16_to_cpu(pkt->u.frame.noise),
8317                                         .rate = pkt->u.frame.rate,
8318                                         .mac_time = jiffies,
8319                                         .received_channel =
8320                                             pkt->u.frame.received_channel,
8321                                         .freq =
8322                                             (pkt->u.frame.
8323                                              control & (1 << 0)) ?
8324                                             IEEE80211_24GHZ_BAND :
8325                                             IEEE80211_52GHZ_BAND,
8326                                         .len = le16_to_cpu(pkt->u.frame.length),
8327                                 };
8328
8329                                 if (stats.rssi != 0)
8330                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8331                                 if (stats.signal != 0)
8332                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8333                                 if (stats.noise != 0)
8334                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8335                                 if (stats.rate != 0)
8336                                         stats.mask |= IEEE80211_STATMASK_RATE;
8337
8338                                 priv->rx_packets++;
8339
8340 #ifdef CONFIG_IPW2200_MONITOR
8341                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8342 #ifdef CONFIG_IEEE80211_RADIOTAP
8343                                         ipw_handle_data_packet_monitor(priv,
8344                                                                        rxb,
8345                                                                        &stats);
8346 #else
8347                                         ipw_handle_data_packet(priv, rxb,
8348                                                                &stats);
8349 #endif
8350                                         break;
8351                                 }
8352 #endif
8353
8354                                 header =
8355                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8356                                                                    data +
8357                                                                    IPW_RX_FRAME_SIZE);
8358                                 /* TODO: Check Ad-Hoc dest/source and make sure
8359                                  * that we are actually parsing these packets
8360                                  * correctly -- we should probably use the
8361                                  * frame control of the packet and disregard
8362                                  * the current iw_mode */
8363
8364                                 network_packet =
8365                                     is_network_packet(priv, header);
8366                                 if (network_packet && priv->assoc_network) {
8367                                         priv->assoc_network->stats.rssi =
8368                                             stats.rssi;
8369                                         average_add(&priv->average_rssi,
8370                                                     stats.rssi);
8371                                         priv->last_rx_rssi = stats.rssi;
8372                                 }
8373
8374                                 IPW_DEBUG_RX("Frame: len=%u\n",
8375                                              le16_to_cpu(pkt->u.frame.length));
8376
8377                                 if (le16_to_cpu(pkt->u.frame.length) <
8378                                     frame_hdr_len(header)) {
8379                                         IPW_DEBUG_DROP
8380                                             ("Received packet is too small. "
8381                                              "Dropping.\n");
8382                                         priv->ieee->stats.rx_errors++;
8383                                         priv->wstats.discard.misc++;
8384                                         break;
8385                                 }
8386
8387                                 switch (WLAN_FC_GET_TYPE
8388                                         (le16_to_cpu(header->frame_ctl))) {
8389
8390                                 case IEEE80211_FTYPE_MGMT:
8391                                         ipw_handle_mgmt_packet(priv, rxb,
8392                                                                &stats);
8393                                         break;
8394
8395                                 case IEEE80211_FTYPE_CTL:
8396                                         break;
8397
8398                                 case IEEE80211_FTYPE_DATA:
8399                                         if (unlikely(!network_packet ||
8400                                                      is_duplicate_packet(priv,
8401                                                                          header)))
8402                                         {
8403                                                 IPW_DEBUG_DROP("Dropping: "
8404                                                                MAC_FMT ", "
8405                                                                MAC_FMT ", "
8406                                                                MAC_FMT "\n",
8407                                                                MAC_ARG(header->
8408                                                                        addr1),
8409                                                                MAC_ARG(header->
8410                                                                        addr2),
8411                                                                MAC_ARG(header->
8412                                                                        addr3));
8413                                                 break;
8414                                         }
8415
8416                                         ipw_handle_data_packet(priv, rxb,
8417                                                                &stats);
8418
8419                                         break;
8420                                 }
8421                                 break;
8422                         }
8423
8424                 case RX_HOST_NOTIFICATION_TYPE:{
8425                                 IPW_DEBUG_RX
8426                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8427                                      pkt->u.notification.subtype,
8428                                      pkt->u.notification.flags,
8429                                      pkt->u.notification.size);
8430                                 ipw_rx_notification(priv, &pkt->u.notification);
8431                                 break;
8432                         }
8433
8434                 default:
8435                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8436                                      pkt->header.message_type);
8437                         break;
8438                 }
8439
8440                 /* For now we just don't re-use anything.  We can tweak this
8441                  * later to try and re-use notification packets and SKBs that
8442                  * fail to Rx correctly */
8443                 if (rxb->skb != NULL) {
8444                         dev_kfree_skb_any(rxb->skb);
8445                         rxb->skb = NULL;
8446                 }
8447
8448                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8449                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8450                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8451
8452                 i = (i + 1) % RX_QUEUE_SIZE;
8453         }
8454
8455         /* Backtrack one entry */
8456         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8457
8458         ipw_rx_queue_restock(priv);
8459 }
8460
8461 #define DEFAULT_RTS_THRESHOLD     2304U
8462 #define MIN_RTS_THRESHOLD         1U
8463 #define MAX_RTS_THRESHOLD         2304U
8464 #define DEFAULT_BEACON_INTERVAL   100U
8465 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8466 #define DEFAULT_LONG_RETRY_LIMIT  4U
8467
8468 static int ipw_sw_reset(struct ipw_priv *priv, int init)
8469 {
8470         int band, modulation;
8471         int old_mode = priv->ieee->iw_mode;
8472
8473         /* Initialize module parameter values here */
8474         priv->config = 0;
8475
8476         /* We default to disabling the LED code as right now it causes
8477          * too many systems to lock up... */
8478         if (!led)
8479                 priv->config |= CFG_NO_LED;
8480
8481         if (associate)
8482                 priv->config |= CFG_ASSOCIATE;
8483         else
8484                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8485
8486         if (auto_create)
8487                 priv->config |= CFG_ADHOC_CREATE;
8488         else
8489                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8490
8491         if (disable) {
8492                 priv->status |= STATUS_RF_KILL_SW;
8493                 IPW_DEBUG_INFO("Radio disabled.\n");
8494         }
8495
8496         if (channel != 0) {
8497                 priv->config |= CFG_STATIC_CHANNEL;
8498                 priv->channel = channel;
8499                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8500                 /* TODO: Validate that provided channel is in range */
8501         }
8502 #ifdef CONFIG_IPW_QOS
8503         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8504                      burst_duration_CCK, burst_duration_OFDM);
8505 #endif                          /* CONFIG_IPW_QOS */
8506
8507         switch (mode) {
8508         case 1:
8509                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8510                 priv->net_dev->type = ARPHRD_ETHER;
8511
8512                 break;
8513 #ifdef CONFIG_IPW2200_MONITOR
8514         case 2:
8515                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8516 #ifdef CONFIG_IEEE80211_RADIOTAP
8517                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8518 #else
8519                 priv->net_dev->type = ARPHRD_IEEE80211;
8520 #endif
8521                 break;
8522 #endif
8523         default:
8524         case 0:
8525                 priv->net_dev->type = ARPHRD_ETHER;
8526                 priv->ieee->iw_mode = IW_MODE_INFRA;
8527                 break;
8528         }
8529
8530         if (hwcrypto) {
8531                 priv->ieee->host_encrypt = 0;
8532                 priv->ieee->host_encrypt_msdu = 0;
8533                 priv->ieee->host_decrypt = 0;
8534                 priv->ieee->host_mc_decrypt = 0;
8535         }
8536         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8537
8538         /* IPW2200/2915 is abled to do hardware fragmentation. */
8539         priv->ieee->host_open_frag = 0;
8540
8541         if ((priv->pci_dev->device == 0x4223) ||
8542             (priv->pci_dev->device == 0x4224)) {
8543                 if (init)
8544                         printk(KERN_INFO DRV_NAME
8545                                ": Detected Intel PRO/Wireless 2915ABG Network "
8546                                "Connection\n");
8547                 priv->ieee->abg_true = 1;
8548                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8549                 modulation = IEEE80211_OFDM_MODULATION |
8550                     IEEE80211_CCK_MODULATION;
8551                 priv->adapter = IPW_2915ABG;
8552                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8553         } else {
8554                 if (init)
8555                         printk(KERN_INFO DRV_NAME
8556                                ": Detected Intel PRO/Wireless 2200BG Network "
8557                                "Connection\n");
8558
8559                 priv->ieee->abg_true = 0;
8560                 band = IEEE80211_24GHZ_BAND;
8561                 modulation = IEEE80211_OFDM_MODULATION |
8562                     IEEE80211_CCK_MODULATION;
8563                 priv->adapter = IPW_2200BG;
8564                 priv->ieee->mode = IEEE_G | IEEE_B;
8565         }
8566
8567         priv->ieee->freq_band = band;
8568         priv->ieee->modulation = modulation;
8569
8570         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8571
8572         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8573         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8574
8575         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8576         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8577         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8578
8579         /* If power management is turned on, default to AC mode */
8580         priv->power_mode = IPW_POWER_AC;
8581         priv->tx_power = IPW_TX_POWER_DEFAULT;
8582
8583         return old_mode == priv->ieee->iw_mode;
8584 }
8585
8586 /*
8587  * This file defines the Wireless Extension handlers.  It does not
8588  * define any methods of hardware manipulation and relies on the
8589  * functions defined in ipw_main to provide the HW interaction.
8590  *
8591  * The exception to this is the use of the ipw_get_ordinal()
8592  * function used to poll the hardware vs. making unecessary calls.
8593  *
8594  */
8595
8596 static int ipw_wx_get_name(struct net_device *dev,
8597                            struct iw_request_info *info,
8598                            union iwreq_data *wrqu, char *extra)
8599 {
8600         struct ipw_priv *priv = ieee80211_priv(dev);
8601         down(&priv->sem);
8602         if (priv->status & STATUS_RF_KILL_MASK)
8603                 strcpy(wrqu->name, "radio off");
8604         else if (!(priv->status & STATUS_ASSOCIATED))
8605                 strcpy(wrqu->name, "unassociated");
8606         else
8607                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8608                          ipw_modes[priv->assoc_request.ieee_mode]);
8609         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8610         up(&priv->sem);
8611         return 0;
8612 }
8613
8614 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8615 {
8616         if (channel == 0) {
8617                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8618                 priv->config &= ~CFG_STATIC_CHANNEL;
8619                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8620                                 "parameters.\n");
8621                 ipw_associate(priv);
8622                 return 0;
8623         }
8624
8625         priv->config |= CFG_STATIC_CHANNEL;
8626
8627         if (priv->channel == channel) {
8628                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8629                                channel);
8630                 return 0;
8631         }
8632
8633         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8634         priv->channel = channel;
8635
8636 #ifdef CONFIG_IPW2200_MONITOR
8637         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8638                 int i;
8639                 if (priv->status & STATUS_SCANNING) {
8640                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8641                                        "channel change.\n");
8642                         ipw_abort_scan(priv);
8643                 }
8644
8645                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8646                         udelay(10);
8647
8648                 if (priv->status & STATUS_SCANNING)
8649                         IPW_DEBUG_SCAN("Still scanning...\n");
8650                 else
8651                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8652                                        1000 - i);
8653
8654                 return 0;
8655         }
8656 #endif                          /* CONFIG_IPW2200_MONITOR */
8657
8658         /* Network configuration changed -- force [re]association */
8659         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8660         if (!ipw_disassociate(priv))
8661                 ipw_associate(priv);
8662
8663         return 0;
8664 }
8665
8666 static int ipw_wx_set_freq(struct net_device *dev,
8667                            struct iw_request_info *info,
8668                            union iwreq_data *wrqu, char *extra)
8669 {
8670         struct ipw_priv *priv = ieee80211_priv(dev);
8671         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8672         struct iw_freq *fwrq = &wrqu->freq;
8673         int ret = 0, i;
8674         u8 channel, flags;
8675         int band;
8676
8677         if (fwrq->m == 0) {
8678                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8679                 down(&priv->sem);
8680                 ret = ipw_set_channel(priv, 0);
8681                 up(&priv->sem);
8682                 return ret;
8683         }
8684         /* if setting by freq convert to channel */
8685         if (fwrq->e == 1) {
8686                 channel = ipw_freq_to_channel(priv->ieee, fwrq->m);
8687                 if (channel == 0)
8688                         return -EINVAL;
8689         } else
8690                 channel = fwrq->m;
8691
8692         if (!(band = ipw_is_valid_channel(priv->ieee, channel)))
8693                 return -EINVAL;
8694
8695         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8696                 i = ipw_channel_to_index(priv->ieee, channel);
8697                 if (i == -1)
8698                         return -EINVAL;
8699
8700                 flags = (band == IEEE80211_24GHZ_BAND) ?
8701                     geo->bg[i].flags : geo->a[i].flags;
8702                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8703                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8704                         return -EINVAL;
8705                 }
8706         }
8707
8708         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8709         down(&priv->sem);
8710         ret = ipw_set_channel(priv, channel);
8711         up(&priv->sem);
8712         return ret;
8713 }
8714
8715 static int ipw_wx_get_freq(struct net_device *dev,
8716                            struct iw_request_info *info,
8717                            union iwreq_data *wrqu, char *extra)
8718 {
8719         struct ipw_priv *priv = ieee80211_priv(dev);
8720
8721         wrqu->freq.e = 0;
8722
8723         /* If we are associated, trying to associate, or have a statically
8724          * configured CHANNEL then return that; otherwise return ANY */
8725         down(&priv->sem);
8726         if (priv->config & CFG_STATIC_CHANNEL ||
8727             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8728                 wrqu->freq.m = priv->channel;
8729         else
8730                 wrqu->freq.m = 0;
8731
8732         up(&priv->sem);
8733         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8734         return 0;
8735 }
8736
8737 static int ipw_wx_set_mode(struct net_device *dev,
8738                            struct iw_request_info *info,
8739                            union iwreq_data *wrqu, char *extra)
8740 {
8741         struct ipw_priv *priv = ieee80211_priv(dev);
8742         int err = 0;
8743
8744         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8745
8746         switch (wrqu->mode) {
8747 #ifdef CONFIG_IPW2200_MONITOR
8748         case IW_MODE_MONITOR:
8749 #endif
8750         case IW_MODE_ADHOC:
8751         case IW_MODE_INFRA:
8752                 break;
8753         case IW_MODE_AUTO:
8754                 wrqu->mode = IW_MODE_INFRA;
8755                 break;
8756         default:
8757                 return -EINVAL;
8758         }
8759         if (wrqu->mode == priv->ieee->iw_mode)
8760                 return 0;
8761
8762         down(&priv->sem);
8763
8764         ipw_sw_reset(priv, 0);
8765
8766 #ifdef CONFIG_IPW2200_MONITOR
8767         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8768                 priv->net_dev->type = ARPHRD_ETHER;
8769
8770         if (wrqu->mode == IW_MODE_MONITOR)
8771 #ifdef CONFIG_IEEE80211_RADIOTAP
8772                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8773 #else
8774                 priv->net_dev->type = ARPHRD_IEEE80211;
8775 #endif
8776 #endif                          /* CONFIG_IPW2200_MONITOR */
8777
8778         /* Free the existing firmware and reset the fw_loaded
8779          * flag so ipw_load() will bring in the new firmawre */
8780         free_firmware();
8781
8782         priv->ieee->iw_mode = wrqu->mode;
8783
8784         queue_work(priv->workqueue, &priv->adapter_restart);
8785         up(&priv->sem);
8786         return err;
8787 }
8788
8789 static int ipw_wx_get_mode(struct net_device *dev,
8790                            struct iw_request_info *info,
8791                            union iwreq_data *wrqu, char *extra)
8792 {
8793         struct ipw_priv *priv = ieee80211_priv(dev);
8794         down(&priv->sem);
8795         wrqu->mode = priv->ieee->iw_mode;
8796         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8797         up(&priv->sem);
8798         return 0;
8799 }
8800
8801 /* Values are in microsecond */
8802 static const s32 timeout_duration[] = {
8803         350000,
8804         250000,
8805         75000,
8806         37000,
8807         25000,
8808 };
8809
8810 static const s32 period_duration[] = {
8811         400000,
8812         700000,
8813         1000000,
8814         1000000,
8815         1000000
8816 };
8817
8818 static int ipw_wx_get_range(struct net_device *dev,
8819                             struct iw_request_info *info,
8820                             union iwreq_data *wrqu, char *extra)
8821 {
8822         struct ipw_priv *priv = ieee80211_priv(dev);
8823         struct iw_range *range = (struct iw_range *)extra;
8824         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8825         int i = 0, j;
8826
8827         wrqu->data.length = sizeof(*range);
8828         memset(range, 0, sizeof(*range));
8829
8830         /* 54Mbs == ~27 Mb/s real (802.11g) */
8831         range->throughput = 27 * 1000 * 1000;
8832
8833         range->max_qual.qual = 100;
8834         /* TODO: Find real max RSSI and stick here */
8835         range->max_qual.level = 0;
8836         range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8837         range->max_qual.updated = 7;    /* Updated all three */
8838
8839         range->avg_qual.qual = 70;
8840         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8841         range->avg_qual.level = 0;      /* FIXME to real average level */
8842         range->avg_qual.noise = 0;
8843         range->avg_qual.updated = 7;    /* Updated all three */
8844         down(&priv->sem);
8845         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8846
8847         for (i = 0; i < range->num_bitrates; i++)
8848                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8849                     500000;
8850
8851         range->max_rts = DEFAULT_RTS_THRESHOLD;
8852         range->min_frag = MIN_FRAG_THRESHOLD;
8853         range->max_frag = MAX_FRAG_THRESHOLD;
8854
8855         range->encoding_size[0] = 5;
8856         range->encoding_size[1] = 13;
8857         range->num_encoding_sizes = 2;
8858         range->max_encoding_tokens = WEP_KEYS;
8859
8860         /* Set the Wireless Extension versions */
8861         range->we_version_compiled = WIRELESS_EXT;
8862         range->we_version_source = 16;
8863
8864         i = 0;
8865         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8866                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8867                      i++, j++) {
8868                         range->freq[i].i = geo->bg[j].channel;
8869                         range->freq[i].m = geo->bg[j].freq * 100000;
8870                         range->freq[i].e = 1;
8871                 }
8872         }
8873
8874         if (priv->ieee->mode & IEEE_A) {
8875                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8876                      i++, j++) {
8877                         range->freq[i].i = geo->a[j].channel;
8878                         range->freq[i].m = geo->a[j].freq * 100000;
8879                         range->freq[i].e = 1;
8880                 }
8881         }
8882
8883         range->num_channels = i;
8884         range->num_frequency = i;
8885
8886         up(&priv->sem);
8887         IPW_DEBUG_WX("GET Range\n");
8888         return 0;
8889 }
8890
8891 static int ipw_wx_set_wap(struct net_device *dev,
8892                           struct iw_request_info *info,
8893                           union iwreq_data *wrqu, char *extra)
8894 {
8895         struct ipw_priv *priv = ieee80211_priv(dev);
8896
8897         static const unsigned char any[] = {
8898                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8899         };
8900         static const unsigned char off[] = {
8901                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8902         };
8903
8904         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8905                 return -EINVAL;
8906         down(&priv->sem);
8907         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8908             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8909                 /* we disable mandatory BSSID association */
8910                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8911                 priv->config &= ~CFG_STATIC_BSSID;
8912                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8913                                 "parameters.\n");
8914                 ipw_associate(priv);
8915                 up(&priv->sem);
8916                 return 0;
8917         }
8918
8919         priv->config |= CFG_STATIC_BSSID;
8920         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8921                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8922                 up(&priv->sem);
8923                 return 0;
8924         }
8925
8926         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8927                      MAC_ARG(wrqu->ap_addr.sa_data));
8928
8929         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8930
8931         /* Network configuration changed -- force [re]association */
8932         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8933         if (!ipw_disassociate(priv))
8934                 ipw_associate(priv);
8935
8936         up(&priv->sem);
8937         return 0;
8938 }
8939
8940 static int ipw_wx_get_wap(struct net_device *dev,
8941                           struct iw_request_info *info,
8942                           union iwreq_data *wrqu, char *extra)
8943 {
8944         struct ipw_priv *priv = ieee80211_priv(dev);
8945         /* If we are associated, trying to associate, or have a statically
8946          * configured BSSID then return that; otherwise return ANY */
8947         down(&priv->sem);
8948         if (priv->config & CFG_STATIC_BSSID ||
8949             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8950                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8951                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8952         } else
8953                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8954
8955         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8956                      MAC_ARG(wrqu->ap_addr.sa_data));
8957         up(&priv->sem);
8958         return 0;
8959 }
8960
8961 static int ipw_wx_set_essid(struct net_device *dev,
8962                             struct iw_request_info *info,
8963                             union iwreq_data *wrqu, char *extra)
8964 {
8965         struct ipw_priv *priv = ieee80211_priv(dev);
8966         char *essid = "";       /* ANY */
8967         int length = 0;
8968         down(&priv->sem);
8969         if (wrqu->essid.flags && wrqu->essid.length) {
8970                 length = wrqu->essid.length - 1;
8971                 essid = extra;
8972         }
8973         if (length == 0) {
8974                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8975                 if ((priv->config & CFG_STATIC_ESSID) &&
8976                     !(priv->status & (STATUS_ASSOCIATED |
8977                                       STATUS_ASSOCIATING))) {
8978                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8979                                         "parameters.\n");
8980                         priv->config &= ~CFG_STATIC_ESSID;
8981                         ipw_associate(priv);
8982                 }
8983                 up(&priv->sem);
8984                 return 0;
8985         }
8986
8987         length = min(length, IW_ESSID_MAX_SIZE);
8988
8989         priv->config |= CFG_STATIC_ESSID;
8990
8991         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8992                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8993                 up(&priv->sem);
8994                 return 0;
8995         }
8996
8997         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8998                      length);
8999
9000         priv->essid_len = length;
9001         memcpy(priv->essid, essid, priv->essid_len);
9002
9003         /* Network configuration changed -- force [re]association */
9004         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9005         if (!ipw_disassociate(priv))
9006                 ipw_associate(priv);
9007
9008         up(&priv->sem);
9009         return 0;
9010 }
9011
9012 static int ipw_wx_get_essid(struct net_device *dev,
9013                             struct iw_request_info *info,
9014                             union iwreq_data *wrqu, char *extra)
9015 {
9016         struct ipw_priv *priv = ieee80211_priv(dev);
9017
9018         /* If we are associated, trying to associate, or have a statically
9019          * configured ESSID then return that; otherwise return ANY */
9020         down(&priv->sem);
9021         if (priv->config & CFG_STATIC_ESSID ||
9022             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9023                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9024                              escape_essid(priv->essid, priv->essid_len));
9025                 memcpy(extra, priv->essid, priv->essid_len);
9026                 wrqu->essid.length = priv->essid_len;
9027                 wrqu->essid.flags = 1;  /* active */
9028         } else {
9029                 IPW_DEBUG_WX("Getting essid: ANY\n");
9030                 wrqu->essid.length = 0;
9031                 wrqu->essid.flags = 0;  /* active */
9032         }
9033         up(&priv->sem);
9034         return 0;
9035 }
9036
9037 static int ipw_wx_set_nick(struct net_device *dev,
9038                            struct iw_request_info *info,
9039                            union iwreq_data *wrqu, char *extra)
9040 {
9041         struct ipw_priv *priv = ieee80211_priv(dev);
9042
9043         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9044         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9045                 return -E2BIG;
9046         down(&priv->sem);
9047         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9048         memset(priv->nick, 0, sizeof(priv->nick));
9049         memcpy(priv->nick, extra, wrqu->data.length);
9050         IPW_DEBUG_TRACE("<<\n");
9051         up(&priv->sem);
9052         return 0;
9053
9054 }
9055
9056 static int ipw_wx_get_nick(struct net_device *dev,
9057                            struct iw_request_info *info,
9058                            union iwreq_data *wrqu, char *extra)
9059 {
9060         struct ipw_priv *priv = ieee80211_priv(dev);
9061         IPW_DEBUG_WX("Getting nick\n");
9062         down(&priv->sem);
9063         wrqu->data.length = strlen(priv->nick) + 1;
9064         memcpy(extra, priv->nick, wrqu->data.length);
9065         wrqu->data.flags = 1;   /* active */
9066         up(&priv->sem);
9067         return 0;
9068 }
9069
9070 static int ipw_wx_set_rate(struct net_device *dev,
9071                            struct iw_request_info *info,
9072                            union iwreq_data *wrqu, char *extra)
9073 {
9074         /* TODO: We should use semaphores or locks for access to priv */
9075         struct ipw_priv *priv = ieee80211_priv(dev);
9076         u32 target_rate = wrqu->bitrate.value;
9077         u32 fixed, mask;
9078
9079         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9080         /* value = X, fixed = 1 means only rate X */
9081         /* value = X, fixed = 0 means all rates lower equal X */
9082
9083         if (target_rate == -1) {
9084                 fixed = 0;
9085                 mask = IEEE80211_DEFAULT_RATES_MASK;
9086                 /* Now we should reassociate */
9087                 goto apply;
9088         }
9089
9090         mask = 0;
9091         fixed = wrqu->bitrate.fixed;
9092
9093         if (target_rate == 1000000 || !fixed)
9094                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9095         if (target_rate == 1000000)
9096                 goto apply;
9097
9098         if (target_rate == 2000000 || !fixed)
9099                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9100         if (target_rate == 2000000)
9101                 goto apply;
9102
9103         if (target_rate == 5500000 || !fixed)
9104                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9105         if (target_rate == 5500000)
9106                 goto apply;
9107
9108         if (target_rate == 6000000 || !fixed)
9109                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9110         if (target_rate == 6000000)
9111                 goto apply;
9112
9113         if (target_rate == 9000000 || !fixed)
9114                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9115         if (target_rate == 9000000)
9116                 goto apply;
9117
9118         if (target_rate == 11000000 || !fixed)
9119                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9120         if (target_rate == 11000000)
9121                 goto apply;
9122
9123         if (target_rate == 12000000 || !fixed)
9124                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9125         if (target_rate == 12000000)
9126                 goto apply;
9127
9128         if (target_rate == 18000000 || !fixed)
9129                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9130         if (target_rate == 18000000)
9131                 goto apply;
9132
9133         if (target_rate == 24000000 || !fixed)
9134                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9135         if (target_rate == 24000000)
9136                 goto apply;
9137
9138         if (target_rate == 36000000 || !fixed)
9139                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9140         if (target_rate == 36000000)
9141                 goto apply;
9142
9143         if (target_rate == 48000000 || !fixed)
9144                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9145         if (target_rate == 48000000)
9146                 goto apply;
9147
9148         if (target_rate == 54000000 || !fixed)
9149                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9150         if (target_rate == 54000000)
9151                 goto apply;
9152
9153         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9154         return -EINVAL;
9155
9156       apply:
9157         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9158                      mask, fixed ? "fixed" : "sub-rates");
9159         down(&priv->sem);
9160         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9161                 priv->config &= ~CFG_FIXED_RATE;
9162                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9163         } else
9164                 priv->config |= CFG_FIXED_RATE;
9165
9166         if (priv->rates_mask == mask) {
9167                 IPW_DEBUG_WX("Mask set to current mask.\n");
9168                 up(&priv->sem);
9169                 return 0;
9170         }
9171
9172         priv->rates_mask = mask;
9173
9174         /* Network configuration changed -- force [re]association */
9175         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9176         if (!ipw_disassociate(priv))
9177                 ipw_associate(priv);
9178
9179         up(&priv->sem);
9180         return 0;
9181 }
9182
9183 static int ipw_wx_get_rate(struct net_device *dev,
9184                            struct iw_request_info *info,
9185                            union iwreq_data *wrqu, char *extra)
9186 {
9187         struct ipw_priv *priv = ieee80211_priv(dev);
9188         down(&priv->sem);
9189         wrqu->bitrate.value = priv->last_rate;
9190         up(&priv->sem);
9191         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9192         return 0;
9193 }
9194
9195 static int ipw_wx_set_rts(struct net_device *dev,
9196                           struct iw_request_info *info,
9197                           union iwreq_data *wrqu, char *extra)
9198 {
9199         struct ipw_priv *priv = ieee80211_priv(dev);
9200         down(&priv->sem);
9201         if (wrqu->rts.disabled)
9202                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9203         else {
9204                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9205                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9206                         up(&priv->sem);
9207                         return -EINVAL;
9208                 }
9209                 priv->rts_threshold = wrqu->rts.value;
9210         }
9211
9212         ipw_send_rts_threshold(priv, priv->rts_threshold);
9213         up(&priv->sem);
9214         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9215         return 0;
9216 }
9217
9218 static int ipw_wx_get_rts(struct net_device *dev,
9219                           struct iw_request_info *info,
9220                           union iwreq_data *wrqu, char *extra)
9221 {
9222         struct ipw_priv *priv = ieee80211_priv(dev);
9223         down(&priv->sem);
9224         wrqu->rts.value = priv->rts_threshold;
9225         wrqu->rts.fixed = 0;    /* no auto select */
9226         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9227         up(&priv->sem);
9228         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9229         return 0;
9230 }
9231
9232 static int ipw_wx_set_txpow(struct net_device *dev,
9233                             struct iw_request_info *info,
9234                             union iwreq_data *wrqu, char *extra)
9235 {
9236         struct ipw_priv *priv = ieee80211_priv(dev);
9237         int err = 0;
9238
9239         down(&priv->sem);
9240         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9241                 err = -EINPROGRESS;
9242                 goto out;
9243         }
9244
9245         if (!wrqu->power.fixed)
9246                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9247
9248         if (wrqu->power.flags != IW_TXPOW_DBM) {
9249                 err = -EINVAL;
9250                 goto out;
9251         }
9252
9253         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9254             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9255                 err = -EINVAL;
9256                 goto out;
9257         }
9258
9259         priv->tx_power = wrqu->power.value;
9260         err = ipw_set_tx_power(priv);
9261       out:
9262         up(&priv->sem);
9263         return err;
9264 }
9265
9266 static int ipw_wx_get_txpow(struct net_device *dev,
9267                             struct iw_request_info *info,
9268                             union iwreq_data *wrqu, char *extra)
9269 {
9270         struct ipw_priv *priv = ieee80211_priv(dev);
9271         down(&priv->sem);
9272         wrqu->power.value = priv->tx_power;
9273         wrqu->power.fixed = 1;
9274         wrqu->power.flags = IW_TXPOW_DBM;
9275         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9276         up(&priv->sem);
9277
9278         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9279                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9280
9281         return 0;
9282 }
9283
9284 static int ipw_wx_set_frag(struct net_device *dev,
9285                            struct iw_request_info *info,
9286                            union iwreq_data *wrqu, char *extra)
9287 {
9288         struct ipw_priv *priv = ieee80211_priv(dev);
9289         down(&priv->sem);
9290         if (wrqu->frag.disabled)
9291                 priv->ieee->fts = DEFAULT_FTS;
9292         else {
9293                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9294                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9295                         up(&priv->sem);
9296                         return -EINVAL;
9297                 }
9298
9299                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9300         }
9301
9302         ipw_send_frag_threshold(priv, wrqu->frag.value);
9303         up(&priv->sem);
9304         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9305         return 0;
9306 }
9307
9308 static int ipw_wx_get_frag(struct net_device *dev,
9309                            struct iw_request_info *info,
9310                            union iwreq_data *wrqu, char *extra)
9311 {
9312         struct ipw_priv *priv = ieee80211_priv(dev);
9313         down(&priv->sem);
9314         wrqu->frag.value = priv->ieee->fts;
9315         wrqu->frag.fixed = 0;   /* no auto select */
9316         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9317         up(&priv->sem);
9318         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9319
9320         return 0;
9321 }
9322
9323 static int ipw_wx_set_retry(struct net_device *dev,
9324                             struct iw_request_info *info,
9325                             union iwreq_data *wrqu, char *extra)
9326 {
9327         struct ipw_priv *priv = ieee80211_priv(dev);
9328
9329         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9330                 return -EINVAL;
9331
9332         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9333                 return 0;
9334
9335         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9336                 return -EINVAL;
9337
9338         down(&priv->sem);
9339         if (wrqu->retry.flags & IW_RETRY_MIN)
9340                 priv->short_retry_limit = (u8) wrqu->retry.value;
9341         else if (wrqu->retry.flags & IW_RETRY_MAX)
9342                 priv->long_retry_limit = (u8) wrqu->retry.value;
9343         else {
9344                 priv->short_retry_limit = (u8) wrqu->retry.value;
9345                 priv->long_retry_limit = (u8) wrqu->retry.value;
9346         }
9347
9348         ipw_send_retry_limit(priv, priv->short_retry_limit,
9349                              priv->long_retry_limit);
9350         up(&priv->sem);
9351         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9352                      priv->short_retry_limit, priv->long_retry_limit);
9353         return 0;
9354 }
9355
9356 static int ipw_wx_get_retry(struct net_device *dev,
9357                             struct iw_request_info *info,
9358                             union iwreq_data *wrqu, char *extra)
9359 {
9360         struct ipw_priv *priv = ieee80211_priv(dev);
9361
9362         down(&priv->sem);
9363         wrqu->retry.disabled = 0;
9364
9365         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9366                 up(&priv->sem);
9367                 return -EINVAL;
9368         }
9369
9370         if (wrqu->retry.flags & IW_RETRY_MAX) {
9371                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9372                 wrqu->retry.value = priv->long_retry_limit;
9373         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9374                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9375                 wrqu->retry.value = priv->short_retry_limit;
9376         } else {
9377                 wrqu->retry.flags = IW_RETRY_LIMIT;
9378                 wrqu->retry.value = priv->short_retry_limit;
9379         }
9380         up(&priv->sem);
9381
9382         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9383
9384         return 0;
9385 }
9386
9387 #if WIRELESS_EXT > 17
9388 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9389                                    int essid_len)
9390 {
9391         struct ipw_scan_request_ext scan;
9392         int err = 0, scan_type;
9393
9394         down(&priv->sem);
9395
9396         if (priv->status & STATUS_RF_KILL_MASK) {
9397                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9398                 priv->status |= STATUS_SCAN_PENDING;
9399                 goto done;
9400         }
9401
9402         IPW_DEBUG_HC("starting request direct scan!\n");
9403
9404         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9405                 err = wait_event_interruptible(priv->wait_state,
9406                                                !(priv->
9407                                                  status & (STATUS_SCANNING |
9408                                                            STATUS_SCAN_ABORTING)));
9409                 if (err) {
9410                         IPW_DEBUG_HC("aborting direct scan");
9411                         goto done;
9412                 }
9413         }
9414         memset(&scan, 0, sizeof(scan));
9415
9416         if (priv->config & CFG_SPEED_SCAN)
9417                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9418                     cpu_to_le16(30);
9419         else
9420                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9421                     cpu_to_le16(20);
9422
9423         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9424             cpu_to_le16(20);
9425         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9426         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9427
9428         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9429
9430         err = ipw_send_ssid(priv, essid, essid_len);
9431         if (err) {
9432                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9433                 goto done;
9434         }
9435         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9436
9437         ipw_add_scan_channels(priv, &scan, scan_type);
9438
9439         err = ipw_send_scan_request_ext(priv, &scan);
9440         if (err) {
9441                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9442                 goto done;
9443         }
9444
9445         priv->status |= STATUS_SCANNING;
9446
9447       done:
9448         up(&priv->sem);
9449         return err;
9450 }
9451 #endif                          /* WIRELESS_EXT > 17 */
9452
9453 static int ipw_wx_set_scan(struct net_device *dev,
9454                            struct iw_request_info *info,
9455                            union iwreq_data *wrqu, char *extra)
9456 {
9457         struct ipw_priv *priv = ieee80211_priv(dev);
9458 #if WIRELESS_EXT > 17
9459         struct iw_scan_req *req = NULL;
9460         if (wrqu->data.length
9461             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9462                 req = (struct iw_scan_req *)extra;
9463                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9464                         ipw_request_direct_scan(priv, req->essid,
9465                                                 req->essid_len);
9466                         return 0;
9467                 }
9468         }
9469 #endif
9470         IPW_DEBUG_WX("Start scan\n");
9471
9472         queue_work(priv->workqueue, &priv->request_scan);
9473
9474         return 0;
9475 }
9476
9477 static int ipw_wx_get_scan(struct net_device *dev,
9478                            struct iw_request_info *info,
9479                            union iwreq_data *wrqu, char *extra)
9480 {
9481         struct ipw_priv *priv = ieee80211_priv(dev);
9482         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9483 }
9484
9485 static int ipw_wx_set_encode(struct net_device *dev,
9486                              struct iw_request_info *info,
9487                              union iwreq_data *wrqu, char *key)
9488 {
9489         struct ipw_priv *priv = ieee80211_priv(dev);
9490         int ret;
9491         u32 cap = priv->capability;
9492
9493         down(&priv->sem);
9494         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9495
9496         /* In IBSS mode, we need to notify the firmware to update
9497          * the beacon info after we changed the capability. */
9498         if (cap != priv->capability &&
9499             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9500             priv->status & STATUS_ASSOCIATED)
9501                 ipw_disassociate(priv);
9502
9503         up(&priv->sem);
9504         return ret;
9505 }
9506
9507 static int ipw_wx_get_encode(struct net_device *dev,
9508                              struct iw_request_info *info,
9509                              union iwreq_data *wrqu, char *key)
9510 {
9511         struct ipw_priv *priv = ieee80211_priv(dev);
9512         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9513 }
9514
9515 static int ipw_wx_set_power(struct net_device *dev,
9516                             struct iw_request_info *info,
9517                             union iwreq_data *wrqu, char *extra)
9518 {
9519         struct ipw_priv *priv = ieee80211_priv(dev);
9520         int err;
9521         down(&priv->sem);
9522         if (wrqu->power.disabled) {
9523                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9524                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9525                 if (err) {
9526                         IPW_DEBUG_WX("failed setting power mode.\n");
9527                         up(&priv->sem);
9528                         return err;
9529                 }
9530                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9531                 up(&priv->sem);
9532                 return 0;
9533         }
9534
9535         switch (wrqu->power.flags & IW_POWER_MODE) {
9536         case IW_POWER_ON:       /* If not specified */
9537         case IW_POWER_MODE:     /* If set all mask */
9538         case IW_POWER_ALL_R:    /* If explicitely state all */
9539                 break;
9540         default:                /* Otherwise we don't support it */
9541                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9542                              wrqu->power.flags);
9543                 up(&priv->sem);
9544                 return -EOPNOTSUPP;
9545         }
9546
9547         /* If the user hasn't specified a power management mode yet, default
9548          * to BATTERY */
9549         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9550                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9551         else
9552                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9553         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9554         if (err) {
9555                 IPW_DEBUG_WX("failed setting power mode.\n");
9556                 up(&priv->sem);
9557                 return err;
9558         }
9559
9560         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9561         up(&priv->sem);
9562         return 0;
9563 }
9564
9565 static int ipw_wx_get_power(struct net_device *dev,
9566                             struct iw_request_info *info,
9567                             union iwreq_data *wrqu, char *extra)
9568 {
9569         struct ipw_priv *priv = ieee80211_priv(dev);
9570         down(&priv->sem);
9571         if (!(priv->power_mode & IPW_POWER_ENABLED))
9572                 wrqu->power.disabled = 1;
9573         else
9574                 wrqu->power.disabled = 0;
9575
9576         up(&priv->sem);
9577         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9578
9579         return 0;
9580 }
9581
9582 static int ipw_wx_set_powermode(struct net_device *dev,
9583                                 struct iw_request_info *info,
9584                                 union iwreq_data *wrqu, char *extra)
9585 {
9586         struct ipw_priv *priv = ieee80211_priv(dev);
9587         int mode = *(int *)extra;
9588         int err;
9589         down(&priv->sem);
9590         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9591                 mode = IPW_POWER_AC;
9592                 priv->power_mode = mode;
9593         } else {
9594                 priv->power_mode = IPW_POWER_ENABLED | mode;
9595         }
9596
9597         if (priv->power_mode != mode) {
9598                 err = ipw_send_power_mode(priv, mode);
9599
9600                 if (err) {
9601                         IPW_DEBUG_WX("failed setting power mode.\n");
9602                         up(&priv->sem);
9603                         return err;
9604                 }
9605         }
9606         up(&priv->sem);
9607         return 0;
9608 }
9609
9610 #define MAX_WX_STRING 80
9611 static int ipw_wx_get_powermode(struct net_device *dev,
9612                                 struct iw_request_info *info,
9613                                 union iwreq_data *wrqu, char *extra)
9614 {
9615         struct ipw_priv *priv = ieee80211_priv(dev);
9616         int level = IPW_POWER_LEVEL(priv->power_mode);
9617         char *p = extra;
9618
9619         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9620
9621         switch (level) {
9622         case IPW_POWER_AC:
9623                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9624                 break;
9625         case IPW_POWER_BATTERY:
9626                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9627                 break;
9628         default:
9629                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9630                               "(Timeout %dms, Period %dms)",
9631                               timeout_duration[level - 1] / 1000,
9632                               period_duration[level - 1] / 1000);
9633         }
9634
9635         if (!(priv->power_mode & IPW_POWER_ENABLED))
9636                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9637
9638         wrqu->data.length = p - extra + 1;
9639
9640         return 0;
9641 }
9642
9643 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9644                                     struct iw_request_info *info,
9645                                     union iwreq_data *wrqu, char *extra)
9646 {
9647         struct ipw_priv *priv = ieee80211_priv(dev);
9648         int mode = *(int *)extra;
9649         u8 band = 0, modulation = 0;
9650
9651         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9652                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9653                 return -EINVAL;
9654         }
9655         down(&priv->sem);
9656         if (priv->adapter == IPW_2915ABG) {
9657                 priv->ieee->abg_true = 1;
9658                 if (mode & IEEE_A) {
9659                         band |= IEEE80211_52GHZ_BAND;
9660                         modulation |= IEEE80211_OFDM_MODULATION;
9661                 } else
9662                         priv->ieee->abg_true = 0;
9663         } else {
9664                 if (mode & IEEE_A) {
9665                         IPW_WARNING("Attempt to set 2200BG into "
9666                                     "802.11a mode\n");
9667                         up(&priv->sem);
9668                         return -EINVAL;
9669                 }
9670
9671                 priv->ieee->abg_true = 0;
9672         }
9673
9674         if (mode & IEEE_B) {
9675                 band |= IEEE80211_24GHZ_BAND;
9676                 modulation |= IEEE80211_CCK_MODULATION;
9677         } else
9678                 priv->ieee->abg_true = 0;
9679
9680         if (mode & IEEE_G) {
9681                 band |= IEEE80211_24GHZ_BAND;
9682                 modulation |= IEEE80211_OFDM_MODULATION;
9683         } else
9684                 priv->ieee->abg_true = 0;
9685
9686         priv->ieee->mode = mode;
9687         priv->ieee->freq_band = band;
9688         priv->ieee->modulation = modulation;
9689         init_supported_rates(priv, &priv->rates);
9690
9691         /* Network configuration changed -- force [re]association */
9692         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9693         if (!ipw_disassociate(priv)) {
9694                 ipw_send_supported_rates(priv, &priv->rates);
9695                 ipw_associate(priv);
9696         }
9697
9698         /* Update the band LEDs */
9699         ipw_led_band_on(priv);
9700
9701         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9702                      mode & IEEE_A ? 'a' : '.',
9703                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9704         up(&priv->sem);
9705         return 0;
9706 }
9707
9708 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9709                                     struct iw_request_info *info,
9710                                     union iwreq_data *wrqu, char *extra)
9711 {
9712         struct ipw_priv *priv = ieee80211_priv(dev);
9713         down(&priv->sem);
9714         switch (priv->ieee->mode) {
9715         case IEEE_A:
9716                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9717                 break;
9718         case IEEE_B:
9719                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9720                 break;
9721         case IEEE_A | IEEE_B:
9722                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9723                 break;
9724         case IEEE_G:
9725                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9726                 break;
9727         case IEEE_A | IEEE_G:
9728                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9729                 break;
9730         case IEEE_B | IEEE_G:
9731                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9732                 break;
9733         case IEEE_A | IEEE_B | IEEE_G:
9734                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9735                 break;
9736         default:
9737                 strncpy(extra, "unknown", MAX_WX_STRING);
9738                 break;
9739         }
9740
9741         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9742
9743         wrqu->data.length = strlen(extra) + 1;
9744         up(&priv->sem);
9745
9746         return 0;
9747 }
9748
9749 static int ipw_wx_set_preamble(struct net_device *dev,
9750                                struct iw_request_info *info,
9751                                union iwreq_data *wrqu, char *extra)
9752 {
9753         struct ipw_priv *priv = ieee80211_priv(dev);
9754         int mode = *(int *)extra;
9755         down(&priv->sem);
9756         /* Switching from SHORT -> LONG requires a disassociation */
9757         if (mode == 1) {
9758                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9759                         priv->config |= CFG_PREAMBLE_LONG;
9760
9761                         /* Network configuration changed -- force [re]association */
9762                         IPW_DEBUG_ASSOC
9763                             ("[re]association triggered due to preamble change.\n");
9764                         if (!ipw_disassociate(priv))
9765                                 ipw_associate(priv);
9766                 }
9767                 goto done;
9768         }
9769
9770         if (mode == 0) {
9771                 priv->config &= ~CFG_PREAMBLE_LONG;
9772                 goto done;
9773         }
9774         up(&priv->sem);
9775         return -EINVAL;
9776
9777       done:
9778         up(&priv->sem);
9779         return 0;
9780 }
9781
9782 static int ipw_wx_get_preamble(struct net_device *dev,
9783                                struct iw_request_info *info,
9784                                union iwreq_data *wrqu, char *extra)
9785 {
9786         struct ipw_priv *priv = ieee80211_priv(dev);
9787         down(&priv->sem);
9788         if (priv->config & CFG_PREAMBLE_LONG)
9789                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9790         else
9791                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9792         up(&priv->sem);
9793         return 0;
9794 }
9795
9796 #ifdef CONFIG_IPW2200_MONITOR
9797 static int ipw_wx_set_monitor(struct net_device *dev,
9798                               struct iw_request_info *info,
9799                               union iwreq_data *wrqu, char *extra)
9800 {
9801         struct ipw_priv *priv = ieee80211_priv(dev);
9802         int *parms = (int *)extra;
9803         int enable = (parms[0] > 0);
9804         down(&priv->sem);
9805         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9806         if (enable) {
9807                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9808 #ifdef CONFIG_IEEE80211_RADIOTAP
9809                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9810 #else
9811                         priv->net_dev->type = ARPHRD_IEEE80211;
9812 #endif
9813                         queue_work(priv->workqueue, &priv->adapter_restart);
9814                 }
9815
9816                 ipw_set_channel(priv, parms[1]);
9817         } else {
9818                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9819                         up(&priv->sem);
9820                         return 0;
9821                 }
9822                 priv->net_dev->type = ARPHRD_ETHER;
9823                 queue_work(priv->workqueue, &priv->adapter_restart);
9824         }
9825         up(&priv->sem);
9826         return 0;
9827 }
9828
9829 #endif                          // CONFIG_IPW2200_MONITOR
9830
9831 static int ipw_wx_reset(struct net_device *dev,
9832                         struct iw_request_info *info,
9833                         union iwreq_data *wrqu, char *extra)
9834 {
9835         struct ipw_priv *priv = ieee80211_priv(dev);
9836         IPW_DEBUG_WX("RESET\n");
9837         queue_work(priv->workqueue, &priv->adapter_restart);
9838         return 0;
9839 }
9840
9841 static int ipw_wx_sw_reset(struct net_device *dev,
9842                            struct iw_request_info *info,
9843                            union iwreq_data *wrqu, char *extra)
9844 {
9845         struct ipw_priv *priv = ieee80211_priv(dev);
9846         union iwreq_data wrqu_sec = {
9847                 .encoding = {
9848                              .flags = IW_ENCODE_DISABLED,
9849                              },
9850         };
9851         int ret;
9852
9853         IPW_DEBUG_WX("SW_RESET\n");
9854
9855         down(&priv->sem);
9856
9857         ret = ipw_sw_reset(priv, 0);
9858         if (!ret) {
9859                 free_firmware();
9860                 ipw_adapter_restart(priv);
9861         }
9862
9863         /* The SW reset bit might have been toggled on by the 'disable'
9864          * module parameter, so take appropriate action */
9865         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9866
9867         up(&priv->sem);
9868         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9869         down(&priv->sem);
9870
9871         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9872                 /* Configuration likely changed -- force [re]association */
9873                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9874                                 "reset.\n");
9875                 if (!ipw_disassociate(priv))
9876                         ipw_associate(priv);
9877         }
9878
9879         up(&priv->sem);
9880
9881         return 0;
9882 }
9883
9884 /* Rebase the WE IOCTLs to zero for the handler array */
9885 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9886 static iw_handler ipw_wx_handlers[] = {
9887         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9888         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9889         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9890         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9891         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9892         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9893         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9894         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9895         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9896         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9897         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9898         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9899         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9900         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9901         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9902         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9903         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9904         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9905         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9906         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9907         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9908         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9909         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9910         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9911         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9912         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9913         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9914         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9915         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9916         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9917         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9918         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9919 #if WIRELESS_EXT > 17
9920         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9921         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9922         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9923         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9924         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9925         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9926         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9927 #endif
9928 };
9929
9930 enum {
9931         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9932         IPW_PRIV_GET_POWER,
9933         IPW_PRIV_SET_MODE,
9934         IPW_PRIV_GET_MODE,
9935         IPW_PRIV_SET_PREAMBLE,
9936         IPW_PRIV_GET_PREAMBLE,
9937         IPW_PRIV_RESET,
9938         IPW_PRIV_SW_RESET,
9939 #ifdef CONFIG_IPW2200_MONITOR
9940         IPW_PRIV_SET_MONITOR,
9941 #endif
9942 };
9943
9944 static struct iw_priv_args ipw_priv_args[] = {
9945         {
9946          .cmd = IPW_PRIV_SET_POWER,
9947          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9948          .name = "set_power"},
9949         {
9950          .cmd = IPW_PRIV_GET_POWER,
9951          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9952          .name = "get_power"},
9953         {
9954          .cmd = IPW_PRIV_SET_MODE,
9955          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9956          .name = "set_mode"},
9957         {
9958          .cmd = IPW_PRIV_GET_MODE,
9959          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9960          .name = "get_mode"},
9961         {
9962          .cmd = IPW_PRIV_SET_PREAMBLE,
9963          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9964          .name = "set_preamble"},
9965         {
9966          .cmd = IPW_PRIV_GET_PREAMBLE,
9967          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9968          .name = "get_preamble"},
9969         {
9970          IPW_PRIV_RESET,
9971          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9972         {
9973          IPW_PRIV_SW_RESET,
9974          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9975 #ifdef CONFIG_IPW2200_MONITOR
9976         {
9977          IPW_PRIV_SET_MONITOR,
9978          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9979 #endif                          /* CONFIG_IPW2200_MONITOR */
9980 };
9981
9982 static iw_handler ipw_priv_handler[] = {
9983         ipw_wx_set_powermode,
9984         ipw_wx_get_powermode,
9985         ipw_wx_set_wireless_mode,
9986         ipw_wx_get_wireless_mode,
9987         ipw_wx_set_preamble,
9988         ipw_wx_get_preamble,
9989         ipw_wx_reset,
9990         ipw_wx_sw_reset,
9991 #ifdef CONFIG_IPW2200_MONITOR
9992         ipw_wx_set_monitor,
9993 #endif
9994 };
9995
9996 static struct iw_handler_def ipw_wx_handler_def = {
9997         .standard = ipw_wx_handlers,
9998         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9999         .num_private = ARRAY_SIZE(ipw_priv_handler),
10000         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10001         .private = ipw_priv_handler,
10002         .private_args = ipw_priv_args,
10003 };
10004
10005 static struct iw_public_data ipw_wx_data;
10006
10007 /*
10008  * Get wireless statistics.
10009  * Called by /proc/net/wireless
10010  * Also called by SIOCGIWSTATS
10011  */
10012 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10013 {
10014         struct ipw_priv *priv = ieee80211_priv(dev);
10015         struct iw_statistics *wstats;
10016
10017         wstats = &priv->wstats;
10018
10019         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10020          * netdev->get_wireless_stats seems to be called before fw is
10021          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10022          * and associated; if not associcated, the values are all meaningless
10023          * anyway, so set them all to NULL and INVALID */
10024         if (!(priv->status & STATUS_ASSOCIATED)) {
10025                 wstats->miss.beacon = 0;
10026                 wstats->discard.retries = 0;
10027                 wstats->qual.qual = 0;
10028                 wstats->qual.level = 0;
10029                 wstats->qual.noise = 0;
10030                 wstats->qual.updated = 7;
10031                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10032                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10033                 return wstats;
10034         }
10035
10036         wstats->qual.qual = priv->quality;
10037         wstats->qual.level = average_value(&priv->average_rssi);
10038         wstats->qual.noise = average_value(&priv->average_noise);
10039         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10040             IW_QUAL_NOISE_UPDATED;
10041
10042         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10043         wstats->discard.retries = priv->last_tx_failures;
10044         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10045
10046 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10047         goto fail_get_ordinal;
10048         wstats->discard.retries += tx_retry; */
10049
10050         return wstats;
10051 }
10052
10053 /* net device stuff */
10054
10055 static inline void init_sys_config(struct ipw_sys_config *sys_config)
10056 {
10057         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10058         sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
10059         sys_config->answer_broadcast_ssid_probe = 0;
10060         sys_config->accept_all_data_frames = 0;
10061         sys_config->accept_non_directed_frames = 1;
10062         sys_config->exclude_unicast_unencrypted = 0;
10063         sys_config->disable_unicast_decryption = 1;
10064         sys_config->exclude_multicast_unencrypted = 0;
10065         sys_config->disable_multicast_decryption = 1;
10066         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
10067         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10068         sys_config->dot11g_auto_detection = 0;
10069         sys_config->enable_cts_to_self = 0;
10070         sys_config->bt_coexist_collision_thr = 0;
10071         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
10072 }
10073
10074 static int ipw_net_open(struct net_device *dev)
10075 {
10076         struct ipw_priv *priv = ieee80211_priv(dev);
10077         IPW_DEBUG_INFO("dev->open\n");
10078         /* we should be verifying the device is ready to be opened */
10079         down(&priv->sem);
10080         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10081             (priv->status & STATUS_ASSOCIATED))
10082                 netif_start_queue(dev);
10083         up(&priv->sem);
10084         return 0;
10085 }
10086
10087 static int ipw_net_stop(struct net_device *dev)
10088 {
10089         IPW_DEBUG_INFO("dev->close\n");
10090         netif_stop_queue(dev);
10091         return 0;
10092 }
10093
10094 /*
10095 todo:
10096
10097 modify to send one tfd per fragment instead of using chunking.  otherwise
10098 we need to heavily modify the ieee80211_skb_to_txb.
10099 */
10100
10101 static inline int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10102                              int pri)
10103 {
10104         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
10105             txb->fragments[0]->data;
10106         int i = 0;
10107         struct tfd_frame *tfd;
10108 #ifdef CONFIG_IPW_QOS
10109         int tx_id = ipw_get_tx_queue_number(priv, pri);
10110         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10111 #else
10112         struct clx2_tx_queue *txq = &priv->txq[0];
10113 #endif
10114         struct clx2_queue *q = &txq->q;
10115         u8 id, hdr_len, unicast;
10116         u16 remaining_bytes;
10117         int fc;
10118
10119         /* If there isn't room in the queue, we return busy and let the
10120          * network stack requeue the packet for us */
10121         if (ipw_queue_space(q) < q->high_mark)
10122                 return NETDEV_TX_BUSY;
10123
10124         switch (priv->ieee->iw_mode) {
10125         case IW_MODE_ADHOC:
10126                 hdr_len = IEEE80211_3ADDR_LEN;
10127                 unicast = !is_multicast_ether_addr(hdr->addr1);
10128                 id = ipw_find_station(priv, hdr->addr1);
10129                 if (id == IPW_INVALID_STATION) {
10130                         id = ipw_add_station(priv, hdr->addr1);
10131                         if (id == IPW_INVALID_STATION) {
10132                                 IPW_WARNING("Attempt to send data to "
10133                                             "invalid cell: " MAC_FMT "\n",
10134                                             MAC_ARG(hdr->addr1));
10135                                 goto drop;
10136                         }
10137                 }
10138                 break;
10139
10140         case IW_MODE_INFRA:
10141         default:
10142                 unicast = !is_multicast_ether_addr(hdr->addr3);
10143                 hdr_len = IEEE80211_3ADDR_LEN;
10144                 id = 0;
10145                 break;
10146         }
10147
10148         tfd = &txq->bd[q->first_empty];
10149         txq->txb[q->first_empty] = txb;
10150         memset(tfd, 0, sizeof(*tfd));
10151         tfd->u.data.station_number = id;
10152
10153         tfd->control_flags.message_type = TX_FRAME_TYPE;
10154         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10155
10156         tfd->u.data.cmd_id = DINO_CMD_TX;
10157         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10158         remaining_bytes = txb->payload_size;
10159
10160         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10161                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10162         else
10163                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10164
10165         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10166                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10167
10168         fc = le16_to_cpu(hdr->frame_ctl);
10169         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10170
10171         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10172
10173         if (likely(unicast))
10174                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10175
10176         if (txb->encrypted && !priv->ieee->host_encrypt) {
10177                 switch (priv->ieee->sec.level) {
10178                 case SEC_LEVEL_3:
10179                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10180                             IEEE80211_FCTL_PROTECTED;
10181                         /* XXX: ACK flag must be set for CCMP even if it
10182                          * is a multicast/broadcast packet, because CCMP
10183                          * group communication encrypted by GTK is
10184                          * actually done by the AP. */
10185                         if (!unicast)
10186                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10187
10188                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10189                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10190                         tfd->u.data.key_index = 0;
10191                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10192                         break;
10193                 case SEC_LEVEL_2:
10194                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10195                             IEEE80211_FCTL_PROTECTED;
10196                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10197                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10198                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10199                         break;
10200                 case SEC_LEVEL_1:
10201                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10202                             IEEE80211_FCTL_PROTECTED;
10203                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10204                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10205                             40)
10206                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10207                         else
10208                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10209                         break;
10210                 case SEC_LEVEL_0:
10211                         break;
10212                 default:
10213                         printk(KERN_ERR "Unknow security level %d\n",
10214                                priv->ieee->sec.level);
10215                         break;
10216                 }
10217         } else
10218                 /* No hardware encryption */
10219                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10220
10221 #ifdef CONFIG_IPW_QOS
10222         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
10223 #endif                          /* CONFIG_IPW_QOS */
10224
10225         /* payload */
10226         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10227                                                  txb->nr_frags));
10228         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10229                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10230         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10231                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10232                                i, le32_to_cpu(tfd->u.data.num_chunks),
10233                                txb->fragments[i]->len - hdr_len);
10234                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10235                              i, tfd->u.data.num_chunks,
10236                              txb->fragments[i]->len - hdr_len);
10237                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10238                            txb->fragments[i]->len - hdr_len);
10239
10240                 tfd->u.data.chunk_ptr[i] =
10241                     cpu_to_le32(pci_map_single
10242                                 (priv->pci_dev,
10243                                  txb->fragments[i]->data + hdr_len,
10244                                  txb->fragments[i]->len - hdr_len,
10245                                  PCI_DMA_TODEVICE));
10246                 tfd->u.data.chunk_len[i] =
10247                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10248         }
10249
10250         if (i != txb->nr_frags) {
10251                 struct sk_buff *skb;
10252                 u16 remaining_bytes = 0;
10253                 int j;
10254
10255                 for (j = i; j < txb->nr_frags; j++)
10256                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10257
10258                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10259                        remaining_bytes);
10260                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10261                 if (skb != NULL) {
10262                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10263                         for (j = i; j < txb->nr_frags; j++) {
10264                                 int size = txb->fragments[j]->len - hdr_len;
10265
10266                                 printk(KERN_INFO "Adding frag %d %d...\n",
10267                                        j, size);
10268                                 memcpy(skb_put(skb, size),
10269                                        txb->fragments[j]->data + hdr_len, size);
10270                         }
10271                         dev_kfree_skb_any(txb->fragments[i]);
10272                         txb->fragments[i] = skb;
10273                         tfd->u.data.chunk_ptr[i] =
10274                             cpu_to_le32(pci_map_single
10275                                         (priv->pci_dev, skb->data,
10276                                          tfd->u.data.chunk_len[i],
10277                                          PCI_DMA_TODEVICE));
10278
10279                         tfd->u.data.num_chunks =
10280                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10281                                         1);
10282                 }
10283         }
10284
10285         /* kick DMA */
10286         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10287         ipw_write32(priv, q->reg_w, q->first_empty);
10288
10289         return NETDEV_TX_OK;
10290
10291       drop:
10292         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10293         ieee80211_txb_free(txb);
10294         return NETDEV_TX_OK;
10295 }
10296
10297 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10298 {
10299         struct ipw_priv *priv = ieee80211_priv(dev);
10300 #ifdef CONFIG_IPW_QOS
10301         int tx_id = ipw_get_tx_queue_number(priv, pri);
10302         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10303 #else
10304         struct clx2_tx_queue *txq = &priv->txq[0];
10305 #endif                          /* CONFIG_IPW_QOS */
10306
10307         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10308                 return 1;
10309
10310         return 0;
10311 }
10312
10313 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10314                                    struct net_device *dev, int pri)
10315 {
10316         struct ipw_priv *priv = ieee80211_priv(dev);
10317         unsigned long flags;
10318         int ret;
10319
10320         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10321         spin_lock_irqsave(&priv->lock, flags);
10322
10323         if (!(priv->status & STATUS_ASSOCIATED)) {
10324                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10325                 priv->ieee->stats.tx_carrier_errors++;
10326                 netif_stop_queue(dev);
10327                 goto fail_unlock;
10328         }
10329
10330         ret = ipw_tx_skb(priv, txb, pri);
10331         if (ret == NETDEV_TX_OK)
10332                 __ipw_led_activity_on(priv);
10333         spin_unlock_irqrestore(&priv->lock, flags);
10334
10335         return ret;
10336
10337       fail_unlock:
10338         spin_unlock_irqrestore(&priv->lock, flags);
10339         return 1;
10340 }
10341
10342 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10343 {
10344         struct ipw_priv *priv = ieee80211_priv(dev);
10345
10346         priv->ieee->stats.tx_packets = priv->tx_packets;
10347         priv->ieee->stats.rx_packets = priv->rx_packets;
10348         return &priv->ieee->stats;
10349 }
10350
10351 static void ipw_net_set_multicast_list(struct net_device *dev)
10352 {
10353
10354 }
10355
10356 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10357 {
10358         struct ipw_priv *priv = ieee80211_priv(dev);
10359         struct sockaddr *addr = p;
10360         if (!is_valid_ether_addr(addr->sa_data))
10361                 return -EADDRNOTAVAIL;
10362         down(&priv->sem);
10363         priv->config |= CFG_CUSTOM_MAC;
10364         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10365         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10366                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10367         queue_work(priv->workqueue, &priv->adapter_restart);
10368         up(&priv->sem);
10369         return 0;
10370 }
10371
10372 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10373                                     struct ethtool_drvinfo *info)
10374 {
10375         struct ipw_priv *p = ieee80211_priv(dev);
10376         char vers[64];
10377         char date[32];
10378         u32 len;
10379
10380         strcpy(info->driver, DRV_NAME);
10381         strcpy(info->version, DRV_VERSION);
10382
10383         len = sizeof(vers);
10384         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10385         len = sizeof(date);
10386         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10387
10388         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10389                  vers, date);
10390         strcpy(info->bus_info, pci_name(p->pci_dev));
10391         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10392 }
10393
10394 static u32 ipw_ethtool_get_link(struct net_device *dev)
10395 {
10396         struct ipw_priv *priv = ieee80211_priv(dev);
10397         return (priv->status & STATUS_ASSOCIATED) != 0;
10398 }
10399
10400 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10401 {
10402         return IPW_EEPROM_IMAGE_SIZE;
10403 }
10404
10405 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10406                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10407 {
10408         struct ipw_priv *p = ieee80211_priv(dev);
10409
10410         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10411                 return -EINVAL;
10412         down(&p->sem);
10413         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10414         up(&p->sem);
10415         return 0;
10416 }
10417
10418 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10419                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10420 {
10421         struct ipw_priv *p = ieee80211_priv(dev);
10422         int i;
10423
10424         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10425                 return -EINVAL;
10426         down(&p->sem);
10427         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10428         for (i = IPW_EEPROM_DATA;
10429              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
10430                 ipw_write8(p, i, p->eeprom[i]);
10431         up(&p->sem);
10432         return 0;
10433 }
10434
10435 static struct ethtool_ops ipw_ethtool_ops = {
10436         .get_link = ipw_ethtool_get_link,
10437         .get_drvinfo = ipw_ethtool_get_drvinfo,
10438         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10439         .get_eeprom = ipw_ethtool_get_eeprom,
10440         .set_eeprom = ipw_ethtool_set_eeprom,
10441 };
10442
10443 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10444 {
10445         struct ipw_priv *priv = data;
10446         u32 inta, inta_mask;
10447
10448         if (!priv)
10449                 return IRQ_NONE;
10450
10451         spin_lock(&priv->lock);
10452
10453         if (!(priv->status & STATUS_INT_ENABLED)) {
10454                 /* Shared IRQ */
10455                 goto none;
10456         }
10457
10458         inta = ipw_read32(priv, IPW_INTA_RW);
10459         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10460
10461         if (inta == 0xFFFFFFFF) {
10462                 /* Hardware disappeared */
10463                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10464                 goto none;
10465         }
10466
10467         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10468                 /* Shared interrupt */
10469                 goto none;
10470         }
10471
10472         /* tell the device to stop sending interrupts */
10473         ipw_disable_interrupts(priv);
10474
10475         /* ack current interrupts */
10476         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10477         ipw_write32(priv, IPW_INTA_RW, inta);
10478
10479         /* Cache INTA value for our tasklet */
10480         priv->isr_inta = inta;
10481
10482         tasklet_schedule(&priv->irq_tasklet);
10483
10484         spin_unlock(&priv->lock);
10485
10486         return IRQ_HANDLED;
10487       none:
10488         spin_unlock(&priv->lock);
10489         return IRQ_NONE;
10490 }
10491
10492 static void ipw_rf_kill(void *adapter)
10493 {
10494         struct ipw_priv *priv = adapter;
10495         unsigned long flags;
10496
10497         spin_lock_irqsave(&priv->lock, flags);
10498
10499         if (rf_kill_active(priv)) {
10500                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10501                 if (priv->workqueue)
10502                         queue_delayed_work(priv->workqueue,
10503                                            &priv->rf_kill, 2 * HZ);
10504                 goto exit_unlock;
10505         }
10506
10507         /* RF Kill is now disabled, so bring the device back up */
10508
10509         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10510                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10511                                   "device\n");
10512
10513                 /* we can not do an adapter restart while inside an irq lock */
10514                 queue_work(priv->workqueue, &priv->adapter_restart);
10515         } else
10516                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10517                                   "enabled\n");
10518
10519       exit_unlock:
10520         spin_unlock_irqrestore(&priv->lock, flags);
10521 }
10522
10523 static void ipw_bg_rf_kill(void *data)
10524 {
10525         struct ipw_priv *priv = data;
10526         down(&priv->sem);
10527         ipw_rf_kill(data);
10528         up(&priv->sem);
10529 }
10530
10531 void ipw_link_up(struct ipw_priv *priv)
10532 {
10533         priv->last_seq_num = -1;
10534         priv->last_frag_num = -1;
10535         priv->last_packet_time = 0;
10536
10537         netif_carrier_on(priv->net_dev);
10538         if (netif_queue_stopped(priv->net_dev)) {
10539                 IPW_DEBUG_NOTIF("waking queue\n");
10540                 netif_wake_queue(priv->net_dev);
10541         } else {
10542                 IPW_DEBUG_NOTIF("starting queue\n");
10543                 netif_start_queue(priv->net_dev);
10544         }
10545
10546         cancel_delayed_work(&priv->request_scan);
10547         ipw_reset_stats(priv);
10548         /* Ensure the rate is updated immediately */
10549         priv->last_rate = ipw_get_current_rate(priv);
10550         ipw_gather_stats(priv);
10551         ipw_led_link_up(priv);
10552         notify_wx_assoc_event(priv);
10553
10554         if (priv->config & CFG_BACKGROUND_SCAN)
10555                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10556 }
10557
10558 static void ipw_bg_link_up(void *data)
10559 {
10560         struct ipw_priv *priv = data;
10561         down(&priv->sem);
10562         ipw_link_up(data);
10563         up(&priv->sem);
10564 }
10565
10566 void ipw_link_down(struct ipw_priv *priv)
10567 {
10568         ipw_led_link_down(priv);
10569         netif_carrier_off(priv->net_dev);
10570         netif_stop_queue(priv->net_dev);
10571         notify_wx_assoc_event(priv);
10572
10573         /* Cancel any queued work ... */
10574         cancel_delayed_work(&priv->request_scan);
10575         cancel_delayed_work(&priv->adhoc_check);
10576         cancel_delayed_work(&priv->gather_stats);
10577
10578         ipw_reset_stats(priv);
10579
10580         if (!(priv->status & STATUS_EXIT_PENDING)) {
10581                 /* Queue up another scan... */
10582                 queue_work(priv->workqueue, &priv->request_scan);
10583         }
10584 }
10585
10586 static void ipw_bg_link_down(void *data)
10587 {
10588         struct ipw_priv *priv = data;
10589         down(&priv->sem);
10590         ipw_link_down(data);
10591         up(&priv->sem);
10592 }
10593
10594 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10595 {
10596         int ret = 0;
10597
10598         priv->workqueue = create_workqueue(DRV_NAME);
10599         init_waitqueue_head(&priv->wait_command_queue);
10600         init_waitqueue_head(&priv->wait_state);
10601
10602         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10603         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10604         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10605         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10606         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10607         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10608         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10609         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10610         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10611         INIT_WORK(&priv->request_scan,
10612                   (void (*)(void *))ipw_request_scan, priv);
10613         INIT_WORK(&priv->gather_stats,
10614                   (void (*)(void *))ipw_bg_gather_stats, priv);
10615         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10616         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10617         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10618         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10619         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10620         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10621                   priv);
10622         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10623                   priv);
10624         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10625                   priv);
10626         INIT_WORK(&priv->merge_networks,
10627                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10628
10629 #ifdef CONFIG_IPW_QOS
10630         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10631                   priv);
10632 #endif                          /* CONFIG_IPW_QOS */
10633
10634         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10635                      ipw_irq_tasklet, (unsigned long)priv);
10636
10637         return ret;
10638 }
10639
10640 static void shim__set_security(struct net_device *dev,
10641                                struct ieee80211_security *sec)
10642 {
10643         struct ipw_priv *priv = ieee80211_priv(dev);
10644         int i;
10645         for (i = 0; i < 4; i++) {
10646                 if (sec->flags & (1 << i)) {
10647                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10648                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10649                         if (sec->key_sizes[i] == 0)
10650                                 priv->ieee->sec.flags &= ~(1 << i);
10651                         else {
10652                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10653                                        sec->key_sizes[i]);
10654                                 priv->ieee->sec.flags |= (1 << i);
10655                         }
10656                         priv->status |= STATUS_SECURITY_UPDATED;
10657                 } else if (sec->level != SEC_LEVEL_1)
10658                         priv->ieee->sec.flags &= ~(1 << i);
10659         }
10660
10661         if (sec->flags & SEC_ACTIVE_KEY) {
10662                 if (sec->active_key <= 3) {
10663                         priv->ieee->sec.active_key = sec->active_key;
10664                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10665                 } else
10666                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10667                 priv->status |= STATUS_SECURITY_UPDATED;
10668         } else
10669                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10670
10671         if ((sec->flags & SEC_AUTH_MODE) &&
10672             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10673                 priv->ieee->sec.auth_mode = sec->auth_mode;
10674                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10675                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10676                         priv->capability |= CAP_SHARED_KEY;
10677                 else
10678                         priv->capability &= ~CAP_SHARED_KEY;
10679                 priv->status |= STATUS_SECURITY_UPDATED;
10680         }
10681
10682         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10683                 priv->ieee->sec.flags |= SEC_ENABLED;
10684                 priv->ieee->sec.enabled = sec->enabled;
10685                 priv->status |= STATUS_SECURITY_UPDATED;
10686                 if (sec->enabled)
10687                         priv->capability |= CAP_PRIVACY_ON;
10688                 else
10689                         priv->capability &= ~CAP_PRIVACY_ON;
10690         }
10691
10692         if (sec->flags & SEC_ENCRYPT)
10693                 priv->ieee->sec.encrypt = sec->encrypt;
10694
10695         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10696                 priv->ieee->sec.level = sec->level;
10697                 priv->ieee->sec.flags |= SEC_LEVEL;
10698                 priv->status |= STATUS_SECURITY_UPDATED;
10699         }
10700
10701         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10702                 ipw_set_hwcrypto_keys(priv);
10703
10704         /* To match current functionality of ipw2100 (which works well w/
10705          * various supplicants, we don't force a disassociate if the
10706          * privacy capability changes ... */
10707 #if 0
10708         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10709             (((priv->assoc_request.capability &
10710                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10711              (!(priv->assoc_request.capability &
10712                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10713                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10714                                 "change.\n");
10715                 ipw_disassociate(priv);
10716         }
10717 #endif
10718 }
10719
10720 static int init_supported_rates(struct ipw_priv *priv,
10721                                 struct ipw_supported_rates *rates)
10722 {
10723         /* TODO: Mask out rates based on priv->rates_mask */
10724
10725         memset(rates, 0, sizeof(*rates));
10726         /* configure supported rates */
10727         switch (priv->ieee->freq_band) {
10728         case IEEE80211_52GHZ_BAND:
10729                 rates->ieee_mode = IPW_A_MODE;
10730                 rates->purpose = IPW_RATE_CAPABILITIES;
10731                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10732                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10733                 break;
10734
10735         default:                /* Mixed or 2.4Ghz */
10736                 rates->ieee_mode = IPW_G_MODE;
10737                 rates->purpose = IPW_RATE_CAPABILITIES;
10738                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10739                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10740                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10741                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10742                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10743                 }
10744                 break;
10745         }
10746
10747         return 0;
10748 }
10749
10750 static int ipw_config(struct ipw_priv *priv)
10751 {
10752         /* This is only called from ipw_up, which resets/reloads the firmware
10753            so, we don't need to first disable the card before we configure
10754            it */
10755         if (ipw_set_tx_power(priv))
10756                 goto error;
10757
10758         /* initialize adapter address */
10759         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10760                 goto error;
10761
10762         /* set basic system config settings */
10763         init_sys_config(&priv->sys_config);
10764         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10765                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10766         else
10767                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10768
10769         if (ipw_send_system_config(priv, &priv->sys_config))
10770                 goto error;
10771
10772         init_supported_rates(priv, &priv->rates);
10773         if (ipw_send_supported_rates(priv, &priv->rates))
10774                 goto error;
10775
10776         /* Set request-to-send threshold */
10777         if (priv->rts_threshold) {
10778                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10779                         goto error;
10780         }
10781 #ifdef CONFIG_IPW_QOS
10782         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10783         ipw_qos_activate(priv, NULL);
10784 #endif                          /* CONFIG_IPW_QOS */
10785
10786         if (ipw_set_random_seed(priv))
10787                 goto error;
10788
10789         /* final state transition to the RUN state */
10790         if (ipw_send_host_complete(priv))
10791                 goto error;
10792
10793         priv->status |= STATUS_INIT;
10794
10795         ipw_led_init(priv);
10796         ipw_led_radio_on(priv);
10797         priv->notif_missed_beacons = 0;
10798
10799         /* Set hardware WEP key if it is configured. */
10800         if ((priv->capability & CAP_PRIVACY_ON) &&
10801             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10802             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10803                 ipw_set_hwcrypto_keys(priv);
10804
10805         return 0;
10806
10807       error:
10808         return -EIO;
10809 }
10810
10811 /*
10812  * NOTE:
10813  *
10814  * These tables have been tested in conjunction with the
10815  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10816  *
10817  * Altering this values, using it on other hardware, or in geographies
10818  * not intended for resale of the above mentioned Intel adapters has
10819  * not been tested.
10820  *
10821  */
10822 static const struct ieee80211_geo ipw_geos[] = {
10823         {                       /* Restricted */
10824          "---",
10825          .bg_channels = 11,
10826          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10827                 {2427, 4}, {2432, 5}, {2437, 6},
10828                 {2442, 7}, {2447, 8}, {2452, 9},
10829                 {2457, 10}, {2462, 11}},
10830          },
10831
10832         {                       /* Custom US/Canada */
10833          "ZZF",
10834          .bg_channels = 11,
10835          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10836                 {2427, 4}, {2432, 5}, {2437, 6},
10837                 {2442, 7}, {2447, 8}, {2452, 9},
10838                 {2457, 10}, {2462, 11}},
10839          .a_channels = 8,
10840          .a = {{5180, 36},
10841                {5200, 40},
10842                {5220, 44},
10843                {5240, 48},
10844                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10845                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10846                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10847                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10848          },
10849
10850         {                       /* Rest of World */
10851          "ZZD",
10852          .bg_channels = 13,
10853          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10854                 {2427, 4}, {2432, 5}, {2437, 6},
10855                 {2442, 7}, {2447, 8}, {2452, 9},
10856                 {2457, 10}, {2462, 11}, {2467, 12},
10857                 {2472, 13}},
10858          },
10859
10860         {                       /* Custom USA & Europe & High */
10861          "ZZA",
10862          .bg_channels = 11,
10863          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10864                 {2427, 4}, {2432, 5}, {2437, 6},
10865                 {2442, 7}, {2447, 8}, {2452, 9},
10866                 {2457, 10}, {2462, 11}},
10867          .a_channels = 13,
10868          .a = {{5180, 36},
10869                {5200, 40},
10870                {5220, 44},
10871                {5240, 48},
10872                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10873                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10874                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10875                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10876                {5745, 149},
10877                {5765, 153},
10878                {5785, 157},
10879                {5805, 161},
10880                {5825, 165}},
10881          },
10882
10883         {                       /* Custom NA & Europe */
10884          "ZZB",
10885          .bg_channels = 11,
10886          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10887                 {2427, 4}, {2432, 5}, {2437, 6},
10888                 {2442, 7}, {2447, 8}, {2452, 9},
10889                 {2457, 10}, {2462, 11}},
10890          .a_channels = 13,
10891          .a = {{5180, 36},
10892                {5200, 40},
10893                {5220, 44},
10894                {5240, 48},
10895                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10896                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10897                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10898                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10899                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10900                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10901                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10902                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10903                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10904          },
10905
10906         {                       /* Custom Japan */
10907          "ZZC",
10908          .bg_channels = 11,
10909          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10910                 {2427, 4}, {2432, 5}, {2437, 6},
10911                 {2442, 7}, {2447, 8}, {2452, 9},
10912                 {2457, 10}, {2462, 11}},
10913          .a_channels = 4,
10914          .a = {{5170, 34}, {5190, 38},
10915                {5210, 42}, {5230, 46}},
10916          },
10917
10918         {                       /* Custom */
10919          "ZZM",
10920          .bg_channels = 11,
10921          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10922                 {2427, 4}, {2432, 5}, {2437, 6},
10923                 {2442, 7}, {2447, 8}, {2452, 9},
10924                 {2457, 10}, {2462, 11}},
10925          },
10926
10927         {                       /* Europe */
10928          "ZZE",
10929          .bg_channels = 13,
10930          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10931                 {2427, 4}, {2432, 5}, {2437, 6},
10932                 {2442, 7}, {2447, 8}, {2452, 9},
10933                 {2457, 10}, {2462, 11}, {2467, 12},
10934                 {2472, 13}},
10935          .a_channels = 19,
10936          .a = {{5180, 36},
10937                {5200, 40},
10938                {5220, 44},
10939                {5240, 48},
10940                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10941                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10942                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10943                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10944                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10945                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10946                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10947                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10948                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10949                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10950                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10951                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10952                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10953                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10954                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10955          },
10956
10957         {                       /* Custom Japan */
10958          "ZZJ",
10959          .bg_channels = 14,
10960          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10961                 {2427, 4}, {2432, 5}, {2437, 6},
10962                 {2442, 7}, {2447, 8}, {2452, 9},
10963                 {2457, 10}, {2462, 11}, {2467, 12},
10964                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10965          .a_channels = 4,
10966          .a = {{5170, 34}, {5190, 38},
10967                {5210, 42}, {5230, 46}},
10968          },
10969
10970         {                       /* High Band */
10971          "ZZH",
10972          .bg_channels = 13,
10973          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10974                 {2427, 4}, {2432, 5}, {2437, 6},
10975                 {2442, 7}, {2447, 8}, {2452, 9},
10976                 {2457, 10}, {2462, 11},
10977                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10978                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10979          .a_channels = 4,
10980          .a = {{5745, 149}, {5765, 153},
10981                {5785, 157}, {5805, 161}},
10982          },
10983
10984         {                       /* Custom Europe */
10985          "ZZG",
10986          .bg_channels = 13,
10987          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10988                 {2427, 4}, {2432, 5}, {2437, 6},
10989                 {2442, 7}, {2447, 8}, {2452, 9},
10990                 {2457, 10}, {2462, 11},
10991                 {2467, 12}, {2472, 13}},
10992          .a_channels = 4,
10993          .a = {{5180, 36}, {5200, 40},
10994                {5220, 44}, {5240, 48}},
10995          },
10996
10997         {                       /* Europe */
10998          "ZZK",
10999          .bg_channels = 13,
11000          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11001                 {2427, 4}, {2432, 5}, {2437, 6},
11002                 {2442, 7}, {2447, 8}, {2452, 9},
11003                 {2457, 10}, {2462, 11},
11004                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11005                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11006          .a_channels = 24,
11007          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11008                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11009                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11010                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11011                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11012                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11013                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11014                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11015                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11016                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11017                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11018                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11019                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11020                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11021                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11022                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11023                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11024                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11025                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11026                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11027                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11028                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11029                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11030                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11031          },
11032
11033         {                       /* Europe */
11034          "ZZL",
11035          .bg_channels = 11,
11036          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11037                 {2427, 4}, {2432, 5}, {2437, 6},
11038                 {2442, 7}, {2447, 8}, {2452, 9},
11039                 {2457, 10}, {2462, 11}},
11040          .a_channels = 13,
11041          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11042                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11043                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11044                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11045                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11046                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11047                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11048                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11049                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11050                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11051                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11052                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11053                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11054          }
11055 };
11056
11057 /* GEO code borrowed from ieee80211_geo.c */
11058 static int ipw_is_valid_channel(struct ieee80211_device *ieee, u8 channel)
11059 {
11060         int i;
11061
11062         /* Driver needs to initialize the geography map before using
11063          * these helper functions */
11064         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
11065
11066         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
11067                 for (i = 0; i < ieee->geo.bg_channels; i++)
11068                         /* NOTE: If G mode is currently supported but
11069                          * this is a B only channel, we don't see it
11070                          * as valid. */
11071                         if ((ieee->geo.bg[i].channel == channel) &&
11072                             (!(ieee->mode & IEEE_G) ||
11073                              !(ieee->geo.bg[i].flags & IEEE80211_CH_B_ONLY)))
11074                                 return IEEE80211_24GHZ_BAND;
11075
11076         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
11077                 for (i = 0; i < ieee->geo.a_channels; i++)
11078                         if (ieee->geo.a[i].channel == channel)
11079                                 return IEEE80211_52GHZ_BAND;
11080
11081         return 0;
11082 }
11083
11084 static int ipw_channel_to_index(struct ieee80211_device *ieee, u8 channel)
11085 {
11086         int i;
11087
11088         /* Driver needs to initialize the geography map before using
11089          * these helper functions */
11090         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
11091
11092         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
11093                 for (i = 0; i < ieee->geo.bg_channels; i++)
11094                         if (ieee->geo.bg[i].channel == channel)
11095                                 return i;
11096
11097         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
11098                 for (i = 0; i < ieee->geo.a_channels; i++)
11099                         if (ieee->geo.a[i].channel == channel)
11100                                 return i;
11101
11102         return -1;
11103 }
11104
11105 static u8 ipw_freq_to_channel(struct ieee80211_device *ieee, u32 freq)
11106 {
11107         int i;
11108
11109         /* Driver needs to initialize the geography map before using
11110          * these helper functions */
11111         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
11112
11113         freq /= 100000;
11114
11115         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
11116                 for (i = 0; i < ieee->geo.bg_channels; i++)
11117                         if (ieee->geo.bg[i].freq == freq)
11118                                 return ieee->geo.bg[i].channel;
11119
11120         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
11121                 for (i = 0; i < ieee->geo.a_channels; i++)
11122                         if (ieee->geo.a[i].freq == freq)
11123                                 return ieee->geo.a[i].channel;
11124
11125         return 0;
11126 }
11127
11128 static int ipw_set_geo(struct ieee80211_device *ieee,
11129                        const struct ieee80211_geo *geo)
11130 {
11131         memcpy(ieee->geo.name, geo->name, 3);
11132         ieee->geo.name[3] = '\0';
11133         ieee->geo.bg_channels = geo->bg_channels;
11134         ieee->geo.a_channels = geo->a_channels;
11135         memcpy(ieee->geo.bg, geo->bg, geo->bg_channels *
11136                sizeof(struct ieee80211_channel));
11137         memcpy(ieee->geo.a, geo->a, ieee->geo.a_channels *
11138                sizeof(struct ieee80211_channel));
11139         return 0;
11140 }
11141
11142 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *ieee)
11143 {
11144         return &ieee->geo;
11145 }
11146
11147 #define MAX_HW_RESTARTS 5
11148 static int ipw_up(struct ipw_priv *priv)
11149 {
11150         int rc, i, j;
11151
11152         if (priv->status & STATUS_EXIT_PENDING)
11153                 return -EIO;
11154
11155         if (cmdlog && !priv->cmdlog) {
11156                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11157                                        GFP_KERNEL);
11158                 if (priv->cmdlog == NULL) {
11159                         IPW_ERROR("Error allocating %d command log entries.\n",
11160                                   cmdlog);
11161                 } else {
11162                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11163                         priv->cmdlog_len = cmdlog;
11164                 }
11165         }
11166
11167         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11168                 /* Load the microcode, firmware, and eeprom.
11169                  * Also start the clocks. */
11170                 rc = ipw_load(priv);
11171                 if (rc) {
11172                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11173                         return rc;
11174                 }
11175
11176                 ipw_init_ordinals(priv);
11177                 if (!(priv->config & CFG_CUSTOM_MAC))
11178                         eeprom_parse_mac(priv, priv->mac_addr);
11179                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11180
11181                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11182                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11183                                     ipw_geos[j].name, 3))
11184                                 break;
11185                 }
11186                 if (j == ARRAY_SIZE(ipw_geos))
11187                         j = 0;
11188                 if (ipw_set_geo(priv->ieee, &ipw_geos[j])) {
11189                         IPW_WARNING("Could not set geography.");
11190                         return 0;
11191                 }
11192
11193                 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
11194                                j, priv->ieee->geo.name);
11195
11196                 if (priv->status & STATUS_RF_KILL_SW) {
11197                         IPW_WARNING("Radio disabled by module parameter.\n");
11198                         return 0;
11199                 } else if (rf_kill_active(priv)) {
11200                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11201                                     "Kill switch must be turned off for "
11202                                     "wireless networking to work.\n");
11203                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11204                                            2 * HZ);
11205                         return 0;
11206                 }
11207
11208                 rc = ipw_config(priv);
11209                 if (!rc) {
11210                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11211
11212                         /* If configure to try and auto-associate, kick
11213                          * off a scan. */
11214                         queue_work(priv->workqueue, &priv->request_scan);
11215
11216                         return 0;
11217                 }
11218
11219                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11220                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11221                                i, MAX_HW_RESTARTS);
11222
11223                 /* We had an error bringing up the hardware, so take it
11224                  * all the way back down so we can try again */
11225                 ipw_down(priv);
11226         }
11227
11228         /* tried to restart and config the device for as long as our
11229          * patience could withstand */
11230         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11231
11232         return -EIO;
11233 }
11234
11235 static void ipw_bg_up(void *data)
11236 {
11237         struct ipw_priv *priv = data;
11238         down(&priv->sem);
11239         ipw_up(data);
11240         up(&priv->sem);
11241 }
11242
11243 static void ipw_deinit(struct ipw_priv *priv)
11244 {
11245         int i;
11246
11247         if (priv->status & STATUS_SCANNING) {
11248                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11249                 ipw_abort_scan(priv);
11250         }
11251
11252         if (priv->status & STATUS_ASSOCIATED) {
11253                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11254                 ipw_disassociate(priv);
11255         }
11256
11257         ipw_led_shutdown(priv);
11258
11259         /* Wait up to 1s for status to change to not scanning and not
11260          * associated (disassociation can take a while for a ful 802.11
11261          * exchange */
11262         for (i = 1000; i && (priv->status &
11263                              (STATUS_DISASSOCIATING |
11264                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11265                 udelay(10);
11266
11267         if (priv->status & (STATUS_DISASSOCIATING |
11268                             STATUS_ASSOCIATED | STATUS_SCANNING))
11269                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11270         else
11271                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11272
11273         /* Attempt to disable the card */
11274         ipw_send_card_disable(priv, 0);
11275
11276         priv->status &= ~STATUS_INIT;
11277 }
11278
11279 static void ipw_down(struct ipw_priv *priv)
11280 {
11281         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11282
11283         priv->status |= STATUS_EXIT_PENDING;
11284
11285         if (ipw_is_init(priv))
11286                 ipw_deinit(priv);
11287
11288         /* Wipe out the EXIT_PENDING status bit if we are not actually
11289          * exiting the module */
11290         if (!exit_pending)
11291                 priv->status &= ~STATUS_EXIT_PENDING;
11292
11293         /* tell the device to stop sending interrupts */
11294         ipw_disable_interrupts(priv);
11295
11296         /* Clear all bits but the RF Kill */
11297         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11298         netif_carrier_off(priv->net_dev);
11299         netif_stop_queue(priv->net_dev);
11300
11301         ipw_stop_nic(priv);
11302
11303         ipw_led_radio_off(priv);
11304 }
11305
11306 static void ipw_bg_down(void *data)
11307 {
11308         struct ipw_priv *priv = data;
11309         down(&priv->sem);
11310         ipw_down(data);
11311         up(&priv->sem);
11312 }
11313
11314 #if WIRELESS_EXT < 18
11315 static int ipw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
11316 {
11317         struct iwreq *wrq = (struct iwreq *)rq;
11318         int ret = -1;
11319         switch (cmd) {
11320         case IPW_IOCTL_WPA_SUPPLICANT:
11321                 ret = ipw_wpa_supplicant(dev, &wrq->u.data);
11322                 return ret;
11323
11324         default:
11325                 return -EOPNOTSUPP;
11326         }
11327
11328         return -EOPNOTSUPP;
11329 }
11330 #endif
11331
11332 /* Called by register_netdev() */
11333 static int ipw_net_init(struct net_device *dev)
11334 {
11335         struct ipw_priv *priv = ieee80211_priv(dev);
11336         down(&priv->sem);
11337
11338         if (ipw_up(priv)) {
11339                 up(&priv->sem);
11340                 return -EIO;
11341         }
11342
11343         up(&priv->sem);
11344         return 0;
11345 }
11346
11347 /* PCI driver stuff */
11348 static struct pci_device_id card_ids[] = {
11349         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11350         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11351         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11352         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11353         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11354         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11355         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11356         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11357         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11358         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11359         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11360         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11361         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11362         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11363         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11364         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11365         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11366         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11367         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11368         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11369         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11370         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11371
11372         /* required last entry */
11373         {0,}
11374 };
11375
11376 MODULE_DEVICE_TABLE(pci, card_ids);
11377
11378 static struct attribute *ipw_sysfs_entries[] = {
11379         &dev_attr_rf_kill.attr,
11380         &dev_attr_direct_dword.attr,
11381         &dev_attr_indirect_byte.attr,
11382         &dev_attr_indirect_dword.attr,
11383         &dev_attr_mem_gpio_reg.attr,
11384         &dev_attr_command_event_reg.attr,
11385         &dev_attr_nic_type.attr,
11386         &dev_attr_status.attr,
11387         &dev_attr_cfg.attr,
11388         &dev_attr_error.attr,
11389         &dev_attr_event_log.attr,
11390         &dev_attr_cmd_log.attr,
11391         &dev_attr_eeprom_delay.attr,
11392         &dev_attr_ucode_version.attr,
11393         &dev_attr_rtc.attr,
11394         &dev_attr_scan_age.attr,
11395         &dev_attr_led.attr,
11396         &dev_attr_speed_scan.attr,
11397         &dev_attr_net_stats.attr,
11398         NULL
11399 };
11400
11401 static struct attribute_group ipw_attribute_group = {
11402         .name = NULL,           /* put in device directory */
11403         .attrs = ipw_sysfs_entries,
11404 };
11405
11406 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11407 {
11408         int err = 0;
11409         struct net_device *net_dev;
11410         void __iomem *base;
11411         u32 length, val;
11412         struct ipw_priv *priv;
11413         int i;
11414
11415         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11416         if (net_dev == NULL) {
11417                 err = -ENOMEM;
11418                 goto out;
11419         }
11420
11421         priv = ieee80211_priv(net_dev);
11422         priv->ieee = netdev_priv(net_dev);
11423
11424         priv->net_dev = net_dev;
11425         priv->pci_dev = pdev;
11426 #ifdef CONFIG_IPW_DEBUG
11427         ipw_debug_level = debug;
11428 #endif
11429         spin_lock_init(&priv->lock);
11430         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11431                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11432
11433         init_MUTEX(&priv->sem);
11434         if (pci_enable_device(pdev)) {
11435                 err = -ENODEV;
11436                 goto out_free_ieee80211;
11437         }
11438
11439         pci_set_master(pdev);
11440
11441         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11442         if (!err)
11443                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11444         if (err) {
11445                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11446                 goto out_pci_disable_device;
11447         }
11448
11449         pci_set_drvdata(pdev, priv);
11450
11451         err = pci_request_regions(pdev, DRV_NAME);
11452         if (err)
11453                 goto out_pci_disable_device;
11454
11455         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11456          * PCI Tx retries from interfering with C3 CPU state */
11457         pci_read_config_dword(pdev, 0x40, &val);
11458         if ((val & 0x0000ff00) != 0)
11459                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11460
11461         length = pci_resource_len(pdev, 0);
11462         priv->hw_len = length;
11463
11464         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11465         if (!base) {
11466                 err = -ENODEV;
11467                 goto out_pci_release_regions;
11468         }
11469
11470         priv->hw_base = base;
11471         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11472         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11473
11474         err = ipw_setup_deferred_work(priv);
11475         if (err) {
11476                 IPW_ERROR("Unable to setup deferred work\n");
11477                 goto out_iounmap;
11478         }
11479
11480         ipw_sw_reset(priv, 1);
11481
11482         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
11483         if (err) {
11484                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11485                 goto out_destroy_workqueue;
11486         }
11487
11488         SET_MODULE_OWNER(net_dev);
11489         SET_NETDEV_DEV(net_dev, &pdev->dev);
11490
11491         ipw_wx_data.spy_data = &priv->ieee->spy_data;
11492         ipw_wx_data.ieee80211 = priv->ieee;
11493
11494         down(&priv->sem);
11495
11496         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11497         priv->ieee->set_security = shim__set_security;
11498         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11499
11500 #ifdef CONFIG_IPW_QOS
11501         priv->ieee->handle_probe_response = ipw_handle_beacon;
11502         priv->ieee->handle_beacon = ipw_handle_probe_response;
11503         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11504 #endif                          /* CONFIG_IPW_QOS */
11505
11506         priv->ieee->perfect_rssi = -20;
11507         priv->ieee->worst_rssi = -85;
11508
11509         net_dev->open = ipw_net_open;
11510         net_dev->stop = ipw_net_stop;
11511         net_dev->init = ipw_net_init;
11512 #if WIRELESS_EXT < 18
11513         net_dev->do_ioctl = ipw_ioctl;
11514 #endif
11515         net_dev->get_stats = ipw_net_get_stats;
11516         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11517         net_dev->set_mac_address = ipw_net_set_mac_address;
11518         net_dev->get_wireless_stats = ipw_get_wireless_stats;
11519         net_dev->wireless_data = &ipw_wx_data;
11520         net_dev->wireless_handlers = &ipw_wx_handler_def;
11521         net_dev->ethtool_ops = &ipw_ethtool_ops;
11522         net_dev->irq = pdev->irq;
11523         net_dev->base_addr = (unsigned long)priv->hw_base;
11524         net_dev->mem_start = pci_resource_start(pdev, 0);
11525         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11526
11527         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11528         if (err) {
11529                 IPW_ERROR("failed to create sysfs device attributes\n");
11530                 up(&priv->sem);
11531                 goto out_release_irq;
11532         }
11533
11534         up(&priv->sem);
11535         err = register_netdev(net_dev);
11536         if (err) {
11537                 IPW_ERROR("failed to register network device\n");
11538                 goto out_remove_sysfs;
11539         }
11540         return 0;
11541
11542       out_remove_sysfs:
11543         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11544       out_release_irq:
11545         free_irq(pdev->irq, priv);
11546       out_destroy_workqueue:
11547         destroy_workqueue(priv->workqueue);
11548         priv->workqueue = NULL;
11549       out_iounmap:
11550         iounmap(priv->hw_base);
11551       out_pci_release_regions:
11552         pci_release_regions(pdev);
11553       out_pci_disable_device:
11554         pci_disable_device(pdev);
11555         pci_set_drvdata(pdev, NULL);
11556       out_free_ieee80211:
11557         free_ieee80211(priv->net_dev);
11558       out:
11559         return err;
11560 }
11561
11562 static void ipw_pci_remove(struct pci_dev *pdev)
11563 {
11564         struct ipw_priv *priv = pci_get_drvdata(pdev);
11565         struct list_head *p, *q;
11566         int i;
11567
11568         if (!priv)
11569                 return;
11570
11571         down(&priv->sem);
11572
11573         priv->status |= STATUS_EXIT_PENDING;
11574         ipw_down(priv);
11575         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11576
11577         up(&priv->sem);
11578
11579         unregister_netdev(priv->net_dev);
11580
11581         if (priv->rxq) {
11582                 ipw_rx_queue_free(priv, priv->rxq);
11583                 priv->rxq = NULL;
11584         }
11585         ipw_tx_queue_free(priv);
11586
11587         if (priv->cmdlog) {
11588                 kfree(priv->cmdlog);
11589                 priv->cmdlog = NULL;
11590         }
11591         /* ipw_down will ensure that there is no more pending work
11592          * in the workqueue's, so we can safely remove them now. */
11593         cancel_delayed_work(&priv->adhoc_check);
11594         cancel_delayed_work(&priv->gather_stats);
11595         cancel_delayed_work(&priv->request_scan);
11596         cancel_delayed_work(&priv->rf_kill);
11597         cancel_delayed_work(&priv->scan_check);
11598         destroy_workqueue(priv->workqueue);
11599         priv->workqueue = NULL;
11600
11601         /* Free MAC hash list for ADHOC */
11602         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11603                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11604                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11605                         list_del(p);
11606                 }
11607         }
11608
11609         if (priv->error) {
11610                 ipw_free_error_log(priv->error);
11611                 priv->error = NULL;
11612         }
11613
11614         free_irq(pdev->irq, priv);
11615         iounmap(priv->hw_base);
11616         pci_release_regions(pdev);
11617         pci_disable_device(pdev);
11618         pci_set_drvdata(pdev, NULL);
11619         free_ieee80211(priv->net_dev);
11620         free_firmware();
11621 }
11622
11623 #ifdef CONFIG_PM
11624 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11625 {
11626         struct ipw_priv *priv = pci_get_drvdata(pdev);
11627         struct net_device *dev = priv->net_dev;
11628
11629         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11630
11631         /* Take down the device; powers it off, etc. */
11632         ipw_down(priv);
11633
11634         /* Remove the PRESENT state of the device */
11635         netif_device_detach(dev);
11636
11637         pci_save_state(pdev);
11638         pci_disable_device(pdev);
11639         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11640
11641         return 0;
11642 }
11643
11644 static int ipw_pci_resume(struct pci_dev *pdev)
11645 {
11646         struct ipw_priv *priv = pci_get_drvdata(pdev);
11647         struct net_device *dev = priv->net_dev;
11648         u32 val;
11649
11650         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11651
11652         pci_set_power_state(pdev, PCI_D0);
11653         pci_enable_device(pdev);
11654         pci_restore_state(pdev);
11655
11656         /*
11657          * Suspend/Resume resets the PCI configuration space, so we have to
11658          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11659          * from interfering with C3 CPU state. pci_restore_state won't help
11660          * here since it only restores the first 64 bytes pci config header.
11661          */
11662         pci_read_config_dword(pdev, 0x40, &val);
11663         if ((val & 0x0000ff00) != 0)
11664                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11665
11666         /* Set the device back into the PRESENT state; this will also wake
11667          * the queue of needed */
11668         netif_device_attach(dev);
11669
11670         /* Bring the device back up */
11671         queue_work(priv->workqueue, &priv->up);
11672
11673         return 0;
11674 }
11675 #endif
11676
11677 /* driver initialization stuff */
11678 static struct pci_driver ipw_driver = {
11679         .name = DRV_NAME,
11680         .id_table = card_ids,
11681         .probe = ipw_pci_probe,
11682         .remove = __devexit_p(ipw_pci_remove),
11683 #ifdef CONFIG_PM
11684         .suspend = ipw_pci_suspend,
11685         .resume = ipw_pci_resume,
11686 #endif
11687 };
11688
11689 static int __init ipw_init(void)
11690 {
11691         int ret;
11692
11693         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11694         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11695
11696         ret = pci_module_init(&ipw_driver);
11697         if (ret) {
11698                 IPW_ERROR("Unable to initialize PCI module\n");
11699                 return ret;
11700         }
11701
11702         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11703         if (ret) {
11704                 IPW_ERROR("Unable to create driver sysfs file\n");
11705                 pci_unregister_driver(&ipw_driver);
11706                 return ret;
11707         }
11708
11709         return ret;
11710 }
11711
11712 static void __exit ipw_exit(void)
11713 {
11714         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11715         pci_unregister_driver(&ipw_driver);
11716 }
11717
11718 module_param(disable, int, 0444);
11719 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11720
11721 module_param(associate, int, 0444);
11722 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11723
11724 module_param(auto_create, int, 0444);
11725 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11726
11727 module_param(led, int, 0444);
11728 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11729
11730 module_param(debug, int, 0444);
11731 MODULE_PARM_DESC(debug, "debug output mask");
11732
11733 module_param(channel, int, 0444);
11734 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11735
11736 #ifdef CONFIG_IPW_QOS
11737 module_param(qos_enable, int, 0444);
11738 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11739
11740 module_param(qos_burst_enable, int, 0444);
11741 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11742
11743 module_param(qos_no_ack_mask, int, 0444);
11744 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11745
11746 module_param(burst_duration_CCK, int, 0444);
11747 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11748
11749 module_param(burst_duration_OFDM, int, 0444);
11750 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11751 #endif                          /* CONFIG_IPW_QOS */
11752
11753 #ifdef CONFIG_IPW2200_MONITOR
11754 module_param(mode, int, 0444);
11755 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11756 #else
11757 module_param(mode, int, 0444);
11758 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11759 #endif
11760
11761 module_param(hwcrypto, int, 0444);
11762 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default on)");
11763
11764 module_param(cmdlog, int, 0444);
11765 MODULE_PARM_DESC(cmdlog,
11766                  "allocate a ring buffer for logging firmware commands");
11767
11768 module_exit(ipw_exit);
11769 module_init(ipw_init);