]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/p54/p54common.c
a4e99b02af021b81f7061d4659741df6ef86860e
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141
142         if (priv->rx_start)
143                 return 0;
144
145         while (data < end_data && *data)
146                 data++;
147
148         while (data < end_data && !*data)
149                 data++;
150
151         bootrec = (struct bootrec *) data;
152
153         while (bootrec->data <= end_data &&
154                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
155                 u32 code = le32_to_cpu(bootrec->code);
156                 switch (code) {
157                 case BR_CODE_COMPONENT_ID:
158                         priv->fw_interface = be32_to_cpup((__be32 *)
159                                              bootrec->data);
160                         switch (priv->fw_interface) {
161                         case FW_LM86:
162                         case FW_LM20:
163                         case FW_LM87: {
164                                 char *iftype = (char *)bootrec->data;
165                                 printk(KERN_INFO "%s: p54 detected a LM%c%c "
166                                                  "firmware\n",
167                                         wiphy_name(dev->wiphy),
168                                         iftype[2], iftype[3]);
169                                 break;
170                                 }
171                         case FW_FMAC:
172                         default:
173                                 printk(KERN_ERR "%s: unsupported firmware\n",
174                                         wiphy_name(dev->wiphy));
175                                 return -ENODEV;
176                         }
177                         break;
178                 case BR_CODE_COMPONENT_VERSION:
179                         /* 24 bytes should be enough for all firmwares */
180                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
181                                 fw_version = (unsigned char*)bootrec->data;
182                         break;
183                 case BR_CODE_DESCR: {
184                         struct bootrec_desc *desc =
185                                 (struct bootrec_desc *)bootrec->data;
186                         priv->rx_start = le32_to_cpu(desc->rx_start);
187                         /* FIXME add sanity checking */
188                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
189                         priv->headroom = desc->headroom;
190                         priv->tailroom = desc->tailroom;
191                         priv->privacy_caps = desc->privacy_caps;
192                         priv->rx_keycache_size = desc->rx_keycache_size;
193                         if (le32_to_cpu(bootrec->len) == 11)
194                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
195                         else
196                                 priv->rx_mtu = (size_t)
197                                         0x620 - priv->tx_hdr_len;
198                         break;
199                         }
200                 case BR_CODE_EXPOSED_IF:
201                         exp_if = (struct bootrec_exp_if *) bootrec->data;
202                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
203                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
204                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
205                         break;
206                 case BR_CODE_DEPENDENT_IF:
207                         break;
208                 case BR_CODE_END_OF_BRA:
209                 case LEGACY_BR_CODE_END_OF_BRA:
210                         end_data = NULL;
211                         break;
212                 default:
213                         break;
214                 }
215                 bootrec = (struct bootrec *)&bootrec->data[len];
216         }
217
218         if (fw_version)
219                 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
220                         wiphy_name(dev->wiphy), fw_version,
221                         priv->fw_var >> 8, priv->fw_var & 0xff);
222
223         if (priv->fw_var < 0x500)
224                 printk(KERN_INFO "%s: you are using an obsolete firmware. "
225                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
226                        "and grab one for \"kernel >= 2.6.28\"!\n",
227                         wiphy_name(dev->wiphy));
228
229         if (priv->fw_var >= 0x300) {
230                 /* Firmware supports QoS, use it! */
231                 priv->tx_stats[4].limit = 3;            /* AC_VO */
232                 priv->tx_stats[5].limit = 4;            /* AC_VI */
233                 priv->tx_stats[6].limit = 3;            /* AC_BE */
234                 priv->tx_stats[7].limit = 2;            /* AC_BK */
235                 dev->queues = 4;
236         }
237
238         if (!modparam_nohwcrypt)
239                 printk(KERN_INFO "%s: cryptographic accelerator "
240                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
241                         wiphy_name(dev->wiphy),
242                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
243                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
244                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
245                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
246                         "YES" : "no");
247
248         return 0;
249 }
250 EXPORT_SYMBOL_GPL(p54_parse_firmware);
251
252 static int p54_convert_rev0(struct ieee80211_hw *dev,
253                             struct pda_pa_curve_data *curve_data)
254 {
255         struct p54_common *priv = dev->priv;
256         struct p54_pa_curve_data_sample *dst;
257         struct pda_pa_curve_data_sample_rev0 *src;
258         size_t cd_len = sizeof(*curve_data) +
259                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
260                  curve_data->channels;
261         unsigned int i, j;
262         void *source, *target;
263
264         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
265         if (!priv->curve_data)
266                 return -ENOMEM;
267
268         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
269         source = curve_data->data;
270         target = priv->curve_data->data;
271         for (i = 0; i < curve_data->channels; i++) {
272                 __le16 *freq = source;
273                 source += sizeof(__le16);
274                 *((__le16 *)target) = *freq;
275                 target += sizeof(__le16);
276                 for (j = 0; j < curve_data->points_per_channel; j++) {
277                         dst = target;
278                         src = source;
279
280                         dst->rf_power = src->rf_power;
281                         dst->pa_detector = src->pa_detector;
282                         dst->data_64qam = src->pcv;
283                         /* "invent" the points for the other modulations */
284 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
285                         dst->data_16qam = SUB(src->pcv, 12);
286                         dst->data_qpsk = SUB(dst->data_16qam, 12);
287                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
288                         dst->data_barker = SUB(dst->data_bpsk, 14);
289 #undef SUB
290                         target += sizeof(*dst);
291                         source += sizeof(*src);
292                 }
293         }
294
295         return 0;
296 }
297
298 static int p54_convert_rev1(struct ieee80211_hw *dev,
299                             struct pda_pa_curve_data *curve_data)
300 {
301         struct p54_common *priv = dev->priv;
302         struct p54_pa_curve_data_sample *dst;
303         struct pda_pa_curve_data_sample_rev1 *src;
304         size_t cd_len = sizeof(*curve_data) +
305                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
306                  curve_data->channels;
307         unsigned int i, j;
308         void *source, *target;
309
310         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
311         if (!priv->curve_data)
312                 return -ENOMEM;
313
314         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
315         source = curve_data->data;
316         target = priv->curve_data->data;
317         for (i = 0; i < curve_data->channels; i++) {
318                 __le16 *freq = source;
319                 source += sizeof(__le16);
320                 *((__le16 *)target) = *freq;
321                 target += sizeof(__le16);
322                 for (j = 0; j < curve_data->points_per_channel; j++) {
323                         memcpy(target, source, sizeof(*src));
324
325                         target += sizeof(*dst);
326                         source += sizeof(*src);
327                 }
328                 source++;
329         }
330
331         return 0;
332 }
333
334 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
335                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
336 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
337
338 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
339 {
340         struct p54_common *priv = dev->priv;
341         struct eeprom_pda_wrap *wrap = NULL;
342         struct pda_entry *entry;
343         unsigned int data_len, entry_len;
344         void *tmp;
345         int err;
346         u8 *end = (u8 *)eeprom + len;
347         u16 synth = 0;
348
349         wrap = (struct eeprom_pda_wrap *) eeprom;
350         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
351
352         /* verify that at least the entry length/code fits */
353         while ((u8 *)entry <= end - sizeof(*entry)) {
354                 entry_len = le16_to_cpu(entry->len);
355                 data_len = ((entry_len - 1) << 1);
356
357                 /* abort if entry exceeds whole structure */
358                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
359                         break;
360
361                 switch (le16_to_cpu(entry->code)) {
362                 case PDR_MAC_ADDRESS:
363                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
364                         break;
365                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
366                         if (data_len < 2) {
367                                 err = -EINVAL;
368                                 goto err;
369                         }
370
371                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
372                                 err = -EINVAL;
373                                 goto err;
374                         }
375
376                         priv->output_limit = kmalloc(entry->data[1] *
377                                 sizeof(*priv->output_limit), GFP_KERNEL);
378
379                         if (!priv->output_limit) {
380                                 err = -ENOMEM;
381                                 goto err;
382                         }
383
384                         memcpy(priv->output_limit, &entry->data[2],
385                                entry->data[1]*sizeof(*priv->output_limit));
386                         priv->output_limit_len = entry->data[1];
387                         break;
388                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
389                         struct pda_pa_curve_data *curve_data =
390                                 (struct pda_pa_curve_data *)entry->data;
391                         if (data_len < sizeof(*curve_data)) {
392                                 err = -EINVAL;
393                                 goto err;
394                         }
395
396                         switch (curve_data->cal_method_rev) {
397                         case 0:
398                                 err = p54_convert_rev0(dev, curve_data);
399                                 break;
400                         case 1:
401                                 err = p54_convert_rev1(dev, curve_data);
402                                 break;
403                         default:
404                                 printk(KERN_ERR "%s: unknown curve data "
405                                                 "revision %d\n",
406                                                 wiphy_name(dev->wiphy),
407                                                 curve_data->cal_method_rev);
408                                 err = -ENODEV;
409                                 break;
410                         }
411                         if (err)
412                                 goto err;
413
414                 }
415                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
416                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
417                         if (!priv->iq_autocal) {
418                                 err = -ENOMEM;
419                                 goto err;
420                         }
421
422                         memcpy(priv->iq_autocal, entry->data, data_len);
423                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
424                         break;
425                 case PDR_INTERFACE_LIST:
426                         tmp = entry->data;
427                         while ((u8 *)tmp < entry->data + data_len) {
428                                 struct bootrec_exp_if *exp_if = tmp;
429                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
430                                         synth = le16_to_cpu(exp_if->variant);
431                                 tmp += sizeof(struct bootrec_exp_if);
432                         }
433                         break;
434                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
435                         priv->version = *(u8 *)(entry->data + 1);
436                         break;
437                 case PDR_END:
438                         /* make it overrun */
439                         entry_len = len;
440                         break;
441                 case PDR_MANUFACTURING_PART_NUMBER:
442                 case PDR_PDA_VERSION:
443                 case PDR_NIC_SERIAL_NUMBER:
444                 case PDR_REGULATORY_DOMAIN_LIST:
445                 case PDR_TEMPERATURE_TYPE:
446                 case PDR_PRISM_PCI_IDENTIFIER:
447                 case PDR_COUNTRY_INFORMATION:
448                 case PDR_OEM_NAME:
449                 case PDR_PRODUCT_NAME:
450                 case PDR_UTF8_OEM_NAME:
451                 case PDR_UTF8_PRODUCT_NAME:
452                 case PDR_COUNTRY_LIST:
453                 case PDR_DEFAULT_COUNTRY:
454                 case PDR_ANTENNA_GAIN:
455                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
456                 case PDR_RSSI_LINEAR_APPROXIMATION:
457                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
458                 case PDR_REGULATORY_POWER_LIMITS:
459                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
460                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
461                 case PDR_PRISM_TX_IQ_CALIBRATION:
462                 case PDR_BASEBAND_REGISTERS:
463                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
464                         break;
465                 default:
466                         printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
467                                 wiphy_name(dev->wiphy),
468                                 le16_to_cpu(entry->code));
469                         break;
470                 }
471
472                 entry = (void *)entry + (entry_len + 1)*2;
473         }
474
475         if (!synth || !priv->iq_autocal || !priv->output_limit ||
476             !priv->curve_data) {
477                 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
478                         wiphy_name(dev->wiphy));
479                 err = -EINVAL;
480                 goto err;
481         }
482
483         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
484         if (priv->rxhw == 4)
485                 p54_init_xbow_synth(dev);
486         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
487                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
488         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
489                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
490
491         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
492                 u8 perm_addr[ETH_ALEN];
493
494                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
495                         wiphy_name(dev->wiphy));
496                 random_ether_addr(perm_addr);
497                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
498         }
499
500         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
501                 wiphy_name(dev->wiphy),
502                 dev->wiphy->perm_addr,
503                 priv->version, p54_rf_chips[priv->rxhw]);
504
505         return 0;
506
507   err:
508         if (priv->iq_autocal) {
509                 kfree(priv->iq_autocal);
510                 priv->iq_autocal = NULL;
511         }
512
513         if (priv->output_limit) {
514                 kfree(priv->output_limit);
515                 priv->output_limit = NULL;
516         }
517
518         if (priv->curve_data) {
519                 kfree(priv->curve_data);
520                 priv->curve_data = NULL;
521         }
522
523         printk(KERN_ERR "%s: eeprom parse failed!\n",
524                 wiphy_name(dev->wiphy));
525         return err;
526 }
527
528 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
529 {
530         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
531         return ((rssi * 0x83) / 64 - 400) / 4;
532 }
533
534 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
535 {
536         struct p54_common *priv = dev->priv;
537         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
538         struct ieee80211_rx_status rx_status = {0};
539         u16 freq = le16_to_cpu(hdr->freq);
540         size_t header_len = sizeof(*hdr);
541         u32 tsf32;
542
543         /*
544          * If the device is in a unspecified state we have to
545          * ignore all data frames. Else we could end up with a
546          * nasty crash.
547          */
548         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
549                 return 0;
550
551         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
552                 if (priv->filter_flags & FIF_FCSFAIL)
553                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
554                 else
555                         return 0;
556         }
557
558         if (hdr->decrypt_status == P54_DECRYPT_OK)
559                 rx_status.flag |= RX_FLAG_DECRYPTED;
560         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
561             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
562                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
563
564         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
565         rx_status.noise = priv->noise;
566         /* XX correct? */
567         rx_status.qual = (100 * hdr->rssi) / 127;
568         if (hdr->rate & 0x10)
569                 rx_status.flag |= RX_FLAG_SHORTPRE;
570         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
571                         hdr->rate : (hdr->rate - 4)) & 0xf;
572         rx_status.freq = freq;
573         rx_status.band =  dev->conf.channel->band;
574         rx_status.antenna = hdr->antenna;
575
576         tsf32 = le32_to_cpu(hdr->tsf32);
577         if (tsf32 < priv->tsf_low32)
578                 priv->tsf_high32++;
579         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
580         priv->tsf_low32 = tsf32;
581
582         rx_status.flag |= RX_FLAG_TSFT;
583
584         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
585                 header_len += hdr->align[0];
586
587         skb_pull(skb, header_len);
588         skb_trim(skb, le16_to_cpu(hdr->len));
589
590         ieee80211_rx_irqsafe(dev, skb, &rx_status);
591
592         return -1;
593 }
594
595 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
596 {
597         struct p54_common *priv = dev->priv;
598         int i;
599
600         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
601                 return ;
602
603         for (i = 0; i < dev->queues; i++)
604                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
605                         ieee80211_wake_queue(dev, i);
606 }
607
608 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
609 {
610         struct p54_common *priv = dev->priv;
611         struct ieee80211_tx_info *info;
612         struct memrecord *range;
613         unsigned long flags;
614         u32 freed = 0, last_addr = priv->rx_start;
615
616         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
617                 return;
618
619         /*
620          * don't try to free an already unlinked skb
621          */
622         if (unlikely((!skb->next) || (!skb->prev)))
623                 return;
624
625         spin_lock_irqsave(&priv->tx_queue.lock, flags);
626         info = IEEE80211_SKB_CB(skb);
627         range = (void *)info->rate_driver_data;
628         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
629                 struct ieee80211_tx_info *ni;
630                 struct memrecord *mr;
631
632                 ni = IEEE80211_SKB_CB(skb->prev);
633                 mr = (struct memrecord *)ni->rate_driver_data;
634                 last_addr = mr->end_addr;
635         }
636         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
637                 struct ieee80211_tx_info *ni;
638                 struct memrecord *mr;
639
640                 ni = IEEE80211_SKB_CB(skb->next);
641                 mr = (struct memrecord *)ni->rate_driver_data;
642                 freed = mr->start_addr - last_addr;
643         } else
644                 freed = priv->rx_end - last_addr;
645         __skb_unlink(skb, &priv->tx_queue);
646         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
647         kfree_skb(skb);
648
649         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
650                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
651                 p54_wake_free_queues(dev);
652 }
653 EXPORT_SYMBOL_GPL(p54_free_skb);
654
655 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
656 {
657         struct p54_common *priv = dev->priv;
658         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
659         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
660         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
661         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
662         struct memrecord *range = NULL;
663         u32 freed = 0;
664         u32 last_addr = priv->rx_start;
665         unsigned long flags;
666         int count, idx;
667
668         spin_lock_irqsave(&priv->tx_queue.lock, flags);
669         while (entry != (struct sk_buff *)&priv->tx_queue) {
670                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
671                 struct p54_hdr *entry_hdr;
672                 struct p54_tx_data *entry_data;
673                 int pad = 0;
674
675                 range = (void *)info->rate_driver_data;
676                 if (range->start_addr != addr) {
677                         last_addr = range->end_addr;
678                         entry = entry->next;
679                         continue;
680                 }
681
682                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
683                         struct ieee80211_tx_info *ni;
684                         struct memrecord *mr;
685
686                         ni = IEEE80211_SKB_CB(entry->next);
687                         mr = (struct memrecord *)ni->rate_driver_data;
688                         freed = mr->start_addr - last_addr;
689                 } else
690                         freed = priv->rx_end - last_addr;
691
692                 last_addr = range->end_addr;
693                 __skb_unlink(entry, &priv->tx_queue);
694                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
695
696                 entry_hdr = (struct p54_hdr *) entry->data;
697                 entry_data = (struct p54_tx_data *) entry_hdr->data;
698                 priv->tx_stats[entry_data->hw_queue].len--;
699
700                 if (unlikely(entry == priv->cached_beacon)) {
701                         kfree_skb(entry);
702                         priv->cached_beacon = NULL;
703                         goto out;
704                 }
705
706                 /*
707                  * Clear manually, ieee80211_tx_info_clear_status would
708                  * clear the counts too and we need them.
709                  */
710                 memset(&info->status.ampdu_ack_len, 0,
711                        sizeof(struct ieee80211_tx_info) -
712                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
713                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
714                                       status.ampdu_ack_len) != 23);
715
716                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
717                         pad = entry_data->align[0];
718
719                 /* walk through the rates array and adjust the counts */
720                 count = payload->tries;
721                 for (idx = 0; idx < 4; idx++) {
722                         if (count >= info->status.rates[idx].count) {
723                                 count -= info->status.rates[idx].count;
724                         } else if (count > 0) {
725                                 info->status.rates[idx].count = count;
726                                 count = 0;
727                         } else {
728                                 info->status.rates[idx].idx = -1;
729                                 info->status.rates[idx].count = 0;
730                         }
731                 }
732
733                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
734                      (!payload->status))
735                         info->flags |= IEEE80211_TX_STAT_ACK;
736                 if (payload->status & P54_TX_PSM_CANCELLED)
737                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
738                 info->status.ack_signal = p54_rssi_to_dbm(dev,
739                                 (int)payload->ack_rssi);
740                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
741                 ieee80211_tx_status_irqsafe(dev, entry);
742                 goto out;
743         }
744         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
745
746 out:
747         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
748                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
749                 p54_wake_free_queues(dev);
750 }
751
752 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
753                                    struct sk_buff *skb)
754 {
755         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
756         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
757         struct p54_common *priv = dev->priv;
758
759         if (!priv->eeprom)
760                 return ;
761
762         if (priv->fw_var >= 0x509) {
763                 memcpy(priv->eeprom, eeprom->v2.data,
764                        le16_to_cpu(eeprom->v2.len));
765         } else {
766                 memcpy(priv->eeprom, eeprom->v1.data,
767                        le16_to_cpu(eeprom->v1.len));
768         }
769
770         complete(&priv->eeprom_comp);
771 }
772
773 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
774 {
775         struct p54_common *priv = dev->priv;
776         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
777         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
778         u32 tsf32 = le32_to_cpu(stats->tsf32);
779
780         if (tsf32 < priv->tsf_low32)
781                 priv->tsf_high32++;
782         priv->tsf_low32 = tsf32;
783
784         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
785         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
786         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
787
788         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
789         complete(&priv->stats_comp);
790
791         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
792 }
793
794 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
795 {
796         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
797         struct p54_trap *trap = (struct p54_trap *) hdr->data;
798         u16 event = le16_to_cpu(trap->event);
799         u16 freq = le16_to_cpu(trap->frequency);
800
801         switch (event) {
802         case P54_TRAP_BEACON_TX:
803                 break;
804         case P54_TRAP_RADAR:
805                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
806                         wiphy_name(dev->wiphy), freq);
807                 break;
808         case P54_TRAP_NO_BEACON:
809                 break;
810         case P54_TRAP_SCAN:
811                 break;
812         case P54_TRAP_TBTT:
813                 break;
814         case P54_TRAP_TIMER:
815                 break;
816         default:
817                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
818                        wiphy_name(dev->wiphy), event, freq);
819                 break;
820         }
821 }
822
823 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
824 {
825         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
826
827         switch (le16_to_cpu(hdr->type)) {
828         case P54_CONTROL_TYPE_TXDONE:
829                 p54_rx_frame_sent(dev, skb);
830                 break;
831         case P54_CONTROL_TYPE_TRAP:
832                 p54_rx_trap(dev, skb);
833                 break;
834         case P54_CONTROL_TYPE_BBP:
835                 break;
836         case P54_CONTROL_TYPE_STAT_READBACK:
837                 p54_rx_stats(dev, skb);
838                 break;
839         case P54_CONTROL_TYPE_EEPROM_READBACK:
840                 p54_rx_eeprom_readback(dev, skb);
841                 break;
842         default:
843                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
844                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
845                 break;
846         }
847
848         return 0;
849 }
850
851 /* returns zero if skb can be reused */
852 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
853 {
854         u16 type = le16_to_cpu(*((__le16 *)skb->data));
855
856         if (type & P54_HDR_FLAG_CONTROL)
857                 return p54_rx_control(dev, skb);
858         else
859                 return p54_rx_data(dev, skb);
860 }
861 EXPORT_SYMBOL_GPL(p54_rx);
862
863 /*
864  * So, the firmware is somewhat stupid and doesn't know what places in its
865  * memory incoming data should go to. By poking around in the firmware, we
866  * can find some unused memory to upload our packets to. However, data that we
867  * want the card to TX needs to stay intact until the card has told us that
868  * it is done with it. This function finds empty places we can upload to and
869  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
870  * allocated areas.
871  */
872 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
873                                struct p54_hdr *data, u32 len)
874 {
875         struct p54_common *priv = dev->priv;
876         struct sk_buff *entry = priv->tx_queue.next;
877         struct sk_buff *target_skb = NULL;
878         struct ieee80211_tx_info *info;
879         struct memrecord *range;
880         u32 last_addr = priv->rx_start;
881         u32 largest_hole = 0;
882         u32 target_addr = priv->rx_start;
883         unsigned long flags;
884         unsigned int left;
885         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
886
887         if (!skb)
888                 return -EINVAL;
889
890         spin_lock_irqsave(&priv->tx_queue.lock, flags);
891
892         left = skb_queue_len(&priv->tx_queue);
893         if (unlikely(left >= 28)) {
894                 /*
895                  * The tx_queue is nearly full!
896                  * We have throttle normal data traffic, because we must
897                  * have a few spare slots for control frames left.
898                  */
899                 ieee80211_stop_queues(dev);
900
901                 if (unlikely(left == 32)) {
902                         /*
903                          * The tx_queue is now really full.
904                          *
905                          * TODO: check if the device has crashed and reset it.
906                          */
907                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
908                         return -ENOSPC;
909                 }
910         }
911
912         while (left--) {
913                 u32 hole_size;
914                 info = IEEE80211_SKB_CB(entry);
915                 range = (void *)info->rate_driver_data;
916                 hole_size = range->start_addr - last_addr;
917                 if (!target_skb && hole_size >= len) {
918                         target_skb = entry->prev;
919                         hole_size -= len;
920                         target_addr = last_addr;
921                 }
922                 largest_hole = max(largest_hole, hole_size);
923                 last_addr = range->end_addr;
924                 entry = entry->next;
925         }
926         if (!target_skb && priv->rx_end - last_addr >= len) {
927                 target_skb = priv->tx_queue.prev;
928                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
929                 if (!skb_queue_empty(&priv->tx_queue)) {
930                         info = IEEE80211_SKB_CB(target_skb);
931                         range = (void *)info->rate_driver_data;
932                         target_addr = range->end_addr;
933                 }
934         } else
935                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
936
937         if (!target_skb) {
938                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
939                 ieee80211_stop_queues(dev);
940                 return -ENOSPC;
941         }
942
943         info = IEEE80211_SKB_CB(skb);
944         range = (void *)info->rate_driver_data;
945         range->start_addr = target_addr;
946         range->end_addr = target_addr + len;
947         __skb_queue_after(&priv->tx_queue, target_skb, skb);
948         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
949
950         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
951                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
952                 ieee80211_stop_queues(dev);
953
954         data->req_id = cpu_to_le32(target_addr + priv->headroom);
955         return 0;
956 }
957
958 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
959                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
960 {
961         struct p54_common *priv = dev->priv;
962         struct p54_hdr *hdr;
963         struct sk_buff *skb;
964
965         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
966         if (!skb)
967                 return NULL;
968         skb_reserve(skb, priv->tx_hdr_len);
969
970         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
971         hdr->flags = cpu_to_le16(hdr_flags);
972         hdr->len = cpu_to_le16(len - sizeof(*hdr));
973         hdr->type = cpu_to_le16(type);
974         hdr->tries = hdr->rts_tries = 0;
975
976         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
977                 kfree_skb(skb);
978                 return NULL;
979         }
980         return skb;
981 }
982
983 int p54_read_eeprom(struct ieee80211_hw *dev)
984 {
985         struct p54_common *priv = dev->priv;
986         struct p54_hdr *hdr = NULL;
987         struct p54_eeprom_lm86 *eeprom_hdr;
988         struct sk_buff *skb;
989         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
990         int ret = -ENOMEM;
991         void *eeprom = NULL;
992
993         maxblocksize = EEPROM_READBACK_LEN;
994         if (priv->fw_var >= 0x509)
995                 maxblocksize -= 0xc;
996         else
997                 maxblocksize -= 0x4;
998
999         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
1000                             sizeof(*eeprom_hdr) + maxblocksize,
1001                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
1002         if (!skb)
1003                 goto free;
1004         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1005         if (!priv->eeprom)
1006                 goto free;
1007         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1008         if (!eeprom)
1009                 goto free;
1010
1011         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1012                      sizeof(*eeprom_hdr) + maxblocksize);
1013
1014         while (eeprom_size) {
1015                 blocksize = min(eeprom_size, maxblocksize);
1016                 if (priv->fw_var < 0x509) {
1017                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
1018                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1019                 } else {
1020                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
1021                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1022                         eeprom_hdr->v2.magic2 = 0xf;
1023                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1024                 }
1025                 priv->tx(dev, skb, 0);
1026
1027                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1028                         printk(KERN_ERR "%s: device does not respond!\n",
1029                                 wiphy_name(dev->wiphy));
1030                         ret = -EBUSY;
1031                         goto free;
1032                 }
1033
1034                 memcpy(eeprom + offset, priv->eeprom, blocksize);
1035                 offset += blocksize;
1036                 eeprom_size -= blocksize;
1037         }
1038
1039         ret = p54_parse_eeprom(dev, eeprom, offset);
1040 free:
1041         kfree(priv->eeprom);
1042         priv->eeprom = NULL;
1043         p54_free_skb(dev, skb);
1044         kfree(eeprom);
1045
1046         return ret;
1047 }
1048 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1049
1050 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1051                 bool set)
1052 {
1053         struct p54_common *priv = dev->priv;
1054         struct sk_buff *skb;
1055         struct p54_tim *tim;
1056
1057         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1058                       sizeof(struct p54_hdr) + sizeof(*tim),
1059                       P54_CONTROL_TYPE_TIM, GFP_KERNEL);
1060         if (!skb)
1061                 return -ENOMEM;
1062
1063         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1064         tim->count = 1;
1065         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1066         priv->tx(dev, skb, 1);
1067         return 0;
1068 }
1069
1070 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1071 {
1072         struct p54_common *priv = dev->priv;
1073         struct sk_buff *skb;
1074         struct p54_sta_unlock *sta;
1075
1076         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1077                 sizeof(struct p54_hdr) + sizeof(*sta),
1078                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1079         if (!skb)
1080                 return -ENOMEM;
1081
1082         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1083         memcpy(sta->addr, addr, ETH_ALEN);
1084         priv->tx(dev, skb, 1);
1085         return 0;
1086 }
1087
1088 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1089                               enum sta_notify_cmd notify_cmd,
1090                               struct ieee80211_sta *sta)
1091 {
1092         switch (notify_cmd) {
1093         case STA_NOTIFY_ADD:
1094         case STA_NOTIFY_REMOVE:
1095                 /*
1096                  * Notify the firmware that we don't want or we don't
1097                  * need to buffer frames for this station anymore.
1098                  */
1099
1100                 p54_sta_unlock(dev, sta->addr);
1101                 break;
1102         case STA_NOTIFY_AWAKE:
1103                 /* update the firmware's filter table */
1104                 p54_sta_unlock(dev, sta->addr);
1105                 break;
1106         default:
1107                 break;
1108         }
1109 }
1110
1111 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1112 {
1113         struct p54_common *priv = dev->priv;
1114         struct sk_buff *skb;
1115         struct p54_hdr *hdr;
1116         struct p54_txcancel *cancel;
1117
1118         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1119                 sizeof(struct p54_hdr) + sizeof(*cancel),
1120                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1121         if (!skb)
1122                 return -ENOMEM;
1123
1124         hdr = (void *)entry->data;
1125         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1126         cancel->req_id = hdr->req_id;
1127         priv->tx(dev, skb, 1);
1128         return 0;
1129 }
1130
1131 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1132                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1133                 u16 *flags, u16 *aid)
1134 {
1135         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1136         struct p54_common *priv = dev->priv;
1137         int ret = 0;
1138
1139         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1140                 if (ieee80211_is_beacon(hdr->frame_control)) {
1141                         *aid = 0;
1142                         *queue = 0;
1143                         *extra_len = IEEE80211_MAX_TIM_LEN;
1144                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1145                         return 0;
1146                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1147                         *aid = 0;
1148                         *queue = 2;
1149                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1150                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1151                         return 0;
1152                 } else {
1153                         *queue = 2;
1154                         ret = 0;
1155                 }
1156         } else {
1157                 *queue += 4;
1158                 ret = 1;
1159         }
1160
1161         switch (priv->mode) {
1162         case NL80211_IFTYPE_STATION:
1163                 *aid = 1;
1164                 break;
1165         case NL80211_IFTYPE_AP:
1166         case NL80211_IFTYPE_ADHOC:
1167         case NL80211_IFTYPE_MESH_POINT:
1168                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1169                         *aid = 0;
1170                         *queue = 3;
1171                         return 0;
1172                 }
1173                 if (info->control.sta)
1174                         *aid = info->control.sta->aid;
1175                 else
1176                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1177         }
1178         return ret;
1179 }
1180
1181 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1182 {
1183         switch (alg) {
1184         case ALG_WEP:
1185                 return P54_CRYPTO_WEP;
1186         case ALG_TKIP:
1187                 return P54_CRYPTO_TKIPMICHAEL;
1188         case ALG_CCMP:
1189                 return P54_CRYPTO_AESCCMP;
1190         default:
1191                 return 0;
1192         }
1193 }
1194
1195 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1196 {
1197         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1198         struct ieee80211_tx_queue_stats *current_queue = NULL;
1199         struct p54_common *priv = dev->priv;
1200         struct p54_hdr *hdr;
1201         struct p54_tx_data *txhdr;
1202         size_t padding, len, tim_len = 0;
1203         int i, j, ridx, ret;
1204         u16 hdr_flags = 0, aid = 0;
1205         u8 rate, queue, crypt_offset = 0;
1206         u8 cts_rate = 0x20;
1207         u8 rc_flags;
1208         u8 calculated_tries[4];
1209         u8 nrates = 0, nremaining = 8;
1210
1211         queue = skb_get_queue_mapping(skb);
1212
1213         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1214         current_queue = &priv->tx_stats[queue];
1215         if (unlikely((current_queue->len > current_queue->limit) && ret))
1216                 return NETDEV_TX_BUSY;
1217         current_queue->len++;
1218         current_queue->count++;
1219         if ((current_queue->len == current_queue->limit) && ret)
1220                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1221
1222         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1223         len = skb->len;
1224
1225         if (info->control.hw_key) {
1226                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1227                 if (info->control.hw_key->alg == ALG_TKIP) {
1228                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1229                         /*
1230                          * The firmware excepts that the IV has to have
1231                          * this special format
1232                          */
1233                         iv[1] = iv[0];
1234                         iv[0] = iv[2];
1235                         iv[2] = 0;
1236                 }
1237         }
1238
1239         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1240         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1241
1242         if (padding)
1243                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1244         hdr->type = cpu_to_le16(aid);
1245         hdr->rts_tries = info->control.rates[0].count;
1246
1247         /*
1248          * we register the rates in perfect order, and
1249          * RTS/CTS won't happen on 5 GHz
1250          */
1251         cts_rate = info->control.rts_cts_rate_idx;
1252
1253         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1254
1255         /* see how many rates got used */
1256         for (i = 0; i < 4; i++) {
1257                 if (info->control.rates[i].idx < 0)
1258                         break;
1259                 nrates++;
1260         }
1261
1262         /* limit tries to 8/nrates per rate */
1263         for (i = 0; i < nrates; i++) {
1264                 /*
1265                  * The magic expression here is equivalent to 8/nrates for
1266                  * all values that matter, but avoids division and jumps.
1267                  * Note that nrates can only take the values 1 through 4.
1268                  */
1269                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1270                                                  info->control.rates[i].count);
1271                 nremaining -= calculated_tries[i];
1272         }
1273
1274         /* if there are tries left, distribute from back to front */
1275         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1276                 int tmp = info->control.rates[i].count - calculated_tries[i];
1277
1278                 if (tmp <= 0)
1279                         continue;
1280                 /* RC requested more tries at this rate */
1281
1282                 tmp = min_t(int, tmp, nremaining);
1283                 calculated_tries[i] += tmp;
1284                 nremaining -= tmp;
1285         }
1286
1287         ridx = 0;
1288         for (i = 0; i < nrates && ridx < 8; i++) {
1289                 /* we register the rates in perfect order */
1290                 rate = info->control.rates[i].idx;
1291                 if (info->band == IEEE80211_BAND_5GHZ)
1292                         rate += 4;
1293
1294                 /* store the count we actually calculated for TX status */
1295                 info->control.rates[i].count = calculated_tries[i];
1296
1297                 rc_flags = info->control.rates[i].flags;
1298                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1299                         rate |= 0x10;
1300                         cts_rate |= 0x10;
1301                 }
1302                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1303                         rate |= 0x40;
1304                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1305                         rate |= 0x20;
1306                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1307                         txhdr->rateset[ridx] = rate;
1308                         ridx++;
1309                 }
1310         }
1311
1312         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1313                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1314
1315         /* TODO: enable bursting */
1316         hdr->flags = cpu_to_le16(hdr_flags);
1317         hdr->tries = ridx;
1318         txhdr->rts_rate_idx = 0;
1319         if (info->control.hw_key) {
1320                 crypt_offset += info->control.hw_key->iv_len;
1321                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1322                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1323                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1324                 if (info->control.hw_key->alg == ALG_TKIP) {
1325                         if (unlikely(skb_tailroom(skb) < 12))
1326                                 goto err;
1327                         /* reserve space for the MIC key */
1328                         len += 8;
1329                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1330                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1331                 }
1332                 /* reserve some space for ICV */
1333                 len += info->control.hw_key->icv_len;
1334         } else {
1335                 txhdr->key_type = 0;
1336                 txhdr->key_len = 0;
1337         }
1338         txhdr->crypt_offset = crypt_offset;
1339         txhdr->hw_queue = queue;
1340         if (current_queue)
1341                 txhdr->backlog = current_queue->len;
1342         else
1343                 txhdr->backlog = 0;
1344         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1345         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1346                 2 : info->antenna_sel_tx - 1;
1347         txhdr->output_power = priv->output_power;
1348         txhdr->cts_rate = cts_rate;
1349         if (padding)
1350                 txhdr->align[0] = padding;
1351
1352         hdr->len = cpu_to_le16(len);
1353         /* modifies skb->cb and with it info, so must be last! */
1354         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1355                 goto err;
1356         priv->tx(dev, skb, 0);
1357         return 0;
1358
1359  err:
1360         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1361         if (current_queue) {
1362                 current_queue->len--;
1363                 current_queue->count--;
1364         }
1365         return NETDEV_TX_BUSY;
1366 }
1367
1368 static int p54_setup_mac(struct ieee80211_hw *dev)
1369 {
1370         struct p54_common *priv = dev->priv;
1371         struct sk_buff *skb;
1372         struct p54_setup_mac *setup;
1373         u16 mode;
1374
1375         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1376                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1377                             GFP_ATOMIC);
1378         if (!skb)
1379                 return -ENOMEM;
1380
1381         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1382         if (dev->conf.radio_enabled) {
1383                 switch (priv->mode) {
1384                 case NL80211_IFTYPE_STATION:
1385                         mode = P54_FILTER_TYPE_STATION;
1386                         break;
1387                 case NL80211_IFTYPE_AP:
1388                         mode = P54_FILTER_TYPE_AP;
1389                         break;
1390                 case NL80211_IFTYPE_ADHOC:
1391                 case NL80211_IFTYPE_MESH_POINT:
1392                         mode = P54_FILTER_TYPE_IBSS;
1393                         break;
1394                 default:
1395                         mode = P54_FILTER_TYPE_NONE;
1396                         break;
1397                 }
1398                 if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1399                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1400         } else
1401                 mode = P54_FILTER_TYPE_RX_DISABLED;
1402
1403         setup->mac_mode = cpu_to_le16(mode);
1404         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1405         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1406         setup->rx_antenna = 2; /* automatic */
1407         setup->rx_align = 0;
1408         if (priv->fw_var < 0x500) {
1409                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1410                 memset(setup->v1.rts_rates, 0, 8);
1411                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1412                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1413                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1414                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1415                 setup->v1.unalloc0 = cpu_to_le16(0);
1416         } else {
1417                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1418                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1419                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1420                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1421                 setup->v2.truncate = cpu_to_le16(48896);
1422                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1423                 setup->v2.sbss_offset = 0;
1424                 setup->v2.mcast_window = 0;
1425                 setup->v2.rx_rssi_threshold = 0;
1426                 setup->v2.rx_ed_threshold = 0;
1427                 setup->v2.ref_clock = cpu_to_le32(644245094);
1428                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1429                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1430         }
1431         priv->tx(dev, skb, 1);
1432         return 0;
1433 }
1434
1435 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell,
1436                     u16 frequency)
1437 {
1438         struct p54_common *priv = dev->priv;
1439         struct sk_buff *skb;
1440         struct p54_scan *chan;
1441         unsigned int i;
1442         void *entry;
1443         __le16 freq = cpu_to_le16(frequency);
1444
1445         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1446                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1447                             GFP_ATOMIC);
1448         if (!skb)
1449                 return -ENOMEM;
1450
1451         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1452         memset(chan->padding1, 0, sizeof(chan->padding1));
1453         chan->mode = cpu_to_le16(mode);
1454         chan->dwell = cpu_to_le16(dwell);
1455
1456         for (i = 0; i < priv->iq_autocal_len; i++) {
1457                 if (priv->iq_autocal[i].freq != freq)
1458                         continue;
1459
1460                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1461                        sizeof(*priv->iq_autocal));
1462                 break;
1463         }
1464         if (i == priv->iq_autocal_len)
1465                 goto err;
1466
1467         for (i = 0; i < priv->output_limit_len; i++) {
1468                 if (priv->output_limit[i].freq != freq)
1469                         continue;
1470
1471                 chan->val_barker = 0x38;
1472                 chan->val_bpsk = chan->dup_bpsk =
1473                         priv->output_limit[i].val_bpsk;
1474                 chan->val_qpsk = chan->dup_qpsk =
1475                         priv->output_limit[i].val_qpsk;
1476                 chan->val_16qam = chan->dup_16qam =
1477                         priv->output_limit[i].val_16qam;
1478                 chan->val_64qam = chan->dup_64qam =
1479                         priv->output_limit[i].val_64qam;
1480                 break;
1481         }
1482         if (i == priv->output_limit_len)
1483                 goto err;
1484
1485         entry = priv->curve_data->data;
1486         for (i = 0; i < priv->curve_data->channels; i++) {
1487                 if (*((__le16 *)entry) != freq) {
1488                         entry += sizeof(__le16);
1489                         entry += sizeof(struct p54_pa_curve_data_sample) *
1490                                  priv->curve_data->points_per_channel;
1491                         continue;
1492                 }
1493
1494                 entry += sizeof(__le16);
1495                 chan->pa_points_per_curve = 8;
1496                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1497                 memcpy(chan->curve_data, entry,
1498                        sizeof(struct p54_pa_curve_data_sample) *
1499                        min((u8)8, priv->curve_data->points_per_channel));
1500                 break;
1501         }
1502
1503         if (priv->fw_var < 0x500) {
1504                 chan->v1.rssical_mul = cpu_to_le16(130);
1505                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1506         } else {
1507                 chan->v2.rssical_mul = cpu_to_le16(130);
1508                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1509                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1510                 memset(chan->v2.rts_rates, 0, 8);
1511         }
1512         priv->tx(dev, skb, 1);
1513         return 0;
1514
1515  err:
1516         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1517         kfree_skb(skb);
1518         return -EINVAL;
1519 }
1520
1521 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1522 {
1523         struct p54_common *priv = dev->priv;
1524         struct sk_buff *skb;
1525         struct p54_led *led;
1526
1527         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1528                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1529                         GFP_ATOMIC);
1530         if (!skb)
1531                 return -ENOMEM;
1532
1533         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1534         led->mode = cpu_to_le16(mode);
1535         led->led_permanent = cpu_to_le16(link);
1536         led->led_temporary = cpu_to_le16(act);
1537         led->duration = cpu_to_le16(1000);
1538         priv->tx(dev, skb, 1);
1539         return 0;
1540 }
1541
1542 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1543 do {                                                            \
1544         queue.aifs = cpu_to_le16(ai_fs);                        \
1545         queue.cwmin = cpu_to_le16(cw_min);                      \
1546         queue.cwmax = cpu_to_le16(cw_max);                      \
1547         queue.txop = cpu_to_le16(_txop);                        \
1548 } while(0)
1549
1550 static int p54_set_edcf(struct ieee80211_hw *dev)
1551 {
1552         struct p54_common *priv = dev->priv;
1553         struct sk_buff *skb;
1554         struct p54_edcf *edcf;
1555
1556         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1557                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1558                         GFP_ATOMIC);
1559         if (!skb)
1560                 return -ENOMEM;
1561
1562         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1563         if (priv->use_short_slot) {
1564                 edcf->slottime = 9;
1565                 edcf->sifs = 0x10;
1566                 edcf->eofpad = 0x00;
1567         } else {
1568                 edcf->slottime = 20;
1569                 edcf->sifs = 0x0a;
1570                 edcf->eofpad = 0x06;
1571         }
1572         /* (see prism54/isl_oid.h for further details) */
1573         edcf->frameburst = cpu_to_le16(0);
1574         edcf->round_trip_delay = cpu_to_le16(0);
1575         edcf->flags = 0;
1576         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1577         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1578         priv->tx(dev, skb, 1);
1579         return 0;
1580 }
1581
1582 static int p54_init_stats(struct ieee80211_hw *dev)
1583 {
1584         struct p54_common *priv = dev->priv;
1585
1586         priv->cached_stats = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
1587                         sizeof(struct p54_hdr) + sizeof(struct p54_statistics),
1588                         P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1589         if (!priv->cached_stats)
1590                         return -ENOMEM;
1591
1592         mod_timer(&priv->stats_timer, jiffies + HZ);
1593         return 0;
1594 }
1595
1596 static int p54_beacon_tim(struct sk_buff *skb)
1597 {
1598         /*
1599          * the good excuse for this mess is ... the firmware.
1600          * The dummy TIM MUST be at the end of the beacon frame,
1601          * because it'll be overwritten!
1602          */
1603
1604         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1605         u8 *pos, *end;
1606
1607         if (skb->len <= sizeof(mgmt))
1608                 return -EINVAL;
1609
1610         pos = (u8 *)mgmt->u.beacon.variable;
1611         end = skb->data + skb->len;
1612         while (pos < end) {
1613                 if (pos + 2 + pos[1] > end)
1614                         return -EINVAL;
1615
1616                 if (pos[0] == WLAN_EID_TIM) {
1617                         u8 dtim_len = pos[1];
1618                         u8 dtim_period = pos[3];
1619                         u8 *next = pos + 2 + dtim_len;
1620
1621                         if (dtim_len < 3)
1622                                 return -EINVAL;
1623
1624                         memmove(pos, next, end - next);
1625
1626                         if (dtim_len > 3)
1627                                 skb_trim(skb, skb->len - (dtim_len - 3));
1628
1629                         pos = end - (dtim_len + 2);
1630
1631                         /* add the dummy at the end */
1632                         pos[0] = WLAN_EID_TIM;
1633                         pos[1] = 3;
1634                         pos[2] = 0;
1635                         pos[3] = dtim_period;
1636                         pos[4] = 0;
1637                         return 0;
1638                 }
1639                 pos += 2 + pos[1];
1640         }
1641         return 0;
1642 }
1643
1644 static int p54_beacon_update(struct ieee80211_hw *dev,
1645                         struct ieee80211_vif *vif)
1646 {
1647         struct p54_common *priv = dev->priv;
1648         struct sk_buff *beacon;
1649         int ret;
1650
1651         if (priv->cached_beacon) {
1652                 p54_tx_cancel(dev, priv->cached_beacon);
1653                 /* wait for the last beacon the be freed */
1654                 msleep(10);
1655         }
1656
1657         beacon = ieee80211_beacon_get(dev, vif);
1658         if (!beacon)
1659                 return -ENOMEM;
1660         ret = p54_beacon_tim(beacon);
1661         if (ret)
1662                 return ret;
1663         ret = p54_tx(dev, beacon);
1664         if (ret)
1665                 return ret;
1666         priv->cached_beacon = beacon;
1667         priv->tsf_high32 = 0;
1668         priv->tsf_low32 = 0;
1669
1670         return 0;
1671 }
1672
1673 static int p54_start(struct ieee80211_hw *dev)
1674 {
1675         struct p54_common *priv = dev->priv;
1676         int err;
1677
1678         mutex_lock(&priv->conf_mutex);
1679         err = priv->open(dev);
1680         if (err)
1681                 goto out;
1682         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1683         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1684         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1685         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1686         err = p54_set_edcf(dev);
1687         if (err)
1688                 goto out;
1689         err = p54_init_stats(dev);
1690         if (err)
1691                 goto out;
1692
1693         memset(priv->bssid, ~0, ETH_ALEN);
1694         priv->mode = NL80211_IFTYPE_MONITOR;
1695         err = p54_setup_mac(dev);
1696         if (err) {
1697                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1698                 goto out;
1699         }
1700
1701 out:
1702         mutex_unlock(&priv->conf_mutex);
1703         return err;
1704 }
1705
1706 static void p54_stop(struct ieee80211_hw *dev)
1707 {
1708         struct p54_common *priv = dev->priv;
1709         struct sk_buff *skb;
1710
1711         mutex_lock(&priv->conf_mutex);
1712         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1713         del_timer(&priv->stats_timer);
1714         p54_free_skb(dev, priv->cached_stats);
1715         priv->cached_stats = NULL;
1716         if (priv->cached_beacon)
1717                 p54_tx_cancel(dev, priv->cached_beacon);
1718
1719         priv->stop(dev);
1720         while ((skb = skb_dequeue(&priv->tx_queue)))
1721                 kfree_skb(skb);
1722         priv->cached_beacon = NULL;
1723         priv->tsf_high32 = priv->tsf_low32 = 0;
1724         mutex_unlock(&priv->conf_mutex);
1725 }
1726
1727 static int p54_add_interface(struct ieee80211_hw *dev,
1728                              struct ieee80211_if_init_conf *conf)
1729 {
1730         struct p54_common *priv = dev->priv;
1731
1732         mutex_lock(&priv->conf_mutex);
1733         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1734                 mutex_unlock(&priv->conf_mutex);
1735                 return -EOPNOTSUPP;
1736         }
1737
1738         switch (conf->type) {
1739         case NL80211_IFTYPE_STATION:
1740         case NL80211_IFTYPE_ADHOC:
1741         case NL80211_IFTYPE_AP:
1742         case NL80211_IFTYPE_MESH_POINT:
1743                 priv->mode = conf->type;
1744                 break;
1745         default:
1746                 mutex_unlock(&priv->conf_mutex);
1747                 return -EOPNOTSUPP;
1748         }
1749
1750         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1751         p54_setup_mac(dev);
1752         p54_set_leds(dev, 1, 0, 0);
1753         mutex_unlock(&priv->conf_mutex);
1754         return 0;
1755 }
1756
1757 static void p54_remove_interface(struct ieee80211_hw *dev,
1758                                  struct ieee80211_if_init_conf *conf)
1759 {
1760         struct p54_common *priv = dev->priv;
1761
1762         mutex_lock(&priv->conf_mutex);
1763         if (priv->cached_beacon)
1764                 p54_tx_cancel(dev, priv->cached_beacon);
1765         priv->mode = NL80211_IFTYPE_MONITOR;
1766         memset(priv->mac_addr, 0, ETH_ALEN);
1767         memset(priv->bssid, 0, ETH_ALEN);
1768         p54_setup_mac(dev);
1769         mutex_unlock(&priv->conf_mutex);
1770 }
1771
1772 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1773 {
1774         int ret;
1775         struct p54_common *priv = dev->priv;
1776         struct ieee80211_conf *conf = &dev->conf;
1777
1778         mutex_lock(&priv->conf_mutex);
1779         if (changed & IEEE80211_CONF_CHANGE_POWER)
1780                 priv->output_power = conf->power_level << 2;
1781         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1782                 ret = p54_setup_mac(dev);
1783                 if (ret)
1784                         goto out;
1785         }
1786         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1787                 ret = p54_scan(dev, P54_SCAN_EXIT, 0,
1788                                conf->channel->center_freq);
1789                 if (ret)
1790                         goto out;
1791         }
1792
1793 out:
1794         mutex_unlock(&priv->conf_mutex);
1795         return ret;
1796 }
1797
1798 static int p54_config_interface(struct ieee80211_hw *dev,
1799                                 struct ieee80211_vif *vif,
1800                                 struct ieee80211_if_conf *conf)
1801 {
1802         struct p54_common *priv = dev->priv;
1803         int ret = 0;
1804
1805         mutex_lock(&priv->conf_mutex);
1806         if (conf->changed & IEEE80211_IFCC_BSSID) {
1807                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1808                 ret = p54_setup_mac(dev);
1809                 if (ret)
1810                         goto out;
1811         }
1812
1813         if (conf->changed & IEEE80211_IFCC_BEACON) {
1814                 ret = p54_scan(dev, P54_SCAN_EXIT, 0,
1815                                dev->conf.channel->center_freq);
1816                 if (ret)
1817                         goto out;
1818                 ret = p54_setup_mac(dev);
1819                 if (ret)
1820                         goto out;
1821                 ret = p54_beacon_update(dev, vif);
1822                 if (ret)
1823                         goto out;
1824                 ret = p54_set_edcf(dev);
1825                 if (ret)
1826                         goto out;
1827         }
1828
1829         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1830
1831 out:
1832         mutex_unlock(&priv->conf_mutex);
1833         return ret;
1834 }
1835
1836 static void p54_configure_filter(struct ieee80211_hw *dev,
1837                                  unsigned int changed_flags,
1838                                  unsigned int *total_flags,
1839                                  int mc_count, struct dev_mc_list *mclist)
1840 {
1841         struct p54_common *priv = dev->priv;
1842
1843         *total_flags &= FIF_PROMISC_IN_BSS |
1844                         (*total_flags & FIF_PROMISC_IN_BSS) ?
1845                                 FIF_FCSFAIL : 0;
1846
1847         priv->filter_flags = *total_flags;
1848
1849         if (changed_flags & FIF_PROMISC_IN_BSS)
1850                 p54_setup_mac(dev);
1851 }
1852
1853 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1854                        const struct ieee80211_tx_queue_params *params)
1855 {
1856         struct p54_common *priv = dev->priv;
1857         int ret;
1858
1859         mutex_lock(&priv->conf_mutex);
1860         if ((params) && !(queue > 4)) {
1861                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1862                         params->cw_min, params->cw_max, params->txop);
1863                 ret = p54_set_edcf(dev);
1864         } else
1865                 ret = -EINVAL;
1866         mutex_unlock(&priv->conf_mutex);
1867         return ret;
1868 }
1869
1870 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1871 {
1872         struct p54_common *priv = dev->priv;
1873         struct sk_buff *skb;
1874         struct p54_xbow_synth *xbow;
1875
1876         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1877                             sizeof(struct p54_hdr),
1878                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1879                             GFP_KERNEL);
1880         if (!skb)
1881                 return -ENOMEM;
1882
1883         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1884         xbow->magic1 = cpu_to_le16(0x1);
1885         xbow->magic2 = cpu_to_le16(0x2);
1886         xbow->freq = cpu_to_le16(5390);
1887         memset(xbow->padding, 0, sizeof(xbow->padding));
1888         priv->tx(dev, skb, 1);
1889         return 0;
1890 }
1891
1892 static void p54_statistics_timer(unsigned long data)
1893 {
1894         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1895         struct p54_common *priv = dev->priv;
1896
1897         BUG_ON(!priv->cached_stats);
1898
1899         priv->tx(dev, priv->cached_stats, 0);
1900 }
1901
1902 static int p54_get_stats(struct ieee80211_hw *dev,
1903                          struct ieee80211_low_level_stats *stats)
1904 {
1905         struct p54_common *priv = dev->priv;
1906
1907         del_timer(&priv->stats_timer);
1908         p54_statistics_timer((unsigned long)dev);
1909
1910         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1911                 printk(KERN_ERR "%s: device does not respond!\n",
1912                         wiphy_name(dev->wiphy));
1913                 return -EBUSY;
1914         }
1915
1916         memcpy(stats, &priv->stats, sizeof(*stats));
1917
1918         return 0;
1919 }
1920
1921 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1922                             struct ieee80211_tx_queue_stats *stats)
1923 {
1924         struct p54_common *priv = dev->priv;
1925
1926         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1927
1928         return 0;
1929 }
1930
1931 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1932                                  struct ieee80211_vif *vif,
1933                                  struct ieee80211_bss_conf *info,
1934                                  u32 changed)
1935 {
1936         struct p54_common *priv = dev->priv;
1937
1938         if (changed & BSS_CHANGED_ERP_SLOT) {
1939                 priv->use_short_slot = info->use_short_slot;
1940                 p54_set_edcf(dev);
1941         }
1942         if (changed & BSS_CHANGED_BASIC_RATES) {
1943                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
1944                         priv->basic_rate_mask = (info->basic_rates << 4);
1945                 else
1946                         priv->basic_rate_mask = info->basic_rates;
1947                 p54_setup_mac(dev);
1948                 if (priv->fw_var >= 0x500)
1949                         p54_scan(dev, P54_SCAN_EXIT, 0,
1950                                  dev->conf.channel->center_freq);
1951         }
1952         if (changed & BSS_CHANGED_ASSOC) {
1953                 if (info->assoc) {
1954                         priv->aid = info->aid;
1955                         priv->wakeup_timer = info->beacon_int *
1956                                              info->dtim_period * 5;
1957                         p54_setup_mac(dev);
1958                 }
1959         }
1960
1961 }
1962
1963 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
1964                        const u8 *local_address, const u8 *address,
1965                        struct ieee80211_key_conf *key)
1966 {
1967         struct p54_common *priv = dev->priv;
1968         struct sk_buff *skb;
1969         struct p54_keycache *rxkey;
1970         u8 algo = 0;
1971
1972         if (modparam_nohwcrypt)
1973                 return -EOPNOTSUPP;
1974
1975         if (cmd == DISABLE_KEY)
1976                 algo = 0;
1977         else {
1978                 switch (key->alg) {
1979                 case ALG_TKIP:
1980                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
1981                               BR_DESC_PRIV_CAP_TKIP)))
1982                                 return -EOPNOTSUPP;
1983                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1984                         algo = P54_CRYPTO_TKIPMICHAEL;
1985                         break;
1986                 case ALG_WEP:
1987                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
1988                                 return -EOPNOTSUPP;
1989                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1990                         algo = P54_CRYPTO_WEP;
1991                         break;
1992                 case ALG_CCMP:
1993                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
1994                                 return -EOPNOTSUPP;
1995                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1996                         algo = P54_CRYPTO_AESCCMP;
1997                         break;
1998                 default:
1999                         return -EINVAL;
2000                 }
2001         }
2002
2003         if (key->keyidx > priv->rx_keycache_size) {
2004                 /*
2005                  * The device supports the choosen algorithm, but the firmware
2006                  * does not provide enough key slots to store all of them.
2007                  * So, incoming frames have to be decoded by the mac80211 stack,
2008                  * but we can still offload encryption for outgoing frames.
2009                  */
2010
2011                 return 0;
2012         }
2013
2014         mutex_lock(&priv->conf_mutex);
2015         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
2016                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_RX_KEYCACHE,
2017                         GFP_ATOMIC);
2018         if (!skb) {
2019                 mutex_unlock(&priv->conf_mutex);
2020                 return -ENOMEM;
2021         }
2022
2023         /* TODO: some devices have 4 more free slots for rx keys */
2024         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2025         rxkey->entry = key->keyidx;
2026         rxkey->key_id = key->keyidx;
2027         rxkey->key_type = algo;
2028         if (address)
2029                 memcpy(rxkey->mac, address, ETH_ALEN);
2030         else
2031                 memset(rxkey->mac, ~0, ETH_ALEN);
2032         if (key->alg != ALG_TKIP) {
2033                 rxkey->key_len = min((u8)16, key->keylen);
2034                 memcpy(rxkey->key, key->key, rxkey->key_len);
2035         } else {
2036                 rxkey->key_len = 24;
2037                 memcpy(rxkey->key, key->key, 16);
2038                 memcpy(&(rxkey->key[16]), &(key->key
2039                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2040         }
2041
2042         priv->tx(dev, skb, 1);
2043         mutex_unlock(&priv->conf_mutex);
2044         return 0;
2045 }
2046
2047 static const struct ieee80211_ops p54_ops = {
2048         .tx                     = p54_tx,
2049         .start                  = p54_start,
2050         .stop                   = p54_stop,
2051         .add_interface          = p54_add_interface,
2052         .remove_interface       = p54_remove_interface,
2053         .set_tim                = p54_set_tim,
2054         .sta_notify             = p54_sta_notify,
2055         .set_key                = p54_set_key,
2056         .config                 = p54_config,
2057         .config_interface       = p54_config_interface,
2058         .bss_info_changed       = p54_bss_info_changed,
2059         .configure_filter       = p54_configure_filter,
2060         .conf_tx                = p54_conf_tx,
2061         .get_stats              = p54_get_stats,
2062         .get_tx_stats           = p54_get_tx_stats
2063 };
2064
2065 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2066 {
2067         struct ieee80211_hw *dev;
2068         struct p54_common *priv;
2069
2070         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2071         if (!dev)
2072                 return NULL;
2073
2074         priv = dev->priv;
2075         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2076         priv->basic_rate_mask = 0x15f;
2077         skb_queue_head_init(&priv->tx_queue);
2078         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2079                      IEEE80211_HW_SIGNAL_DBM |
2080                      IEEE80211_HW_NOISE_DBM;
2081
2082         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2083                                       BIT(NL80211_IFTYPE_ADHOC) |
2084                                       BIT(NL80211_IFTYPE_AP) |
2085                                       BIT(NL80211_IFTYPE_MESH_POINT);
2086
2087         dev->channel_change_time = 1000;        /* TODO: find actual value */
2088         priv->tx_stats[0].limit = 1;            /* Beacon queue */
2089         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
2090         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
2091         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
2092         priv->tx_stats[4].limit = 5;            /* Data */
2093         dev->queues = 1;
2094         priv->noise = -94;
2095         /*
2096          * We support at most 8 tries no matter which rate they're at,
2097          * we cannot support max_rates * max_rate_tries as we set it
2098          * here, but setting it correctly to 4/2 or so would limit us
2099          * artificially if the RC algorithm wants just two rates, so
2100          * let's say 4/7, we'll redistribute it at TX time, see the
2101          * comments there.
2102          */
2103         dev->max_rates = 4;
2104         dev->max_rate_tries = 7;
2105         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2106                                  sizeof(struct p54_tx_data);
2107
2108         mutex_init(&priv->conf_mutex);
2109         init_completion(&priv->eeprom_comp);
2110         init_completion(&priv->stats_comp);
2111         setup_timer(&priv->stats_timer, p54_statistics_timer,
2112                 (unsigned long)dev);
2113
2114         return dev;
2115 }
2116 EXPORT_SYMBOL_GPL(p54_init_common);
2117
2118 void p54_free_common(struct ieee80211_hw *dev)
2119 {
2120         struct p54_common *priv = dev->priv;
2121         del_timer(&priv->stats_timer);
2122         kfree_skb(priv->cached_stats);
2123         kfree(priv->iq_autocal);
2124         kfree(priv->output_limit);
2125         kfree(priv->curve_data);
2126 }
2127 EXPORT_SYMBOL_GPL(p54_free_common);
2128
2129 static int __init p54_init(void)
2130 {
2131         return 0;
2132 }
2133
2134 static void __exit p54_exit(void)
2135 {
2136 }
2137
2138 module_init(p54_init);
2139 module_exit(p54_exit);