]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
rt2x00: Rename config_preamble() to config_erp()
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the usb_cache_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81                                       USB_VENDOR_REQUEST_IN, offset,
82                                       value, length, timeout);
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111                                       USB_VENDOR_REQUEST_OUT, offset,
112                                       value, length, timeout);
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117         u16 reg;
118         unsigned int i;
119
120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122                 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123                         break;
124                 udelay(REGISTER_BUSY_DELAY);
125         }
126
127         return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131                                 const unsigned int word, const u8 value)
132 {
133         u16 reg;
134
135         mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137         /*
138          * Wait until the BBP becomes ready.
139          */
140         reg = rt2500usb_bbp_check(rt2x00dev);
141         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144                 return;
145         }
146
147         /*
148          * Write the data into the BBP.
149          */
150         reg = 0;
151         rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
154
155         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
156
157         mutex_unlock(&rt2x00dev->usb_cache_mutex);
158 }
159
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161                                const unsigned int word, u8 *value)
162 {
163         u16 reg;
164
165         mutex_lock(&rt2x00dev->usb_cache_mutex);
166
167         /*
168          * Wait until the BBP becomes ready.
169          */
170         reg = rt2500usb_bbp_check(rt2x00dev);
171         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173                 return;
174         }
175
176         /*
177          * Write the request into the BBP.
178          */
179         reg = 0;
180         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
182
183         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
184
185         /*
186          * Wait until the BBP becomes ready.
187          */
188         reg = rt2500usb_bbp_check(rt2x00dev);
189         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191                 *value = 0xff;
192                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193                 return;
194         }
195
196         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->usb_cache_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206         unsigned int i;
207
208         if (!word)
209                 return;
210
211         mutex_lock(&rt2x00dev->usb_cache_mutex);
212
213         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215                 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216                         goto rf_write;
217                 udelay(REGISTER_BUSY_DELAY);
218         }
219
220         mutex_unlock(&rt2x00dev->usb_cache_mutex);
221         ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222         return;
223
224 rf_write:
225         reg = 0;
226         rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
228
229         reg = 0;
230         rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231         rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232         rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233         rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
234
235         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236         rt2x00_rf_write(rt2x00dev, word, value);
237
238         mutex_unlock(&rt2x00dev->usb_cache_mutex);
239 }
240
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
243
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245                                const unsigned int word, u32 *data)
246 {
247         rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
248 }
249
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251                                 const unsigned int word, u32 data)
252 {
253         rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
254 }
255
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257         .owner  = THIS_MODULE,
258         .csr    = {
259                 .read           = rt2500usb_read_csr,
260                 .write          = rt2500usb_write_csr,
261                 .word_size      = sizeof(u16),
262                 .word_count     = CSR_REG_SIZE / sizeof(u16),
263         },
264         .eeprom = {
265                 .read           = rt2x00_eeprom_read,
266                 .write          = rt2x00_eeprom_write,
267                 .word_size      = sizeof(u16),
268                 .word_count     = EEPROM_SIZE / sizeof(u16),
269         },
270         .bbp    = {
271                 .read           = rt2500usb_bbp_read,
272                 .write          = rt2500usb_bbp_write,
273                 .word_size      = sizeof(u8),
274                 .word_count     = BBP_SIZE / sizeof(u8),
275         },
276         .rf     = {
277                 .read           = rt2x00_rf_read,
278                 .write          = rt2500usb_rf_write,
279                 .word_size      = sizeof(u32),
280                 .word_count     = RF_SIZE / sizeof(u32),
281         },
282 };
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
284
285 #ifdef CONFIG_RT2500USB_LEDS
286 static void rt2500usb_led_brightness(struct led_classdev *led_cdev,
287                                      enum led_brightness brightness)
288 {
289         struct rt2x00_led *led =
290             container_of(led_cdev, struct rt2x00_led, led_dev);
291         unsigned int enabled = brightness != LED_OFF;
292         unsigned int activity =
293             led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
294
295         if (in_atomic()) {
296                 NOTICE(led->rt2x00dev,
297                        "Ignoring LED brightness command for led %d\n",
298                        led->type);
299                 return;
300         }
301
302         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
303                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
304                                    MAC_CSR20_LINK, enabled);
305                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
306                                    MAC_CSR20_ACTIVITY, enabled && activity);
307         }
308
309         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20,
310                                  led->rt2x00dev->led_mcu_reg);
311 }
312 #else
313 #define rt2500usb_led_brightness        NULL
314 #endif /* CONFIG_RT2500USB_LEDS */
315
316 /*
317  * Configuration handlers.
318  */
319 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
320                                   struct rt2x00_intf *intf,
321                                   struct rt2x00intf_conf *conf,
322                                   const unsigned int flags)
323 {
324         unsigned int bcn_preload;
325         u16 reg;
326
327         if (flags & CONFIG_UPDATE_TYPE) {
328                 /*
329                  * Enable beacon config
330                  */
331                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
332                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
333                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
334                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
335                                    2 * (conf->type != IEEE80211_IF_TYPE_STA));
336                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
337
338                 /*
339                  * Enable synchronisation.
340                  */
341                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
342                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
343                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
344
345                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
346                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
347                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
348         }
349
350         if (flags & CONFIG_UPDATE_MAC)
351                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
352                                               (3 * sizeof(__le16)));
353
354         if (flags & CONFIG_UPDATE_BSSID)
355                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
356                                               (3 * sizeof(__le16)));
357 }
358
359 static int rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
360                                 struct rt2x00lib_erp *erp)
361 {
362         u16 reg;
363
364         /*
365          * When in atomic context, we should let rt2x00lib
366          * try this configuration again later.
367          */
368         if (in_atomic())
369                 return -EAGAIN;
370
371         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
372         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
373         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
374
375         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
376         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
377                            !!erp->short_preamble);
378         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
379
380         return 0;
381 }
382
383 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
384                                      const int basic_rate_mask)
385 {
386         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
387 }
388
389 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
390                                      struct rf_channel *rf, const int txpower)
391 {
392         /*
393          * Set TXpower.
394          */
395         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
396
397         /*
398          * For RT2525E we should first set the channel to half band higher.
399          */
400         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
401                 static const u32 vals[] = {
402                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
403                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
404                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
405                         0x00000902, 0x00000906
406                 };
407
408                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
409                 if (rf->rf4)
410                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
411         }
412
413         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
414         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
415         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
416         if (rf->rf4)
417                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
418 }
419
420 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
421                                      const int txpower)
422 {
423         u32 rf3;
424
425         rt2x00_rf_read(rt2x00dev, 3, &rf3);
426         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
427         rt2500usb_rf_write(rt2x00dev, 3, rf3);
428 }
429
430 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
431                                      struct antenna_setup *ant)
432 {
433         u8 r2;
434         u8 r14;
435         u16 csr5;
436         u16 csr6;
437
438         /*
439          * We should never come here because rt2x00lib is supposed
440          * to catch this and send us the correct antenna explicitely.
441          */
442         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
443                ant->tx == ANTENNA_SW_DIVERSITY);
444
445         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
446         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
447         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
448         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
449
450         /*
451          * Configure the TX antenna.
452          */
453         switch (ant->tx) {
454         case ANTENNA_HW_DIVERSITY:
455                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
456                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
457                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
458                 break;
459         case ANTENNA_A:
460                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
461                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
462                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
463                 break;
464         case ANTENNA_B:
465         default:
466                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
467                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
468                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
469                 break;
470         }
471
472         /*
473          * Configure the RX antenna.
474          */
475         switch (ant->rx) {
476         case ANTENNA_HW_DIVERSITY:
477                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
478                 break;
479         case ANTENNA_A:
480                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
481                 break;
482         case ANTENNA_B:
483         default:
484                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
485                 break;
486         }
487
488         /*
489          * RT2525E and RT5222 need to flip TX I/Q
490          */
491         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
492             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
493                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
494                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
495                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
496
497                 /*
498                  * RT2525E does not need RX I/Q Flip.
499                  */
500                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
501                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
502         } else {
503                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
504                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
505         }
506
507         rt2500usb_bbp_write(rt2x00dev, 2, r2);
508         rt2500usb_bbp_write(rt2x00dev, 14, r14);
509         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
510         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
511 }
512
513 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
514                                       struct rt2x00lib_conf *libconf)
515 {
516         u16 reg;
517
518         rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
519         rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
520         rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
521
522         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
523         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
524                            libconf->conf->beacon_int * 4);
525         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
526 }
527
528 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
529                              struct rt2x00lib_conf *libconf,
530                              const unsigned int flags)
531 {
532         if (flags & CONFIG_UPDATE_PHYMODE)
533                 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
534         if (flags & CONFIG_UPDATE_CHANNEL)
535                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
536                                          libconf->conf->power_level);
537         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
538                 rt2500usb_config_txpower(rt2x00dev,
539                                          libconf->conf->power_level);
540         if (flags & CONFIG_UPDATE_ANTENNA)
541                 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
542         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
543                 rt2500usb_config_duration(rt2x00dev, libconf);
544 }
545
546 /*
547  * Link tuning
548  */
549 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
550                                  struct link_qual *qual)
551 {
552         u16 reg;
553
554         /*
555          * Update FCS error count from register.
556          */
557         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
558         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
559
560         /*
561          * Update False CCA count from register.
562          */
563         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
564         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
565 }
566
567 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
568 {
569         u16 eeprom;
570         u16 value;
571
572         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
573         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
574         rt2500usb_bbp_write(rt2x00dev, 24, value);
575
576         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
577         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
578         rt2500usb_bbp_write(rt2x00dev, 25, value);
579
580         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
581         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
582         rt2500usb_bbp_write(rt2x00dev, 61, value);
583
584         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
585         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
586         rt2500usb_bbp_write(rt2x00dev, 17, value);
587
588         rt2x00dev->link.vgc_level = value;
589 }
590
591 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
592 {
593         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
594         u16 bbp_thresh;
595         u16 vgc_bound;
596         u16 sens;
597         u16 r24;
598         u16 r25;
599         u16 r61;
600         u16 r17_sens;
601         u8 r17;
602         u8 up_bound;
603         u8 low_bound;
604
605         /*
606          * Read current r17 value, as well as the sensitivity values
607          * for the r17 register.
608          */
609         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
610         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
611
612         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
613         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
614         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
615
616         /*
617          * If we are not associated, we should go straight to the
618          * dynamic CCA tuning.
619          */
620         if (!rt2x00dev->intf_associated)
621                 goto dynamic_cca_tune;
622
623         /*
624          * Determine the BBP tuning threshold and correctly
625          * set BBP 24, 25 and 61.
626          */
627         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
628         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
629
630         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
631         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
632         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
633
634         if ((rssi + bbp_thresh) > 0) {
635                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
636                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
637                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
638         } else {
639                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
640                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
641                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
642         }
643
644         rt2500usb_bbp_write(rt2x00dev, 24, r24);
645         rt2500usb_bbp_write(rt2x00dev, 25, r25);
646         rt2500usb_bbp_write(rt2x00dev, 61, r61);
647
648         /*
649          * A too low RSSI will cause too much false CCA which will
650          * then corrupt the R17 tuning. To remidy this the tuning should
651          * be stopped (While making sure the R17 value will not exceed limits)
652          */
653         if (rssi >= -40) {
654                 if (r17 != 0x60)
655                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
656                 return;
657         }
658
659         /*
660          * Special big-R17 for short distance
661          */
662         if (rssi >= -58) {
663                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
664                 if (r17 != sens)
665                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
666                 return;
667         }
668
669         /*
670          * Special mid-R17 for middle distance
671          */
672         if (rssi >= -74) {
673                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
674                 if (r17 != sens)
675                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
676                 return;
677         }
678
679         /*
680          * Leave short or middle distance condition, restore r17
681          * to the dynamic tuning range.
682          */
683         low_bound = 0x32;
684         if (rssi < -77)
685                 up_bound -= (-77 - rssi);
686
687         if (up_bound < low_bound)
688                 up_bound = low_bound;
689
690         if (r17 > up_bound) {
691                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
692                 rt2x00dev->link.vgc_level = up_bound;
693                 return;
694         }
695
696 dynamic_cca_tune:
697
698         /*
699          * R17 is inside the dynamic tuning range,
700          * start tuning the link based on the false cca counter.
701          */
702         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
703                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
704                 rt2x00dev->link.vgc_level = r17;
705         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
706                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
707                 rt2x00dev->link.vgc_level = r17;
708         }
709 }
710
711 /*
712  * Initialization functions.
713  */
714 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
715 {
716         u16 reg;
717
718         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
719                                     USB_MODE_TEST, REGISTER_TIMEOUT);
720         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
721                                     0x00f0, REGISTER_TIMEOUT);
722
723         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
724         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
725         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
726
727         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
728         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
729
730         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
731         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
732         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
733         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
734         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
735
736         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
737         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
738         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
739         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
740         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
741
742         rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
743         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
744         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
745         rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
746
747         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
748         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
749         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
750         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
751         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
752         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
753
754         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
755         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
756         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
757         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
758         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
759         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
760
761         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
762         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
763         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
764         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
765         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
766         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
767
768         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
769         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
770         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
771         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
772         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
773         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
774
775         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
776         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
777
778         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
779                 return -EBUSY;
780
781         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
782         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
783         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
784         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
785         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
786
787         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
788                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
789                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
790         } else {
791                 reg = 0;
792                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
793                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
794         }
795         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
796
797         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
798         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
799         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
800         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
801
802         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
803         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
804                            rt2x00dev->rx->data_size);
805         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
806
807         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
808         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
809         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
810         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
811
812         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
813         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
814         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
815
816         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
817         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
818         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
819
820         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
821         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
822         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
823
824         return 0;
825 }
826
827 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
828 {
829         unsigned int i;
830         u16 eeprom;
831         u8 value;
832         u8 reg_id;
833
834         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
835                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
836                 if ((value != 0xff) && (value != 0x00))
837                         goto continue_csr_init;
838                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
839                 udelay(REGISTER_BUSY_DELAY);
840         }
841
842         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
843         return -EACCES;
844
845 continue_csr_init:
846         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
847         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
848         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
849         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
850         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
851         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
852         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
853         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
854         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
855         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
856         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
857         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
858         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
859         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
860         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
861         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
862         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
863         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
864         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
865         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
866         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
867         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
868         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
869         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
870         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
871         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
872         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
873         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
874         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
875         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
876         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
877
878         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
879                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
880
881                 if (eeprom != 0xffff && eeprom != 0x0000) {
882                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
883                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
884                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
885                 }
886         }
887
888         return 0;
889 }
890
891 /*
892  * Device state switch handlers.
893  */
894 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
895                                 enum dev_state state)
896 {
897         u16 reg;
898
899         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
900         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
901                            state == STATE_RADIO_RX_OFF);
902         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
903 }
904
905 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
906 {
907         /*
908          * Initialize all registers.
909          */
910         if (rt2500usb_init_registers(rt2x00dev) ||
911             rt2500usb_init_bbp(rt2x00dev)) {
912                 ERROR(rt2x00dev, "Register initialization failed.\n");
913                 return -EIO;
914         }
915
916         return 0;
917 }
918
919 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
920 {
921         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
922         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
923
924         /*
925          * Disable synchronisation.
926          */
927         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
928
929         rt2x00usb_disable_radio(rt2x00dev);
930 }
931
932 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
933                                enum dev_state state)
934 {
935         u16 reg;
936         u16 reg2;
937         unsigned int i;
938         char put_to_sleep;
939         char bbp_state;
940         char rf_state;
941
942         put_to_sleep = (state != STATE_AWAKE);
943
944         reg = 0;
945         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
946         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
947         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
948         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
949         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
950         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
951
952         /*
953          * Device is not guaranteed to be in the requested state yet.
954          * We must wait until the register indicates that the
955          * device has entered the correct state.
956          */
957         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
958                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
959                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
960                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
961                 if (bbp_state == state && rf_state == state)
962                         return 0;
963                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
964                 msleep(30);
965         }
966
967         NOTICE(rt2x00dev, "Device failed to enter state %d, "
968                "current device state: bbp %d and rf %d.\n",
969                state, bbp_state, rf_state);
970
971         return -EBUSY;
972 }
973
974 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
975                                       enum dev_state state)
976 {
977         int retval = 0;
978
979         switch (state) {
980         case STATE_RADIO_ON:
981                 retval = rt2500usb_enable_radio(rt2x00dev);
982                 break;
983         case STATE_RADIO_OFF:
984                 rt2500usb_disable_radio(rt2x00dev);
985                 break;
986         case STATE_RADIO_RX_ON:
987         case STATE_RADIO_RX_ON_LINK:
988                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
989                 break;
990         case STATE_RADIO_RX_OFF:
991         case STATE_RADIO_RX_OFF_LINK:
992                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
993                 break;
994         case STATE_DEEP_SLEEP:
995         case STATE_SLEEP:
996         case STATE_STANDBY:
997         case STATE_AWAKE:
998                 retval = rt2500usb_set_state(rt2x00dev, state);
999                 break;
1000         default:
1001                 retval = -ENOTSUPP;
1002                 break;
1003         }
1004
1005         return retval;
1006 }
1007
1008 /*
1009  * TX descriptor initialization
1010  */
1011 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1012                                     struct sk_buff *skb,
1013                                     struct txentry_desc *txdesc,
1014                                     struct ieee80211_tx_control *control)
1015 {
1016         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1017         __le32 *txd = skbdesc->desc;
1018         u32 word;
1019
1020         /*
1021          * Start writing the descriptor words.
1022          */
1023         rt2x00_desc_read(txd, 1, &word);
1024         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1025         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1026         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1027         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1028         rt2x00_desc_write(txd, 1, word);
1029
1030         rt2x00_desc_read(txd, 2, &word);
1031         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1032         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1033         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1034         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1035         rt2x00_desc_write(txd, 2, word);
1036
1037         rt2x00_desc_read(txd, 0, &word);
1038         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1039         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1040                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1041         rt2x00_set_field32(&word, TXD_W0_ACK,
1042                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1043         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1044                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1045         rt2x00_set_field32(&word, TXD_W0_OFDM,
1046                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1047         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1048                            !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1049         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1050         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1051         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1052         rt2x00_desc_write(txd, 0, word);
1053 }
1054
1055 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1056                                      struct sk_buff *skb)
1057 {
1058         int length;
1059
1060         /*
1061          * The length _must_ be a multiple of 2,
1062          * but it must _not_ be a multiple of the USB packet size.
1063          */
1064         length = roundup(skb->len, 2);
1065         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1066
1067         return length;
1068 }
1069
1070 /*
1071  * TX data initialization
1072  */
1073 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1074                                     const unsigned int queue)
1075 {
1076         u16 reg;
1077
1078         if (queue != RT2X00_BCN_QUEUE_BEACON)
1079                 return;
1080
1081         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1082         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1083                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1084                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1085                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1086                 /*
1087                  * Beacon generation will fail initially.
1088                  * To prevent this we need to register the TXRX_CSR19
1089                  * register several times.
1090                  */
1091                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1092                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1093                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1094                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1095                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1096         }
1097 }
1098
1099 /*
1100  * RX control handlers
1101  */
1102 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1103                                   struct rxdone_entry_desc *rxdesc)
1104 {
1105         struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
1106         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1107         __le32 *rxd =
1108             (__le32 *)(entry->skb->data +
1109                        (priv_rx->urb->actual_length - entry->queue->desc_size));
1110         unsigned int offset = entry->queue->desc_size + 2;
1111         u32 word0;
1112         u32 word1;
1113
1114         /*
1115          * Copy descriptor to the available headroom inside the skbuffer.
1116          */
1117         skb_push(entry->skb, offset);
1118         memcpy(entry->skb->data, rxd, entry->queue->desc_size);
1119         rxd = (__le32 *)entry->skb->data;
1120
1121         /*
1122          * The descriptor is now aligned to 4 bytes and thus it is
1123          * now safe to read it on all architectures.
1124          */
1125         rt2x00_desc_read(rxd, 0, &word0);
1126         rt2x00_desc_read(rxd, 1, &word1);
1127
1128         rxdesc->flags = 0;
1129         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1130                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1131         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1132                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1133
1134         /*
1135          * Obtain the status about this packet.
1136          */
1137         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1138         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1139             entry->queue->rt2x00dev->rssi_offset;
1140         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1141         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1142         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1143
1144         /*
1145          * Adjust the skb memory window to the frame boundaries.
1146          */
1147         skb_pull(entry->skb, offset);
1148         skb_trim(entry->skb, rxdesc->size);
1149
1150         /*
1151          * Set descriptor and data pointer.
1152          */
1153         skbdesc->data = entry->skb->data;
1154         skbdesc->data_len = rxdesc->size;
1155         skbdesc->desc = rxd;
1156         skbdesc->desc_len = entry->queue->desc_size;
1157 }
1158
1159 /*
1160  * Interrupt functions.
1161  */
1162 static void rt2500usb_beacondone(struct urb *urb)
1163 {
1164         struct queue_entry *entry = (struct queue_entry *)urb->context;
1165         struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
1166
1167         if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1168                 return;
1169
1170         /*
1171          * Check if this was the guardian beacon,
1172          * if that was the case we need to send the real beacon now.
1173          * Otherwise we should free the sk_buffer, the device
1174          * should be doing the rest of the work now.
1175          */
1176         if (priv_bcn->guardian_urb == urb) {
1177                 usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
1178         } else if (priv_bcn->urb == urb) {
1179                 dev_kfree_skb(entry->skb);
1180                 entry->skb = NULL;
1181         }
1182 }
1183
1184 /*
1185  * Device probe functions.
1186  */
1187 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1188 {
1189         u16 word;
1190         u8 *mac;
1191         u8 bbp;
1192
1193         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1194
1195         /*
1196          * Start validation of the data that has been read.
1197          */
1198         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1199         if (!is_valid_ether_addr(mac)) {
1200                 DECLARE_MAC_BUF(macbuf);
1201
1202                 random_ether_addr(mac);
1203                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1204         }
1205
1206         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1207         if (word == 0xffff) {
1208                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1209                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1210                                    ANTENNA_SW_DIVERSITY);
1211                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1212                                    ANTENNA_SW_DIVERSITY);
1213                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1214                                    LED_MODE_DEFAULT);
1215                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1216                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1217                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1218                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1219                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1220         }
1221
1222         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1223         if (word == 0xffff) {
1224                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1225                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1226                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1227                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1228                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1229         }
1230
1231         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1232         if (word == 0xffff) {
1233                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1234                                    DEFAULT_RSSI_OFFSET);
1235                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1236                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1237         }
1238
1239         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1240         if (word == 0xffff) {
1241                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1242                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1243                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1244         }
1245
1246         /*
1247          * Switch lower vgc bound to current BBP R17 value,
1248          * lower the value a bit for better quality.
1249          */
1250         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1251         bbp -= 6;
1252
1253         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1254         if (word == 0xffff) {
1255                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1256                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1257                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1258                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1259         }
1260
1261         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1262         if (word == 0xffff) {
1263                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1264                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1265                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1266                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1267         } else {
1268                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1269                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1270         }
1271
1272         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1273         if (word == 0xffff) {
1274                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1275                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1276                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1277                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1278         }
1279
1280         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1281         if (word == 0xffff) {
1282                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1283                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1284                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1285                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1286         }
1287
1288         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1289         if (word == 0xffff) {
1290                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1291                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1292                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1293                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1294         }
1295
1296         return 0;
1297 }
1298
1299 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1300 {
1301         u16 reg;
1302         u16 value;
1303         u16 eeprom;
1304
1305         /*
1306          * Read EEPROM word for configuration.
1307          */
1308         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1309
1310         /*
1311          * Identify RF chipset.
1312          */
1313         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1314         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1315         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1316
1317         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1318                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1319                 return -ENODEV;
1320         }
1321
1322         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1323             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1324             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1325             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1326             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1327             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1328                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1329                 return -ENODEV;
1330         }
1331
1332         /*
1333          * Identify default antenna configuration.
1334          */
1335         rt2x00dev->default_ant.tx =
1336             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1337         rt2x00dev->default_ant.rx =
1338             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1339
1340         /*
1341          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1342          * I am not 100% sure about this, but the legacy drivers do not
1343          * indicate antenna swapping in software is required when
1344          * diversity is enabled.
1345          */
1346         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1347                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1348         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1349                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1350
1351         /*
1352          * Store led mode, for correct led behaviour.
1353          */
1354 #ifdef CONFIG_RT2500USB_LEDS
1355         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1356
1357         switch (value) {
1358         case LED_MODE_ASUS:
1359         case LED_MODE_ALPHA:
1360         case LED_MODE_DEFAULT:
1361                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1362                 break;
1363         case LED_MODE_TXRX_ACTIVITY:
1364                 rt2x00dev->led_flags =
1365                     LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1366                 break;
1367         case LED_MODE_SIGNAL_STRENGTH:
1368                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1369                 break;
1370         }
1371
1372         /*
1373          * Store the current led register value, we need it later
1374          * in set_brightness but that is called in irq context which
1375          * means we can't use rt2500usb_register_read() at that time.
1376          */
1377         rt2500usb_register_read(rt2x00dev, MAC_CSR20, &rt2x00dev->led_mcu_reg);
1378 #endif /* CONFIG_RT2500USB_LEDS */
1379
1380         /*
1381          * Check if the BBP tuning should be disabled.
1382          */
1383         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1384         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1385                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1386
1387         /*
1388          * Read the RSSI <-> dBm offset information.
1389          */
1390         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1391         rt2x00dev->rssi_offset =
1392             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1393
1394         return 0;
1395 }
1396
1397 /*
1398  * RF value list for RF2522
1399  * Supports: 2.4 GHz
1400  */
1401 static const struct rf_channel rf_vals_bg_2522[] = {
1402         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1403         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1404         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1405         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1406         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1407         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1408         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1409         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1410         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1411         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1412         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1413         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1414         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1415         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1416 };
1417
1418 /*
1419  * RF value list for RF2523
1420  * Supports: 2.4 GHz
1421  */
1422 static const struct rf_channel rf_vals_bg_2523[] = {
1423         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1424         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1425         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1426         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1427         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1428         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1429         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1430         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1431         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1432         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1433         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1434         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1435         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1436         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1437 };
1438
1439 /*
1440  * RF value list for RF2524
1441  * Supports: 2.4 GHz
1442  */
1443 static const struct rf_channel rf_vals_bg_2524[] = {
1444         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1445         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1446         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1447         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1448         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1449         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1450         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1451         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1452         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1453         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1454         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1455         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1456         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1457         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1458 };
1459
1460 /*
1461  * RF value list for RF2525
1462  * Supports: 2.4 GHz
1463  */
1464 static const struct rf_channel rf_vals_bg_2525[] = {
1465         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1466         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1467         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1468         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1469         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1470         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1471         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1472         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1473         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1474         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1475         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1476         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1477         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1478         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1479 };
1480
1481 /*
1482  * RF value list for RF2525e
1483  * Supports: 2.4 GHz
1484  */
1485 static const struct rf_channel rf_vals_bg_2525e[] = {
1486         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1487         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1488         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1489         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1490         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1491         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1492         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1493         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1494         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1495         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1496         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1497         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1498         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1499         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1500 };
1501
1502 /*
1503  * RF value list for RF5222
1504  * Supports: 2.4 GHz & 5.2 GHz
1505  */
1506 static const struct rf_channel rf_vals_5222[] = {
1507         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1508         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1509         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1510         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1511         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1512         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1513         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1514         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1515         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1516         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1517         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1518         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1519         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1520         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1521
1522         /* 802.11 UNI / HyperLan 2 */
1523         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1524         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1525         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1526         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1527         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1528         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1529         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1530         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1531
1532         /* 802.11 HyperLan 2 */
1533         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1534         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1535         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1536         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1537         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1538         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1539         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1540         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1541         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1542         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1543
1544         /* 802.11 UNII */
1545         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1546         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1547         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1548         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1549         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1550 };
1551
1552 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1553 {
1554         struct hw_mode_spec *spec = &rt2x00dev->spec;
1555         u8 *txpower;
1556         unsigned int i;
1557
1558         /*
1559          * Initialize all hw fields.
1560          */
1561         rt2x00dev->hw->flags =
1562             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1563             IEEE80211_HW_RX_INCLUDES_FCS |
1564             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1565         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1566         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1567         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1568         rt2x00dev->hw->queues = 2;
1569
1570         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1571         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1572                                 rt2x00_eeprom_addr(rt2x00dev,
1573                                                    EEPROM_MAC_ADDR_0));
1574
1575         /*
1576          * Convert tx_power array in eeprom.
1577          */
1578         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1579         for (i = 0; i < 14; i++)
1580                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1581
1582         /*
1583          * Initialize hw_mode information.
1584          */
1585         spec->supported_bands = SUPPORT_BAND_2GHZ;
1586         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1587         spec->tx_power_a = NULL;
1588         spec->tx_power_bg = txpower;
1589         spec->tx_power_default = DEFAULT_TXPOWER;
1590
1591         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1592                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1593                 spec->channels = rf_vals_bg_2522;
1594         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1595                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1596                 spec->channels = rf_vals_bg_2523;
1597         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1598                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1599                 spec->channels = rf_vals_bg_2524;
1600         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1601                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1602                 spec->channels = rf_vals_bg_2525;
1603         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1604                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1605                 spec->channels = rf_vals_bg_2525e;
1606         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1607                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1608                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1609                 spec->channels = rf_vals_5222;
1610         }
1611 }
1612
1613 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1614 {
1615         int retval;
1616
1617         /*
1618          * Allocate eeprom data.
1619          */
1620         retval = rt2500usb_validate_eeprom(rt2x00dev);
1621         if (retval)
1622                 return retval;
1623
1624         retval = rt2500usb_init_eeprom(rt2x00dev);
1625         if (retval)
1626                 return retval;
1627
1628         /*
1629          * Initialize hw specifications.
1630          */
1631         rt2500usb_probe_hw_mode(rt2x00dev);
1632
1633         /*
1634          * This device requires the atim queue
1635          */
1636         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1637         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1638
1639         /*
1640          * Set the rssi offset.
1641          */
1642         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1643
1644         return 0;
1645 }
1646
1647 /*
1648  * IEEE80211 stack callback functions.
1649  */
1650 static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
1651                                        unsigned int changed_flags,
1652                                        unsigned int *total_flags,
1653                                        int mc_count,
1654                                        struct dev_addr_list *mc_list)
1655 {
1656         struct rt2x00_dev *rt2x00dev = hw->priv;
1657         u16 reg;
1658
1659         /*
1660          * Mask off any flags we are going to ignore from
1661          * the total_flags field.
1662          */
1663         *total_flags &=
1664             FIF_ALLMULTI |
1665             FIF_FCSFAIL |
1666             FIF_PLCPFAIL |
1667             FIF_CONTROL |
1668             FIF_OTHER_BSS |
1669             FIF_PROMISC_IN_BSS;
1670
1671         /*
1672          * Apply some rules to the filters:
1673          * - Some filters imply different filters to be set.
1674          * - Some things we can't filter out at all.
1675          */
1676         if (mc_count)
1677                 *total_flags |= FIF_ALLMULTI;
1678         if (*total_flags & FIF_OTHER_BSS ||
1679             *total_flags & FIF_PROMISC_IN_BSS)
1680                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1681
1682         /*
1683          * Check if there is any work left for us.
1684          */
1685         if (rt2x00dev->packet_filter == *total_flags)
1686                 return;
1687         rt2x00dev->packet_filter = *total_flags;
1688
1689         /*
1690          * When in atomic context, reschedule and let rt2x00lib
1691          * call this function again.
1692          */
1693         if (in_atomic()) {
1694                 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
1695                 return;
1696         }
1697
1698         /*
1699          * Start configuration steps.
1700          * Note that the version error will always be dropped
1701          * and broadcast frames will always be accepted since
1702          * there is no filter for it at this time.
1703          */
1704         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1705         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
1706                            !(*total_flags & FIF_FCSFAIL));
1707         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
1708                            !(*total_flags & FIF_PLCPFAIL));
1709         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
1710                            !(*total_flags & FIF_CONTROL));
1711         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
1712                            !(*total_flags & FIF_PROMISC_IN_BSS));
1713         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
1714                            !(*total_flags & FIF_PROMISC_IN_BSS));
1715         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
1716         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
1717                            !(*total_flags & FIF_ALLMULTI));
1718         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
1719         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1720 }
1721
1722 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1723                                    struct sk_buff *skb,
1724                                    struct ieee80211_tx_control *control)
1725 {
1726         struct rt2x00_dev *rt2x00dev = hw->priv;
1727         struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1728         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1729         struct queue_entry_priv_usb_bcn *priv_bcn;
1730         struct skb_frame_desc *skbdesc;
1731         int pipe = usb_sndbulkpipe(usb_dev, 1);
1732         int length;
1733         u16 reg;
1734
1735         if (unlikely(!intf->beacon))
1736                 return -ENOBUFS;
1737
1738         priv_bcn = intf->beacon->priv_data;
1739
1740         /*
1741          * Add the descriptor in front of the skb.
1742          */
1743         skb_push(skb, intf->beacon->queue->desc_size);
1744         memset(skb->data, 0, intf->beacon->queue->desc_size);
1745
1746         /*
1747          * Fill in skb descriptor
1748          */
1749         skbdesc = get_skb_frame_desc(skb);
1750         memset(skbdesc, 0, sizeof(*skbdesc));
1751         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1752         skbdesc->data = skb->data + intf->beacon->queue->desc_size;
1753         skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
1754         skbdesc->desc = skb->data;
1755         skbdesc->desc_len = intf->beacon->queue->desc_size;
1756         skbdesc->entry = intf->beacon;
1757
1758         /*
1759          * Disable beaconing while we are reloading the beacon data,
1760          * otherwise we might be sending out invalid data.
1761          */
1762         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1763         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1764         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1765         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1766         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1767
1768         /*
1769          * mac80211 doesn't provide the control->queue variable
1770          * for beacons. Set our own queue identification so
1771          * it can be used during descriptor initialization.
1772          */
1773         control->queue = RT2X00_BCN_QUEUE_BEACON;
1774         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1775
1776         /*
1777          * USB devices cannot blindly pass the skb->len as the
1778          * length of the data to usb_fill_bulk_urb. Pass the skb
1779          * to the driver to determine what the length should be.
1780          */
1781         length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1782
1783         usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
1784                           skb->data, length, rt2500usb_beacondone,
1785                           intf->beacon);
1786
1787         /*
1788          * Second we need to create the guardian byte.
1789          * We only need a single byte, so lets recycle
1790          * the 'flags' field we are not using for beacons.
1791          */
1792         priv_bcn->guardian_data = 0;
1793         usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
1794                           &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
1795                           intf->beacon);
1796
1797         /*
1798          * Send out the guardian byte.
1799          */
1800         usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
1801
1802         /*
1803          * Enable beacon generation.
1804          */
1805         rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
1806
1807         return 0;
1808 }
1809
1810 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1811         .tx                     = rt2x00mac_tx,
1812         .start                  = rt2x00mac_start,
1813         .stop                   = rt2x00mac_stop,
1814         .add_interface          = rt2x00mac_add_interface,
1815         .remove_interface       = rt2x00mac_remove_interface,
1816         .config                 = rt2x00mac_config,
1817         .config_interface       = rt2x00mac_config_interface,
1818         .configure_filter       = rt2500usb_configure_filter,
1819         .get_stats              = rt2x00mac_get_stats,
1820         .bss_info_changed       = rt2x00mac_bss_info_changed,
1821         .conf_tx                = rt2x00mac_conf_tx,
1822         .get_tx_stats           = rt2x00mac_get_tx_stats,
1823         .beacon_update          = rt2500usb_beacon_update,
1824 };
1825
1826 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1827         .probe_hw               = rt2500usb_probe_hw,
1828         .initialize             = rt2x00usb_initialize,
1829         .uninitialize           = rt2x00usb_uninitialize,
1830         .init_rxentry           = rt2x00usb_init_rxentry,
1831         .init_txentry           = rt2x00usb_init_txentry,
1832         .set_device_state       = rt2500usb_set_device_state,
1833         .link_stats             = rt2500usb_link_stats,
1834         .reset_tuner            = rt2500usb_reset_tuner,
1835         .link_tuner             = rt2500usb_link_tuner,
1836         .led_brightness         = rt2500usb_led_brightness,
1837         .write_tx_desc          = rt2500usb_write_tx_desc,
1838         .write_tx_data          = rt2x00usb_write_tx_data,
1839         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1840         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1841         .fill_rxdone            = rt2500usb_fill_rxdone,
1842         .config_intf            = rt2500usb_config_intf,
1843         .config_erp             = rt2500usb_config_erp,
1844         .config                 = rt2500usb_config,
1845 };
1846
1847 static const struct data_queue_desc rt2500usb_queue_rx = {
1848         .entry_num              = RX_ENTRIES,
1849         .data_size              = DATA_FRAME_SIZE,
1850         .desc_size              = RXD_DESC_SIZE,
1851         .priv_size              = sizeof(struct queue_entry_priv_usb_rx),
1852 };
1853
1854 static const struct data_queue_desc rt2500usb_queue_tx = {
1855         .entry_num              = TX_ENTRIES,
1856         .data_size              = DATA_FRAME_SIZE,
1857         .desc_size              = TXD_DESC_SIZE,
1858         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1859 };
1860
1861 static const struct data_queue_desc rt2500usb_queue_bcn = {
1862         .entry_num              = BEACON_ENTRIES,
1863         .data_size              = MGMT_FRAME_SIZE,
1864         .desc_size              = TXD_DESC_SIZE,
1865         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1866 };
1867
1868 static const struct data_queue_desc rt2500usb_queue_atim = {
1869         .entry_num              = ATIM_ENTRIES,
1870         .data_size              = DATA_FRAME_SIZE,
1871         .desc_size              = TXD_DESC_SIZE,
1872         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1873 };
1874
1875 static const struct rt2x00_ops rt2500usb_ops = {
1876         .name           = KBUILD_MODNAME,
1877         .max_sta_intf   = 1,
1878         .max_ap_intf    = 1,
1879         .eeprom_size    = EEPROM_SIZE,
1880         .rf_size        = RF_SIZE,
1881         .rx             = &rt2500usb_queue_rx,
1882         .tx             = &rt2500usb_queue_tx,
1883         .bcn            = &rt2500usb_queue_bcn,
1884         .atim           = &rt2500usb_queue_atim,
1885         .lib            = &rt2500usb_rt2x00_ops,
1886         .hw             = &rt2500usb_mac80211_ops,
1887 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1888         .debugfs        = &rt2500usb_rt2x00debug,
1889 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1890 };
1891
1892 /*
1893  * rt2500usb module information.
1894  */
1895 static struct usb_device_id rt2500usb_device_table[] = {
1896         /* ASUS */
1897         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1898         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1899         /* Belkin */
1900         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1901         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1902         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1903         /* Cisco Systems */
1904         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1905         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1906         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1907         /* Conceptronic */
1908         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1909         /* D-LINK */
1910         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1911         /* Gigabyte */
1912         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1913         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1914         /* Hercules */
1915         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1916         /* Melco */
1917         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1918         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1919         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1920         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1921         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1922         /* MSI */
1923         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1924         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1925         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1926         /* Ralink */
1927         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1928         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1929         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1930         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1931         /* Siemens */
1932         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1933         /* SMC */
1934         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1935         /* Spairon */
1936         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1937         /* Trust */
1938         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1939         /* Zinwell */
1940         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1941         { 0, }
1942 };
1943
1944 MODULE_AUTHOR(DRV_PROJECT);
1945 MODULE_VERSION(DRV_VERSION);
1946 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1947 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1948 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1949 MODULE_LICENSE("GPL");
1950
1951 static struct usb_driver rt2500usb_driver = {
1952         .name           = KBUILD_MODNAME,
1953         .id_table       = rt2500usb_device_table,
1954         .probe          = rt2x00usb_probe,
1955         .disconnect     = rt2x00usb_disconnect,
1956         .suspend        = rt2x00usb_suspend,
1957         .resume         = rt2x00usb_resume,
1958 };
1959
1960 static int __init rt2500usb_init(void)
1961 {
1962         return usb_register(&rt2500usb_driver);
1963 }
1964
1965 static void __exit rt2500usb_exit(void)
1966 {
1967         usb_deregister(&rt2500usb_driver);
1968 }
1969
1970 module_init(rt2500usb_init);
1971 module_exit(rt2500usb_exit);