]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
9ea677320daa672e98b96e1945b261b199845433
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop all scheduled work.
142          */
143         if (work_pending(&rt2x00dev->intf_work))
144                 cancel_work_sync(&rt2x00dev->intf_work);
145         if (work_pending(&rt2x00dev->filter_work))
146                 cancel_work_sync(&rt2x00dev->filter_work);
147
148         /*
149          * Stop the TX queues.
150          */
151         ieee80211_stop_queues(rt2x00dev->hw);
152
153         /*
154          * Disable RX.
155          */
156         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
157
158         /*
159          * Disable radio.
160          */
161         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
162         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
163         rt2x00led_led_activity(rt2x00dev, false);
164         rt2x00leds_led_radio(rt2x00dev, false);
165 }
166
167 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
168 {
169         /*
170          * When we are disabling the RX, we should also stop the link tuner.
171          */
172         if (state == STATE_RADIO_RX_OFF)
173                 rt2x00lib_stop_link_tuner(rt2x00dev);
174
175         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
176
177         /*
178          * When we are enabling the RX, we should also start the link tuner.
179          */
180         if (state == STATE_RADIO_RX_ON &&
181             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
182                 rt2x00lib_start_link_tuner(rt2x00dev);
183 }
184
185 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
186 {
187         enum antenna rx = rt2x00dev->link.ant.active.rx;
188         enum antenna tx = rt2x00dev->link.ant.active.tx;
189         int sample_a =
190             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
191         int sample_b =
192             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
193
194         /*
195          * We are done sampling. Now we should evaluate the results.
196          */
197         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
198
199         /*
200          * During the last period we have sampled the RSSI
201          * from both antenna's. It now is time to determine
202          * which antenna demonstrated the best performance.
203          * When we are already on the antenna with the best
204          * performance, then there really is nothing for us
205          * left to do.
206          */
207         if (sample_a == sample_b)
208                 return;
209
210         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
211                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212
213         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
214                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
215
216         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
217 }
218
219 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
220 {
221         enum antenna rx = rt2x00dev->link.ant.active.rx;
222         enum antenna tx = rt2x00dev->link.ant.active.tx;
223         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
224         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
225
226         /*
227          * Legacy driver indicates that we should swap antenna's
228          * when the difference in RSSI is greater that 5. This
229          * also should be done when the RSSI was actually better
230          * then the previous sample.
231          * When the difference exceeds the threshold we should
232          * sample the rssi from the other antenna to make a valid
233          * comparison between the 2 antennas.
234          */
235         if (abs(rssi_curr - rssi_old) < 5)
236                 return;
237
238         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
239
240         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
241                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242
243         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
244                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
245
246         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
247 }
248
249 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
250 {
251         /*
252          * Determine if software diversity is enabled for
253          * either the TX or RX antenna (or both).
254          * Always perform this check since within the link
255          * tuner interval the configuration might have changed.
256          */
257         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
258         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
259
260         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
261             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
262                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
263         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
264             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
265                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
266
267         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
268             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
269                 rt2x00dev->link.ant.flags = 0;
270                 return;
271         }
272
273         /*
274          * If we have only sampled the data over the last period
275          * we should now harvest the data. Otherwise just evaluate
276          * the data. The latter should only be performed once
277          * every 2 seconds.
278          */
279         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
280                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
281         else if (rt2x00dev->link.count & 1)
282                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
283 }
284
285 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
286 {
287         int avg_rssi = rssi;
288
289         /*
290          * Update global RSSI
291          */
292         if (link->qual.avg_rssi)
293                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
294         link->qual.avg_rssi = avg_rssi;
295
296         /*
297          * Update antenna RSSI
298          */
299         if (link->ant.rssi_ant)
300                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
301         link->ant.rssi_ant = rssi;
302 }
303
304 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
305 {
306         if (qual->rx_failed || qual->rx_success)
307                 qual->rx_percentage =
308                     (qual->rx_success * 100) /
309                     (qual->rx_failed + qual->rx_success);
310         else
311                 qual->rx_percentage = 50;
312
313         if (qual->tx_failed || qual->tx_success)
314                 qual->tx_percentage =
315                     (qual->tx_success * 100) /
316                     (qual->tx_failed + qual->tx_success);
317         else
318                 qual->tx_percentage = 50;
319
320         qual->rx_success = 0;
321         qual->rx_failed = 0;
322         qual->tx_success = 0;
323         qual->tx_failed = 0;
324 }
325
326 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
327                                            int rssi)
328 {
329         int rssi_percentage = 0;
330         int signal;
331
332         /*
333          * We need a positive value for the RSSI.
334          */
335         if (rssi < 0)
336                 rssi += rt2x00dev->rssi_offset;
337
338         /*
339          * Calculate the different percentages,
340          * which will be used for the signal.
341          */
342         if (rt2x00dev->rssi_offset)
343                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
344
345         /*
346          * Add the individual percentages and use the WEIGHT
347          * defines to calculate the current link signal.
348          */
349         signal = ((WEIGHT_RSSI * rssi_percentage) +
350                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
351                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
352
353         return (signal > 100) ? 100 : signal;
354 }
355
356 static void rt2x00lib_link_tuner(struct work_struct *work)
357 {
358         struct rt2x00_dev *rt2x00dev =
359             container_of(work, struct rt2x00_dev, link.work.work);
360
361         /*
362          * When the radio is shutting down we should
363          * immediately cease all link tuning.
364          */
365         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
366                 return;
367
368         /*
369          * Update statistics.
370          */
371         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
372         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
373             rt2x00dev->link.qual.rx_failed;
374
375         /*
376          * Only perform the link tuning when Link tuning
377          * has been enabled (This could have been disabled from the EEPROM).
378          */
379         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
380                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
381
382         /*
383          * Precalculate a portion of the link signal which is
384          * in based on the tx/rx success/failure counters.
385          */
386         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
387
388         /*
389          * Send a signal to the led to update the led signal strength.
390          */
391         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
392
393         /*
394          * Evaluate antenna setup, make this the last step since this could
395          * possibly reset some statistics.
396          */
397         rt2x00lib_evaluate_antenna(rt2x00dev);
398
399         /*
400          * Increase tuner counter, and reschedule the next link tuner run.
401          */
402         rt2x00dev->link.count++;
403         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
404                            LINK_TUNE_INTERVAL);
405 }
406
407 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
408 {
409         struct rt2x00_dev *rt2x00dev =
410             container_of(work, struct rt2x00_dev, filter_work);
411
412         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
413 }
414
415 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
416                                           struct ieee80211_vif *vif)
417 {
418         struct rt2x00_dev *rt2x00dev = data;
419         struct rt2x00_intf *intf = vif_to_intf(vif);
420         struct sk_buff *skb;
421         struct ieee80211_bss_conf conf;
422         int delayed_flags;
423
424         /*
425          * Copy all data we need during this action under the protection
426          * of a spinlock. Otherwise race conditions might occur which results
427          * into an invalid configuration.
428          */
429         spin_lock(&intf->lock);
430
431         memcpy(&conf, &intf->conf, sizeof(conf));
432         delayed_flags = intf->delayed_flags;
433         intf->delayed_flags = 0;
434
435         spin_unlock(&intf->lock);
436
437         if (delayed_flags & DELAYED_UPDATE_BEACON) {
438                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
439                 if (skb &&
440                     rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb))
441                         dev_kfree_skb(skb);
442         }
443
444         if (delayed_flags & DELAYED_CONFIG_ERP)
445                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
446
447         if (delayed_flags & DELAYED_LED_ASSOC)
448                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
449 }
450
451 static void rt2x00lib_intf_scheduled(struct work_struct *work)
452 {
453         struct rt2x00_dev *rt2x00dev =
454             container_of(work, struct rt2x00_dev, intf_work);
455
456         /*
457          * Iterate over each interface and perform the
458          * requested configurations.
459          */
460         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
461                                             rt2x00lib_intf_scheduled_iter,
462                                             rt2x00dev);
463 }
464
465 /*
466  * Interrupt context handlers.
467  */
468 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
469                                       struct ieee80211_vif *vif)
470 {
471         struct rt2x00_intf *intf = vif_to_intf(vif);
472
473         if (vif->type != IEEE80211_IF_TYPE_AP &&
474             vif->type != IEEE80211_IF_TYPE_IBSS)
475                 return;
476
477         spin_lock(&intf->lock);
478         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
479         spin_unlock(&intf->lock);
480 }
481
482 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
483 {
484         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
485                 return;
486
487         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
488                                                    rt2x00lib_beacondone_iter,
489                                                    rt2x00dev);
490
491         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
492 }
493 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
494
495 void rt2x00lib_txdone(struct queue_entry *entry,
496                       struct txdone_entry_desc *txdesc)
497 {
498         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
499         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
500
501         /*
502          * Send frame to debugfs immediately, after this call is completed
503          * we are going to overwrite the skb->cb array.
504          */
505         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
506
507         /*
508          * Update TX statistics.
509          */
510         rt2x00dev->link.qual.tx_success +=
511             test_bit(TXDONE_SUCCESS, &txdesc->flags);
512         rt2x00dev->link.qual.tx_failed +=
513             test_bit(TXDONE_FAILURE, &txdesc->flags);
514
515         /*
516          * Initialize TX status
517          */
518         memset(&tx_info->status, 0, sizeof(tx_info->status));
519         tx_info->status.ack_signal = 0;
520         tx_info->status.excessive_retries =
521             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
522         tx_info->status.retry_count = txdesc->retry;
523
524         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
525                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
526                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
527                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
528                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
529         }
530
531         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
532                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
533                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
534                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
535                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
536         }
537
538         /*
539          * Only send the status report to mac80211 when TX status was
540          * requested by it. If this was a extra frame coming through
541          * a mac80211 library call (RTS/CTS) then we should not send the
542          * status report back.
543          */
544         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
545                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
546         else
547                 dev_kfree_skb_irq(entry->skb);
548         entry->skb = NULL;
549 }
550 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
551
552 void rt2x00lib_rxdone(struct queue_entry *entry,
553                       struct rxdone_entry_desc *rxdesc)
554 {
555         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
556         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
557         unsigned int header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
558         struct ieee80211_supported_band *sband;
559         struct ieee80211_hdr *hdr;
560         const struct rt2x00_rate *rate;
561         unsigned int align;
562         unsigned int i;
563         int idx = -1;
564         u16 fc;
565
566         /*
567          * The data behind the ieee80211 header must be
568          * aligned on a 4 byte boundary.
569          */
570         align = ((unsigned long)(entry->skb->data + header_size)) & 3;
571
572         if (align) {
573                 skb_push(entry->skb, align);
574                 /* Move entire frame in 1 command */
575                 memmove(entry->skb->data, entry->skb->data + align,
576                         rxdesc->size);
577         }
578
579         /* Update data pointers, trim buffer to correct size */
580         skb_trim(entry->skb, rxdesc->size);
581
582         /*
583          * Update RX statistics.
584          */
585         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
586         for (i = 0; i < sband->n_bitrates; i++) {
587                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
588
589                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
590                      (rate->plcp == rxdesc->signal)) ||
591                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
592                       (rate->bitrate == rxdesc->signal))) {
593                         idx = i;
594                         break;
595                 }
596         }
597
598         if (idx < 0) {
599                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
600                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
601                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
602                 idx = 0;
603         }
604
605         /*
606          * Only update link status if this is a beacon frame carrying our bssid.
607          */
608         hdr = (struct ieee80211_hdr *)entry->skb->data;
609         fc = le16_to_cpu(hdr->frame_control);
610         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
611                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
612
613         rt2x00dev->link.qual.rx_success++;
614
615         rx_status->rate_idx = idx;
616         rx_status->qual =
617             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
618         rx_status->signal = rxdesc->rssi;
619         rx_status->flag = rxdesc->flags;
620         rx_status->antenna = rt2x00dev->link.ant.active.rx;
621
622         /*
623          * Send frame to mac80211 & debugfs.
624          * mac80211 will clean up the skb structure.
625          */
626         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
627         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
628         entry->skb = NULL;
629 }
630 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
631
632 /*
633  * Driver initialization handlers.
634  */
635 const struct rt2x00_rate rt2x00_supported_rates[12] = {
636         {
637                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
638                 .bitrate = 10,
639                 .ratemask = BIT(0),
640                 .plcp = 0x00,
641         },
642         {
643                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
644                 .bitrate = 20,
645                 .ratemask = BIT(1),
646                 .plcp = 0x01,
647         },
648         {
649                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
650                 .bitrate = 55,
651                 .ratemask = BIT(2),
652                 .plcp = 0x02,
653         },
654         {
655                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
656                 .bitrate = 110,
657                 .ratemask = BIT(3),
658                 .plcp = 0x03,
659         },
660         {
661                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
662                 .bitrate = 60,
663                 .ratemask = BIT(4),
664                 .plcp = 0x0b,
665         },
666         {
667                 .flags = DEV_RATE_OFDM,
668                 .bitrate = 90,
669                 .ratemask = BIT(5),
670                 .plcp = 0x0f,
671         },
672         {
673                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
674                 .bitrate = 120,
675                 .ratemask = BIT(6),
676                 .plcp = 0x0a,
677         },
678         {
679                 .flags = DEV_RATE_OFDM,
680                 .bitrate = 180,
681                 .ratemask = BIT(7),
682                 .plcp = 0x0e,
683         },
684         {
685                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
686                 .bitrate = 240,
687                 .ratemask = BIT(8),
688                 .plcp = 0x09,
689         },
690         {
691                 .flags = DEV_RATE_OFDM,
692                 .bitrate = 360,
693                 .ratemask = BIT(9),
694                 .plcp = 0x0d,
695         },
696         {
697                 .flags = DEV_RATE_OFDM,
698                 .bitrate = 480,
699                 .ratemask = BIT(10),
700                 .plcp = 0x08,
701         },
702         {
703                 .flags = DEV_RATE_OFDM,
704                 .bitrate = 540,
705                 .ratemask = BIT(11),
706                 .plcp = 0x0c,
707         },
708 };
709
710 static void rt2x00lib_channel(struct ieee80211_channel *entry,
711                               const int channel, const int tx_power,
712                               const int value)
713 {
714         entry->center_freq = ieee80211_channel_to_frequency(channel);
715         entry->hw_value = value;
716         entry->max_power = tx_power;
717         entry->max_antenna_gain = 0xff;
718 }
719
720 static void rt2x00lib_rate(struct ieee80211_rate *entry,
721                            const u16 index, const struct rt2x00_rate *rate)
722 {
723         entry->flags = 0;
724         entry->bitrate = rate->bitrate;
725         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
726         entry->hw_value_short = entry->hw_value;
727
728         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
729                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
730                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
731         }
732 }
733
734 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
735                                     struct hw_mode_spec *spec)
736 {
737         struct ieee80211_hw *hw = rt2x00dev->hw;
738         struct ieee80211_channel *channels;
739         struct ieee80211_rate *rates;
740         unsigned int num_rates;
741         unsigned int i;
742         unsigned char tx_power;
743
744         num_rates = 0;
745         if (spec->supported_rates & SUPPORT_RATE_CCK)
746                 num_rates += 4;
747         if (spec->supported_rates & SUPPORT_RATE_OFDM)
748                 num_rates += 8;
749
750         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
751         if (!channels)
752                 return -ENOMEM;
753
754         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
755         if (!rates)
756                 goto exit_free_channels;
757
758         /*
759          * Initialize Rate list.
760          */
761         for (i = 0; i < num_rates; i++)
762                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
763
764         /*
765          * Initialize Channel list.
766          */
767         for (i = 0; i < spec->num_channels; i++) {
768                 if (spec->channels[i].channel <= 14) {
769                         if (spec->tx_power_bg)
770                                 tx_power = spec->tx_power_bg[i];
771                         else
772                                 tx_power = spec->tx_power_default;
773                 } else {
774                         if (spec->tx_power_a)
775                                 tx_power = spec->tx_power_a[i];
776                         else
777                                 tx_power = spec->tx_power_default;
778                 }
779
780                 rt2x00lib_channel(&channels[i],
781                                   spec->channels[i].channel, tx_power, i);
782         }
783
784         /*
785          * Intitialize 802.11b, 802.11g
786          * Rates: CCK, OFDM.
787          * Channels: 2.4 GHz
788          */
789         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
790                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
791                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
792                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
793                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
794                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
795                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
796         }
797
798         /*
799          * Intitialize 802.11a
800          * Rates: OFDM.
801          * Channels: OFDM, UNII, HiperLAN2.
802          */
803         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
804                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
805                     spec->num_channels - 14;
806                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
807                     num_rates - 4;
808                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
809                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
810                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
811                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
812         }
813
814         return 0;
815
816  exit_free_channels:
817         kfree(channels);
818         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
819         return -ENOMEM;
820 }
821
822 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
823 {
824         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
825                 ieee80211_unregister_hw(rt2x00dev->hw);
826
827         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
828                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
829                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
830                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
831                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
832         }
833 }
834
835 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
836 {
837         struct hw_mode_spec *spec = &rt2x00dev->spec;
838         int status;
839
840         /*
841          * Initialize HW modes.
842          */
843         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
844         if (status)
845                 return status;
846
847         /*
848          * Initialize HW fields.
849          */
850         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
851
852         /*
853          * Register HW.
854          */
855         status = ieee80211_register_hw(rt2x00dev->hw);
856         if (status) {
857                 rt2x00lib_remove_hw(rt2x00dev);
858                 return status;
859         }
860
861         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
862
863         return 0;
864 }
865
866 /*
867  * Initialization/uninitialization handlers.
868  */
869 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
870 {
871         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
872                 return;
873
874         /*
875          * Unregister extra components.
876          */
877         rt2x00rfkill_unregister(rt2x00dev);
878
879         /*
880          * Allow the HW to uninitialize.
881          */
882         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
883
884         /*
885          * Free allocated queue entries.
886          */
887         rt2x00queue_uninitialize(rt2x00dev);
888 }
889
890 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
891 {
892         int status;
893
894         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
895                 return 0;
896
897         /*
898          * Allocate all queue entries.
899          */
900         status = rt2x00queue_initialize(rt2x00dev);
901         if (status)
902                 return status;
903
904         /*
905          * Initialize the device.
906          */
907         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
908         if (status) {
909                 rt2x00queue_uninitialize(rt2x00dev);
910                 return status;
911         }
912
913         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
914
915         /*
916          * Register the extra components.
917          */
918         rt2x00rfkill_register(rt2x00dev);
919
920         return 0;
921 }
922
923 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
924 {
925         int retval;
926
927         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
928                 return 0;
929
930         /*
931          * If this is the first interface which is added,
932          * we should load the firmware now.
933          */
934         retval = rt2x00lib_load_firmware(rt2x00dev);
935         if (retval)
936                 return retval;
937
938         /*
939          * Initialize the device.
940          */
941         retval = rt2x00lib_initialize(rt2x00dev);
942         if (retval)
943                 return retval;
944
945         /*
946          * Enable radio.
947          */
948         retval = rt2x00lib_enable_radio(rt2x00dev);
949         if (retval) {
950                 rt2x00lib_uninitialize(rt2x00dev);
951                 return retval;
952         }
953
954         rt2x00dev->intf_ap_count = 0;
955         rt2x00dev->intf_sta_count = 0;
956         rt2x00dev->intf_associated = 0;
957
958         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
959
960         return 0;
961 }
962
963 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
964 {
965         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
966                 return;
967
968         /*
969          * Perhaps we can add something smarter here,
970          * but for now just disabling the radio should do.
971          */
972         rt2x00lib_disable_radio(rt2x00dev);
973
974         rt2x00dev->intf_ap_count = 0;
975         rt2x00dev->intf_sta_count = 0;
976         rt2x00dev->intf_associated = 0;
977
978         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
979 }
980
981 /*
982  * driver allocation handlers.
983  */
984 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
985 {
986         int retval = -ENOMEM;
987
988         /*
989          * Make room for rt2x00_intf inside the per-interface
990          * structure ieee80211_vif.
991          */
992         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
993
994         /*
995          * Let the driver probe the device to detect the capabilities.
996          */
997         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
998         if (retval) {
999                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1000                 goto exit;
1001         }
1002
1003         /*
1004          * Initialize configuration work.
1005          */
1006         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1007         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1008         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1009
1010         /*
1011          * Allocate queue array.
1012          */
1013         retval = rt2x00queue_allocate(rt2x00dev);
1014         if (retval)
1015                 goto exit;
1016
1017         /*
1018          * Initialize ieee80211 structure.
1019          */
1020         retval = rt2x00lib_probe_hw(rt2x00dev);
1021         if (retval) {
1022                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1023                 goto exit;
1024         }
1025
1026         /*
1027          * Register extra components.
1028          */
1029         rt2x00leds_register(rt2x00dev);
1030         rt2x00rfkill_allocate(rt2x00dev);
1031         rt2x00debug_register(rt2x00dev);
1032
1033         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1034
1035         return 0;
1036
1037 exit:
1038         rt2x00lib_remove_dev(rt2x00dev);
1039
1040         return retval;
1041 }
1042 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1043
1044 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1045 {
1046         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1047
1048         /*
1049          * Disable radio.
1050          */
1051         rt2x00lib_disable_radio(rt2x00dev);
1052
1053         /*
1054          * Uninitialize device.
1055          */
1056         rt2x00lib_uninitialize(rt2x00dev);
1057
1058         /*
1059          * Free extra components
1060          */
1061         rt2x00debug_deregister(rt2x00dev);
1062         rt2x00rfkill_free(rt2x00dev);
1063         rt2x00leds_unregister(rt2x00dev);
1064
1065         /*
1066          * Free ieee80211_hw memory.
1067          */
1068         rt2x00lib_remove_hw(rt2x00dev);
1069
1070         /*
1071          * Free firmware image.
1072          */
1073         rt2x00lib_free_firmware(rt2x00dev);
1074
1075         /*
1076          * Free queue structures.
1077          */
1078         rt2x00queue_free(rt2x00dev);
1079 }
1080 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1081
1082 /*
1083  * Device state handlers
1084  */
1085 #ifdef CONFIG_PM
1086 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1087 {
1088         int retval;
1089
1090         NOTICE(rt2x00dev, "Going to sleep.\n");
1091         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1092
1093         /*
1094          * Only continue if mac80211 has open interfaces.
1095          */
1096         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1097                 goto exit;
1098         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1099
1100         /*
1101          * Disable radio.
1102          */
1103         rt2x00lib_stop(rt2x00dev);
1104         rt2x00lib_uninitialize(rt2x00dev);
1105
1106         /*
1107          * Suspend/disable extra components.
1108          */
1109         rt2x00leds_suspend(rt2x00dev);
1110         rt2x00rfkill_suspend(rt2x00dev);
1111         rt2x00debug_deregister(rt2x00dev);
1112
1113 exit:
1114         /*
1115          * Set device mode to sleep for power management,
1116          * on some hardware this call seems to consistently fail.
1117          * From the specifications it is hard to tell why it fails,
1118          * and if this is a "bad thing".
1119          * Overall it is safe to just ignore the failure and
1120          * continue suspending. The only downside is that the
1121          * device will not be in optimal power save mode, but with
1122          * the radio and the other components already disabled the
1123          * device is as good as disabled.
1124          */
1125         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1126         if (retval)
1127                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1128                         "continue suspending.\n");
1129
1130         return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1133
1134 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1135                                   struct ieee80211_vif *vif)
1136 {
1137         struct rt2x00_dev *rt2x00dev = data;
1138         struct rt2x00_intf *intf = vif_to_intf(vif);
1139
1140         spin_lock(&intf->lock);
1141
1142         rt2x00lib_config_intf(rt2x00dev, intf,
1143                               vif->type, intf->mac, intf->bssid);
1144
1145
1146         /*
1147          * Master or Ad-hoc mode require a new beacon update.
1148          */
1149         if (vif->type == IEEE80211_IF_TYPE_AP ||
1150             vif->type == IEEE80211_IF_TYPE_IBSS)
1151                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1152
1153         spin_unlock(&intf->lock);
1154 }
1155
1156 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1157 {
1158         int retval;
1159
1160         NOTICE(rt2x00dev, "Waking up.\n");
1161
1162         /*
1163          * Restore/enable extra components.
1164          */
1165         rt2x00debug_register(rt2x00dev);
1166         rt2x00rfkill_resume(rt2x00dev);
1167         rt2x00leds_resume(rt2x00dev);
1168
1169         /*
1170          * Only continue if mac80211 had open interfaces.
1171          */
1172         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1173                 return 0;
1174
1175         /*
1176          * Reinitialize device and all active interfaces.
1177          */
1178         retval = rt2x00lib_start(rt2x00dev);
1179         if (retval)
1180                 goto exit;
1181
1182         /*
1183          * Reconfigure device.
1184          */
1185         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1186         if (!rt2x00dev->hw->conf.radio_enabled)
1187                 rt2x00lib_disable_radio(rt2x00dev);
1188
1189         /*
1190          * Iterator over each active interface to
1191          * reconfigure the hardware.
1192          */
1193         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1194                                             rt2x00lib_resume_intf, rt2x00dev);
1195
1196         /*
1197          * We are ready again to receive requests from mac80211.
1198          */
1199         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1200
1201         /*
1202          * It is possible that during that mac80211 has attempted
1203          * to send frames while we were suspending or resuming.
1204          * In that case we have disabled the TX queue and should
1205          * now enable it again
1206          */
1207         ieee80211_wake_queues(rt2x00dev->hw);
1208
1209         /*
1210          * During interface iteration we might have changed the
1211          * delayed_flags, time to handles the event by calling
1212          * the work handler directly.
1213          */
1214         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1215
1216         return 0;
1217
1218 exit:
1219         rt2x00lib_disable_radio(rt2x00dev);
1220         rt2x00lib_uninitialize(rt2x00dev);
1221         rt2x00debug_deregister(rt2x00dev);
1222
1223         return retval;
1224 }
1225 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1226 #endif /* CONFIG_PM */
1227
1228 /*
1229  * rt2x00lib module information.
1230  */
1231 MODULE_AUTHOR(DRV_PROJECT);
1232 MODULE_VERSION(DRV_VERSION);
1233 MODULE_DESCRIPTION("rt2x00 library");
1234 MODULE_LICENSE("GPL");