]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Only strip preamble bit in rt2400pci
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112                                                        STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118         /*
119          * Enable RX.
120          */
121         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123         /*
124          * Start the TX queues.
125          */
126         ieee80211_start_queues(rt2x00dev->hw);
127
128         return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134                 return;
135
136         /*
137          * Stop all scheduled work.
138          */
139         if (work_pending(&rt2x00dev->intf_work))
140                 cancel_work_sync(&rt2x00dev->intf_work);
141         if (work_pending(&rt2x00dev->filter_work))
142                 cancel_work_sync(&rt2x00dev->filter_work);
143
144         /*
145          * Stop the TX queues.
146          */
147         ieee80211_stop_queues(rt2x00dev->hw);
148
149         /*
150          * Disable RX.
151          */
152         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154         /*
155          * Disable radio.
156          */
157         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162         /*
163          * When we are disabling the RX, we should also stop the link tuner.
164          */
165         if (state == STATE_RADIO_RX_OFF)
166                 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170         /*
171          * When we are enabling the RX, we should also start the link tuner.
172          */
173         if (state == STATE_RADIO_RX_ON &&
174             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175                 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180         enum antenna rx = rt2x00dev->link.ant.active.rx;
181         enum antenna tx = rt2x00dev->link.ant.active.tx;
182         int sample_a =
183             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184         int sample_b =
185             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187         /*
188          * We are done sampling. Now we should evaluate the results.
189          */
190         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192         /*
193          * During the last period we have sampled the RSSI
194          * from both antenna's. It now is time to determine
195          * which antenna demonstrated the best performance.
196          * When we are already on the antenna with the best
197          * performance, then there really is nothing for us
198          * left to do.
199          */
200         if (sample_a == sample_b)
201                 return;
202
203         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214         enum antenna rx = rt2x00dev->link.ant.active.rx;
215         enum antenna tx = rt2x00dev->link.ant.active.tx;
216         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219         /*
220          * Legacy driver indicates that we should swap antenna's
221          * when the difference in RSSI is greater that 5. This
222          * also should be done when the RSSI was actually better
223          * then the previous sample.
224          * When the difference exceeds the threshold we should
225          * sample the rssi from the other antenna to make a valid
226          * comparison between the 2 antennas.
227          */
228         if (abs(rssi_curr - rssi_old) < 5)
229                 return;
230
231         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244         /*
245          * Determine if software diversity is enabled for
246          * either the TX or RX antenna (or both).
247          * Always perform this check since within the link
248          * tuner interval the configuration might have changed.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262                 rt2x00dev->link.ant.flags = 0;
263                 return;
264         }
265
266         /*
267          * If we have only sampled the data over the last period
268          * we should now harvest the data. Otherwise just evaluate
269          * the data. The latter should only be performed once
270          * every 2 seconds.
271          */
272         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274         else if (rt2x00dev->link.count & 1)
275                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280         int avg_rssi = rssi;
281
282         /*
283          * Update global RSSI
284          */
285         if (link->qual.avg_rssi)
286                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287         link->qual.avg_rssi = avg_rssi;
288
289         /*
290          * Update antenna RSSI
291          */
292         if (link->ant.rssi_ant)
293                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294         link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299         if (qual->rx_failed || qual->rx_success)
300                 qual->rx_percentage =
301                     (qual->rx_success * 100) /
302                     (qual->rx_failed + qual->rx_success);
303         else
304                 qual->rx_percentage = 50;
305
306         if (qual->tx_failed || qual->tx_success)
307                 qual->tx_percentage =
308                     (qual->tx_success * 100) /
309                     (qual->tx_failed + qual->tx_success);
310         else
311                 qual->tx_percentage = 50;
312
313         qual->rx_success = 0;
314         qual->rx_failed = 0;
315         qual->tx_success = 0;
316         qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320                                            int rssi)
321 {
322         int rssi_percentage = 0;
323         int signal;
324
325         /*
326          * We need a positive value for the RSSI.
327          */
328         if (rssi < 0)
329                 rssi += rt2x00dev->rssi_offset;
330
331         /*
332          * Calculate the different percentages,
333          * which will be used for the signal.
334          */
335         if (rt2x00dev->rssi_offset)
336                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338         /*
339          * Add the individual percentages and use the WEIGHT
340          * defines to calculate the current link signal.
341          */
342         signal = ((WEIGHT_RSSI * rssi_percentage) +
343                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346         return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351         struct rt2x00_dev *rt2x00dev =
352             container_of(work, struct rt2x00_dev, link.work.work);
353
354         /*
355          * When the radio is shutting down we should
356          * immediately cease all link tuning.
357          */
358         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359                 return;
360
361         /*
362          * Update statistics.
363          */
364         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366             rt2x00dev->link.qual.rx_failed;
367
368         /*
369          * Only perform the link tuning when Link tuning
370          * has been enabled (This could have been disabled from the EEPROM).
371          */
372         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375         /*
376          * Precalculate a portion of the link signal which is
377          * in based on the tx/rx success/failure counters.
378          */
379         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381         /*
382          * Send a signal to the led to update the led signal strength.
383          */
384         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
385
386         /*
387          * Evaluate antenna setup, make this the last step since this could
388          * possibly reset some statistics.
389          */
390         rt2x00lib_evaluate_antenna(rt2x00dev);
391
392         /*
393          * Increase tuner counter, and reschedule the next link tuner run.
394          */
395         rt2x00dev->link.count++;
396         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
397                            LINK_TUNE_INTERVAL);
398 }
399
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
401 {
402         struct rt2x00_dev *rt2x00dev =
403             container_of(work, struct rt2x00_dev, filter_work);
404         unsigned int filter = rt2x00dev->packet_filter;
405
406         /*
407          * Since we had stored the filter inside rt2x00dev->packet_filter,
408          * we should now clear that field. Otherwise the driver will
409          * assume nothing has changed (*total_flags will be compared
410          * to rt2x00dev->packet_filter to determine if any action is required).
411          */
412         rt2x00dev->packet_filter = 0;
413
414         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415                                              filter, &filter, 0, NULL);
416 }
417
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419                                           struct ieee80211_vif *vif)
420 {
421         struct rt2x00_dev *rt2x00dev = data;
422         struct rt2x00_intf *intf = vif_to_intf(vif);
423         struct sk_buff *skb;
424         struct ieee80211_tx_control control;
425         struct ieee80211_bss_conf conf;
426         int delayed_flags;
427
428         /*
429          * Copy all data we need during this action under the protection
430          * of a spinlock. Otherwise race conditions might occur which results
431          * into an invalid configuration.
432          */
433         spin_lock(&intf->lock);
434
435         memcpy(&conf, &intf->conf, sizeof(conf));
436         delayed_flags = intf->delayed_flags;
437         intf->delayed_flags = 0;
438
439         spin_unlock(&intf->lock);
440
441         if (delayed_flags & DELAYED_UPDATE_BEACON) {
442                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
443                 if (skb) {
444                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
445                                                           &control);
446                         dev_kfree_skb(skb);
447                 }
448         }
449
450         if (delayed_flags & DELAYED_CONFIG_ERP)
451                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
452 }
453
454 static void rt2x00lib_intf_scheduled(struct work_struct *work)
455 {
456         struct rt2x00_dev *rt2x00dev =
457             container_of(work, struct rt2x00_dev, intf_work);
458
459         /*
460          * Iterate over each interface and perform the
461          * requested configurations.
462          */
463         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
464                                             rt2x00lib_intf_scheduled_iter,
465                                             rt2x00dev);
466 }
467
468 /*
469  * Interrupt context handlers.
470  */
471 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
472                                       struct ieee80211_vif *vif)
473 {
474         struct rt2x00_intf *intf = vif_to_intf(vif);
475
476         if (vif->type != IEEE80211_IF_TYPE_AP &&
477             vif->type != IEEE80211_IF_TYPE_IBSS)
478                 return;
479
480         spin_lock(&intf->lock);
481         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482         spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
488                 return;
489
490         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
491                                             rt2x00lib_beacondone_iter,
492                                             rt2x00dev);
493
494         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499                       struct txdone_entry_desc *txdesc)
500 {
501         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502         struct skb_frame_desc *skbdesc;
503         struct ieee80211_tx_status tx_status;
504         int success = !!(txdesc->status == TX_SUCCESS ||
505                          txdesc->status == TX_SUCCESS_RETRY);
506         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
507                       txdesc->status == TX_FAIL_INVALID ||
508                       txdesc->status == TX_FAIL_OTHER);
509
510         /*
511          * Update TX statistics.
512          */
513         rt2x00dev->link.qual.tx_success += success;
514         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
515
516         /*
517          * Initialize TX status
518          */
519         tx_status.flags = 0;
520         tx_status.ack_signal = 0;
521         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
522         tx_status.retry_count = txdesc->retry;
523         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
524
525         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
526                 if (success)
527                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
528                 else
529                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
530         }
531
532         tx_status.queue_length = entry->queue->limit;
533         tx_status.queue_number = tx_status.control.queue;
534
535         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
536                 if (success)
537                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
538                 else
539                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
540         }
541
542         /*
543          * Send the tx_status to debugfs. Only send the status report
544          * to mac80211 when the frame originated from there. If this was
545          * a extra frame coming through a mac80211 library call (RTS/CTS)
546          * then we should not send the status report back.
547          * If send to mac80211, mac80211 will clean up the skb structure,
548          * otherwise we have to do it ourself.
549          */
550         skbdesc = get_skb_frame_desc(entry->skb);
551         skbdesc->frame_type = DUMP_FRAME_TXDONE;
552
553         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
554
555         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
556                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
557                                             entry->skb, &tx_status);
558         else
559                 dev_kfree_skb(entry->skb);
560         entry->skb = NULL;
561 }
562 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
563
564 void rt2x00lib_rxdone(struct queue_entry *entry,
565                       struct rxdone_entry_desc *rxdesc)
566 {
567         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
568         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
569         struct ieee80211_supported_band *sband;
570         struct ieee80211_hdr *hdr;
571         const struct rt2x00_rate *rate;
572         unsigned int i;
573         int idx = -1;
574         u16 fc;
575
576         /*
577          * Update RX statistics.
578          */
579         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
580         for (i = 0; i < sband->n_bitrates; i++) {
581                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
582
583                 if ((rxdesc->signal_plcp && rate->plcp == rxdesc->signal) ||
584                     (!rxdesc->signal_plcp && rate->bitrate == rxdesc->signal)) {
585                         idx = i;
586                         break;
587                 }
588         }
589
590         /*
591          * Only update link status if this is a beacon frame carrying our bssid.
592          */
593         hdr = (struct ieee80211_hdr *)entry->skb->data;
594         fc = le16_to_cpu(hdr->frame_control);
595         if (is_beacon(fc) && rxdesc->my_bss)
596                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
597
598         rt2x00dev->link.qual.rx_success++;
599
600         rx_status->rate_idx = idx;
601         rx_status->signal =
602             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
603         rx_status->ssi = rxdesc->rssi;
604         rx_status->flag = rxdesc->flags;
605         rx_status->antenna = rt2x00dev->link.ant.active.rx;
606
607         /*
608          * Send frame to mac80211 & debugfs.
609          * mac80211 will clean up the skb structure.
610          */
611         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
612         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
613         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
614         entry->skb = NULL;
615 }
616 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
617
618 /*
619  * TX descriptor initializer
620  */
621 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
622                              struct sk_buff *skb,
623                              struct ieee80211_tx_control *control)
624 {
625         struct txentry_desc txdesc;
626         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
627         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
628         const struct rt2x00_rate *rate;
629         int tx_rate;
630         int length;
631         int duration;
632         int residual;
633         u16 frame_control;
634         u16 seq_ctrl;
635
636         memset(&txdesc, 0, sizeof(txdesc));
637
638         txdesc.queue = skbdesc->entry->queue->qid;
639         txdesc.cw_min = skbdesc->entry->queue->cw_min;
640         txdesc.cw_max = skbdesc->entry->queue->cw_max;
641         txdesc.aifs = skbdesc->entry->queue->aifs;
642
643         /*
644          * Read required fields from ieee80211 header.
645          */
646         frame_control = le16_to_cpu(hdr->frame_control);
647         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
648
649         tx_rate = control->tx_rate->hw_value;
650
651         /*
652          * Check whether this frame is to be acked
653          */
654         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
655                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
656
657         /*
658          * Check if this is a RTS/CTS frame
659          */
660         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
661                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
662                 if (is_rts_frame(frame_control)) {
663                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
664                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
665                 } else
666                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
667                 if (control->rts_cts_rate)
668                         tx_rate = control->rts_cts_rate->hw_value;
669         }
670
671         rate = rt2x00_get_rate(tx_rate);
672
673         /*
674          * Check if more fragments are pending
675          */
676         if (ieee80211_get_morefrag(hdr)) {
677                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
678                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
679         }
680
681         /*
682          * Beacons and probe responses require the tsf timestamp
683          * to be inserted into the frame.
684          */
685         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
686             is_probe_resp(frame_control))
687                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
688
689         /*
690          * Determine with what IFS priority this frame should be send.
691          * Set ifs to IFS_SIFS when the this is not the first fragment,
692          * or this fragment came after RTS/CTS.
693          */
694         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
695             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
696                 txdesc.ifs = IFS_SIFS;
697         else
698                 txdesc.ifs = IFS_BACKOFF;
699
700         /*
701          * PLCP setup
702          * Length calculation depends on OFDM/CCK rate.
703          */
704         txdesc.signal = rate->plcp;
705         txdesc.service = 0x04;
706
707         length = skbdesc->data_len + FCS_LEN;
708         if (rate->flags & DEV_RATE_OFDM) {
709                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
710
711                 txdesc.length_high = (length >> 6) & 0x3f;
712                 txdesc.length_low = length & 0x3f;
713         } else {
714                 /*
715                  * Convert length to microseconds.
716                  */
717                 residual = get_duration_res(length, rate->bitrate);
718                 duration = get_duration(length, rate->bitrate);
719
720                 if (residual != 0) {
721                         duration++;
722
723                         /*
724                          * Check if we need to set the Length Extension
725                          */
726                         if (rate->bitrate == 110 && residual <= 30)
727                                 txdesc.service |= 0x80;
728                 }
729
730                 txdesc.length_high = (duration >> 8) & 0xff;
731                 txdesc.length_low = duration & 0xff;
732
733                 /*
734                  * When preamble is enabled we should set the
735                  * preamble bit for the signal.
736                  */
737                 if (rt2x00_get_rate_preamble(tx_rate))
738                         txdesc.signal |= 0x08;
739         }
740
741         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
742
743         /*
744          * Update queue entry.
745          */
746         skbdesc->entry->skb = skb;
747
748         /*
749          * The frame has been completely initialized and ready
750          * for sending to the device. The caller will push the
751          * frame to the device, but we are going to push the
752          * frame to debugfs here.
753          */
754         skbdesc->frame_type = DUMP_FRAME_TX;
755         rt2x00debug_dump_frame(rt2x00dev, skb);
756 }
757 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
758
759 /*
760  * Driver initialization handlers.
761  */
762 const struct rt2x00_rate rt2x00_supported_rates[12] = {
763         {
764                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
765                 .bitrate = 10,
766                 .ratemask = BIT(0),
767                 .plcp = 0x00,
768         },
769         {
770                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
771                 .bitrate = 20,
772                 .ratemask = BIT(1),
773                 .plcp = 0x01,
774         },
775         {
776                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
777                 .bitrate = 55,
778                 .ratemask = BIT(2),
779                 .plcp = 0x02,
780         },
781         {
782                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
783                 .bitrate = 110,
784                 .ratemask = BIT(3),
785                 .plcp = 0x03,
786         },
787         {
788                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
789                 .bitrate = 60,
790                 .ratemask = BIT(4),
791                 .plcp = 0x0b,
792         },
793         {
794                 .flags = DEV_RATE_OFDM,
795                 .bitrate = 90,
796                 .ratemask = BIT(5),
797                 .plcp = 0x0f,
798         },
799         {
800                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
801                 .bitrate = 120,
802                 .ratemask = BIT(6),
803                 .plcp = 0x0a,
804         },
805         {
806                 .flags = DEV_RATE_OFDM,
807                 .bitrate = 180,
808                 .ratemask = BIT(7),
809                 .plcp = 0x0e,
810         },
811         {
812                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
813                 .bitrate = 240,
814                 .ratemask = BIT(8),
815                 .plcp = 0x09,
816         },
817         {
818                 .flags = DEV_RATE_OFDM,
819                 .bitrate = 360,
820                 .ratemask = BIT(9),
821                 .plcp = 0x0d,
822         },
823         {
824                 .flags = DEV_RATE_OFDM,
825                 .bitrate = 480,
826                 .ratemask = BIT(10),
827                 .plcp = 0x08,
828         },
829         {
830                 .flags = DEV_RATE_OFDM,
831                 .bitrate = 540,
832                 .ratemask = BIT(11),
833                 .plcp = 0x0c,
834         },
835 };
836
837 static void rt2x00lib_channel(struct ieee80211_channel *entry,
838                               const int channel, const int tx_power,
839                               const int value)
840 {
841         entry->center_freq = ieee80211_channel_to_frequency(channel);
842         entry->hw_value = value;
843         entry->max_power = tx_power;
844         entry->max_antenna_gain = 0xff;
845 }
846
847 static void rt2x00lib_rate(struct ieee80211_rate *entry,
848                            const u16 index, const struct rt2x00_rate *rate)
849 {
850         entry->flags = 0;
851         entry->bitrate = rate->bitrate;
852         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
853         entry->hw_value_short = entry->hw_value;
854
855         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
856                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
857                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
858         }
859 }
860
861 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
862                                     struct hw_mode_spec *spec)
863 {
864         struct ieee80211_hw *hw = rt2x00dev->hw;
865         struct ieee80211_channel *channels;
866         struct ieee80211_rate *rates;
867         unsigned int num_rates;
868         unsigned int i;
869         unsigned char tx_power;
870
871         num_rates = 0;
872         if (spec->supported_rates & SUPPORT_RATE_CCK)
873                 num_rates += 4;
874         if (spec->supported_rates & SUPPORT_RATE_OFDM)
875                 num_rates += 8;
876
877         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
878         if (!channels)
879                 return -ENOMEM;
880
881         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
882         if (!rates)
883                 goto exit_free_channels;
884
885         /*
886          * Initialize Rate list.
887          */
888         for (i = 0; i < num_rates; i++)
889                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
890
891         /*
892          * Initialize Channel list.
893          */
894         for (i = 0; i < spec->num_channels; i++) {
895                 if (spec->channels[i].channel <= 14) {
896                         if (spec->tx_power_bg)
897                                 tx_power = spec->tx_power_bg[i];
898                         else
899                                 tx_power = spec->tx_power_default;
900                 } else {
901                         if (spec->tx_power_a)
902                                 tx_power = spec->tx_power_a[i];
903                         else
904                                 tx_power = spec->tx_power_default;
905                 }
906
907                 rt2x00lib_channel(&channels[i],
908                                   spec->channels[i].channel, tx_power, i);
909         }
910
911         /*
912          * Intitialize 802.11b, 802.11g
913          * Rates: CCK, OFDM.
914          * Channels: 2.4 GHz
915          */
916         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
917                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
918                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
919                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
920                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
921                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
922                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
923         }
924
925         /*
926          * Intitialize 802.11a
927          * Rates: OFDM.
928          * Channels: OFDM, UNII, HiperLAN2.
929          */
930         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
931                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
932                     spec->num_channels - 14;
933                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
934                     num_rates - 4;
935                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
936                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
937                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
938                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
939         }
940
941         return 0;
942
943  exit_free_channels:
944         kfree(channels);
945         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
946         return -ENOMEM;
947 }
948
949 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
950 {
951         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
952                 ieee80211_unregister_hw(rt2x00dev->hw);
953
954         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
955                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
956                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
957                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
958                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
959         }
960 }
961
962 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
963 {
964         struct hw_mode_spec *spec = &rt2x00dev->spec;
965         int status;
966
967         /*
968          * Initialize HW modes.
969          */
970         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
971         if (status)
972                 return status;
973
974         /*
975          * Register HW.
976          */
977         status = ieee80211_register_hw(rt2x00dev->hw);
978         if (status) {
979                 rt2x00lib_remove_hw(rt2x00dev);
980                 return status;
981         }
982
983         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
984
985         return 0;
986 }
987
988 /*
989  * Initialization/uninitialization handlers.
990  */
991 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
992 {
993         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
994                 return;
995
996         /*
997          * Unregister rfkill.
998          */
999         rt2x00rfkill_unregister(rt2x00dev);
1000
1001         /*
1002          * Allow the HW to uninitialize.
1003          */
1004         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1005
1006         /*
1007          * Free allocated queue entries.
1008          */
1009         rt2x00queue_uninitialize(rt2x00dev);
1010 }
1011
1012 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1013 {
1014         int status;
1015
1016         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1017                 return 0;
1018
1019         /*
1020          * Allocate all queue entries.
1021          */
1022         status = rt2x00queue_initialize(rt2x00dev);
1023         if (status)
1024                 return status;
1025
1026         /*
1027          * Initialize the device.
1028          */
1029         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1030         if (status)
1031                 goto exit;
1032
1033         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1034
1035         /*
1036          * Register the rfkill handler.
1037          */
1038         status = rt2x00rfkill_register(rt2x00dev);
1039         if (status)
1040                 goto exit;
1041
1042         return 0;
1043
1044 exit:
1045         rt2x00lib_uninitialize(rt2x00dev);
1046
1047         return status;
1048 }
1049
1050 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1051 {
1052         int retval;
1053
1054         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1055                 return 0;
1056
1057         /*
1058          * If this is the first interface which is added,
1059          * we should load the firmware now.
1060          */
1061         retval = rt2x00lib_load_firmware(rt2x00dev);
1062         if (retval)
1063                 return retval;
1064
1065         /*
1066          * Initialize the device.
1067          */
1068         retval = rt2x00lib_initialize(rt2x00dev);
1069         if (retval)
1070                 return retval;
1071
1072         /*
1073          * Enable radio.
1074          */
1075         retval = rt2x00lib_enable_radio(rt2x00dev);
1076         if (retval) {
1077                 rt2x00lib_uninitialize(rt2x00dev);
1078                 return retval;
1079         }
1080
1081         rt2x00dev->intf_ap_count = 0;
1082         rt2x00dev->intf_sta_count = 0;
1083         rt2x00dev->intf_associated = 0;
1084
1085         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1086
1087         return 0;
1088 }
1089
1090 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1091 {
1092         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1093                 return;
1094
1095         /*
1096          * Perhaps we can add something smarter here,
1097          * but for now just disabling the radio should do.
1098          */
1099         rt2x00lib_disable_radio(rt2x00dev);
1100
1101         rt2x00dev->intf_ap_count = 0;
1102         rt2x00dev->intf_sta_count = 0;
1103         rt2x00dev->intf_associated = 0;
1104
1105         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1106 }
1107
1108 /*
1109  * driver allocation handlers.
1110  */
1111 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1112 {
1113         int retval = -ENOMEM;
1114
1115         /*
1116          * Make room for rt2x00_intf inside the per-interface
1117          * structure ieee80211_vif.
1118          */
1119         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1120
1121         /*
1122          * Let the driver probe the device to detect the capabilities.
1123          */
1124         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1125         if (retval) {
1126                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1127                 goto exit;
1128         }
1129
1130         /*
1131          * Initialize configuration work.
1132          */
1133         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1134         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1135         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1136
1137         /*
1138          * Allocate queue array.
1139          */
1140         retval = rt2x00queue_allocate(rt2x00dev);
1141         if (retval)
1142                 goto exit;
1143
1144         /*
1145          * Initialize ieee80211 structure.
1146          */
1147         retval = rt2x00lib_probe_hw(rt2x00dev);
1148         if (retval) {
1149                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1150                 goto exit;
1151         }
1152
1153         /*
1154          * Register LED.
1155          */
1156         rt2x00leds_register(rt2x00dev);
1157
1158         /*
1159          * Allocatie rfkill.
1160          */
1161         retval = rt2x00rfkill_allocate(rt2x00dev);
1162         if (retval)
1163                 goto exit;
1164
1165         /*
1166          * Open the debugfs entry.
1167          */
1168         rt2x00debug_register(rt2x00dev);
1169
1170         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1171
1172         return 0;
1173
1174 exit:
1175         rt2x00lib_remove_dev(rt2x00dev);
1176
1177         return retval;
1178 }
1179 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1180
1181 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1182 {
1183         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1184
1185         /*
1186          * Disable radio.
1187          */
1188         rt2x00lib_disable_radio(rt2x00dev);
1189
1190         /*
1191          * Uninitialize device.
1192          */
1193         rt2x00lib_uninitialize(rt2x00dev);
1194
1195         /*
1196          * Close debugfs entry.
1197          */
1198         rt2x00debug_deregister(rt2x00dev);
1199
1200         /*
1201          * Free rfkill
1202          */
1203         rt2x00rfkill_free(rt2x00dev);
1204
1205         /*
1206          * Free LED.
1207          */
1208         rt2x00leds_unregister(rt2x00dev);
1209
1210         /*
1211          * Free ieee80211_hw memory.
1212          */
1213         rt2x00lib_remove_hw(rt2x00dev);
1214
1215         /*
1216          * Free firmware image.
1217          */
1218         rt2x00lib_free_firmware(rt2x00dev);
1219
1220         /*
1221          * Free queue structures.
1222          */
1223         rt2x00queue_free(rt2x00dev);
1224 }
1225 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1226
1227 /*
1228  * Device state handlers
1229  */
1230 #ifdef CONFIG_PM
1231 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1232 {
1233         int retval;
1234
1235         NOTICE(rt2x00dev, "Going to sleep.\n");
1236         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1237
1238         /*
1239          * Only continue if mac80211 has open interfaces.
1240          */
1241         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1242                 goto exit;
1243         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1244
1245         /*
1246          * Disable radio and unitialize all items
1247          * that must be recreated on resume.
1248          */
1249         rt2x00lib_stop(rt2x00dev);
1250         rt2x00lib_uninitialize(rt2x00dev);
1251         rt2x00leds_suspend(rt2x00dev);
1252         rt2x00debug_deregister(rt2x00dev);
1253
1254 exit:
1255         /*
1256          * Set device mode to sleep for power management.
1257          */
1258         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1259         if (retval)
1260                 return retval;
1261
1262         return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1265
1266 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1267                                   struct ieee80211_vif *vif)
1268 {
1269         struct rt2x00_dev *rt2x00dev = data;
1270         struct rt2x00_intf *intf = vif_to_intf(vif);
1271
1272         spin_lock(&intf->lock);
1273
1274         rt2x00lib_config_intf(rt2x00dev, intf,
1275                               vif->type, intf->mac, intf->bssid);
1276
1277
1278         /*
1279          * Master or Ad-hoc mode require a new beacon update.
1280          */
1281         if (vif->type == IEEE80211_IF_TYPE_AP ||
1282             vif->type == IEEE80211_IF_TYPE_IBSS)
1283                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1284
1285         spin_unlock(&intf->lock);
1286 }
1287
1288 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1289 {
1290         int retval;
1291
1292         NOTICE(rt2x00dev, "Waking up.\n");
1293
1294         /*
1295          * Open the debugfs entry and restore led handling.
1296          */
1297         rt2x00debug_register(rt2x00dev);
1298         rt2x00leds_resume(rt2x00dev);
1299
1300         /*
1301          * Only continue if mac80211 had open interfaces.
1302          */
1303         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1304                 return 0;
1305
1306         /*
1307          * Reinitialize device and all active interfaces.
1308          */
1309         retval = rt2x00lib_start(rt2x00dev);
1310         if (retval)
1311                 goto exit;
1312
1313         /*
1314          * Reconfigure device.
1315          */
1316         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1317         if (!rt2x00dev->hw->conf.radio_enabled)
1318                 rt2x00lib_disable_radio(rt2x00dev);
1319
1320         /*
1321          * Iterator over each active interface to
1322          * reconfigure the hardware.
1323          */
1324         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1325                                             rt2x00lib_resume_intf, rt2x00dev);
1326
1327         /*
1328          * We are ready again to receive requests from mac80211.
1329          */
1330         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1331
1332         /*
1333          * It is possible that during that mac80211 has attempted
1334          * to send frames while we were suspending or resuming.
1335          * In that case we have disabled the TX queue and should
1336          * now enable it again
1337          */
1338         ieee80211_start_queues(rt2x00dev->hw);
1339
1340         /*
1341          * During interface iteration we might have changed the
1342          * delayed_flags, time to handles the event by calling
1343          * the work handler directly.
1344          */
1345         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1346
1347         return 0;
1348
1349 exit:
1350         rt2x00lib_disable_radio(rt2x00dev);
1351         rt2x00lib_uninitialize(rt2x00dev);
1352         rt2x00debug_deregister(rt2x00dev);
1353
1354         return retval;
1355 }
1356 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1357 #endif /* CONFIG_PM */
1358
1359 /*
1360  * rt2x00lib module information.
1361  */
1362 MODULE_AUTHOR(DRV_PROJECT);
1363 MODULE_VERSION(DRV_VERSION);
1364 MODULE_DESCRIPTION("rt2x00 library");
1365 MODULE_LICENSE("GPL");