]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/megaraid/megaraid_sas.c
ffd1390b155bf0eee4034c89a595d161b3033420
[linux-2.6-omap-h63xx.git] / drivers / scsi / megaraid / megaraid_sas.c
1 /*
2  *
3  *              Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Corporation.
6  *
7  *         This program is free software; you can redistribute it and/or
8  *         modify it under the terms of the GNU General Public License
9  *         as published by the Free Software Foundation; either version
10  *         2 of the License, or (at your option) any later version.
11  *
12  * FILE         : megaraid_sas.c
13  * Version      : v00.00.03.16-rc1
14  *
15  * Authors:
16  *      (email-id : megaraidlinux@lsi.com)
17  *      Sreenivas Bagalkote
18  *      Sumant Patro
19  *      Bo Yang
20  *
21  * List of supported controllers
22  *
23  * OEM  Product Name                    VID     DID     SSVID   SSID
24  * ---  ------------                    ---     ---     ----    ----
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/uio.h>
37 #include <asm/uaccess.h>
38 #include <linux/fs.h>
39 #include <linux/compat.h>
40 #include <linux/blkdev.h>
41 #include <linux/mutex.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 #include "megaraid_sas.h"
48
49 /*
50  * poll_mode_io:1- schedule complete completion from q cmd
51  */
52 static unsigned int poll_mode_io;
53 module_param_named(poll_mode_io, poll_mode_io, int, 0);
54 MODULE_PARM_DESC(poll_mode_io,
55         "Complete cmds from IO path, (default=0)");
56
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(MEGASAS_VERSION);
59 MODULE_AUTHOR("megaraidlinux@lsi.com");
60 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
61
62 /*
63  * PCI ID table for all supported controllers
64  */
65 static struct pci_device_id megasas_pci_table[] = {
66
67         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
68         /* xscale IOP */
69         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
70         /* ppc IOP */
71         {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
72         /* xscale IOP, vega */
73         {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
74         /* xscale IOP */
75         {}
76 };
77
78 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
79
80 static int megasas_mgmt_majorno;
81 static struct megasas_mgmt_info megasas_mgmt_info;
82 static struct fasync_struct *megasas_async_queue;
83 static DEFINE_MUTEX(megasas_async_queue_mutex);
84
85 static u32 megasas_dbg_lvl;
86
87 static void
88 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
89                      u8 alt_status);
90
91 /**
92  * megasas_get_cmd -    Get a command from the free pool
93  * @instance:           Adapter soft state
94  *
95  * Returns a free command from the pool
96  */
97 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
98                                                   *instance)
99 {
100         unsigned long flags;
101         struct megasas_cmd *cmd = NULL;
102
103         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
104
105         if (!list_empty(&instance->cmd_pool)) {
106                 cmd = list_entry((&instance->cmd_pool)->next,
107                                  struct megasas_cmd, list);
108                 list_del_init(&cmd->list);
109         } else {
110                 printk(KERN_ERR "megasas: Command pool empty!\n");
111         }
112
113         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
114         return cmd;
115 }
116
117 /**
118  * megasas_return_cmd - Return a cmd to free command pool
119  * @instance:           Adapter soft state
120  * @cmd:                Command packet to be returned to free command pool
121  */
122 static inline void
123 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
124 {
125         unsigned long flags;
126
127         spin_lock_irqsave(&instance->cmd_pool_lock, flags);
128
129         cmd->scmd = NULL;
130         list_add_tail(&cmd->list, &instance->cmd_pool);
131
132         spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
133 }
134
135
136 /**
137 *       The following functions are defined for xscale 
138 *       (deviceid : 1064R, PERC5) controllers
139 */
140
141 /**
142  * megasas_enable_intr_xscale - Enables interrupts
143  * @regs:                       MFI register set
144  */
145 static inline void
146 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
147 {
148         writel(1, &(regs)->outbound_intr_mask);
149
150         /* Dummy readl to force pci flush */
151         readl(&regs->outbound_intr_mask);
152 }
153
154 /**
155  * megasas_disable_intr_xscale -Disables interrupt
156  * @regs:                       MFI register set
157  */
158 static inline void
159 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
160 {
161         u32 mask = 0x1f;
162         writel(mask, &regs->outbound_intr_mask);
163         /* Dummy readl to force pci flush */
164         readl(&regs->outbound_intr_mask);
165 }
166
167 /**
168  * megasas_read_fw_status_reg_xscale - returns the current FW status value
169  * @regs:                       MFI register set
170  */
171 static u32
172 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
173 {
174         return readl(&(regs)->outbound_msg_0);
175 }
176 /**
177  * megasas_clear_interrupt_xscale -     Check & clear interrupt
178  * @regs:                               MFI register set
179  */
180 static int 
181 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
182 {
183         u32 status;
184         /*
185          * Check if it is our interrupt
186          */
187         status = readl(&regs->outbound_intr_status);
188
189         if (!(status & MFI_OB_INTR_STATUS_MASK)) {
190                 return 1;
191         }
192
193         /*
194          * Clear the interrupt by writing back the same value
195          */
196         writel(status, &regs->outbound_intr_status);
197
198         return 0;
199 }
200
201 /**
202  * megasas_fire_cmd_xscale -    Sends command to the FW
203  * @frame_phys_addr :           Physical address of cmd
204  * @frame_count :               Number of frames for the command
205  * @regs :                      MFI register set
206  */
207 static inline void 
208 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
209 {
210         writel((frame_phys_addr >> 3)|(frame_count),
211                &(regs)->inbound_queue_port);
212 }
213
214 static struct megasas_instance_template megasas_instance_template_xscale = {
215
216         .fire_cmd = megasas_fire_cmd_xscale,
217         .enable_intr = megasas_enable_intr_xscale,
218         .disable_intr = megasas_disable_intr_xscale,
219         .clear_intr = megasas_clear_intr_xscale,
220         .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
221 };
222
223 /**
224 *       This is the end of set of functions & definitions specific 
225 *       to xscale (deviceid : 1064R, PERC5) controllers
226 */
227
228 /**
229 *       The following functions are defined for ppc (deviceid : 0x60) 
230 *       controllers
231 */
232
233 /**
234  * megasas_enable_intr_ppc -    Enables interrupts
235  * @regs:                       MFI register set
236  */
237 static inline void
238 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
239 {
240         writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
241     
242         writel(~0x80000004, &(regs)->outbound_intr_mask);
243
244         /* Dummy readl to force pci flush */
245         readl(&regs->outbound_intr_mask);
246 }
247
248 /**
249  * megasas_disable_intr_ppc -   Disable interrupt
250  * @regs:                       MFI register set
251  */
252 static inline void
253 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
254 {
255         u32 mask = 0xFFFFFFFF;
256         writel(mask, &regs->outbound_intr_mask);
257         /* Dummy readl to force pci flush */
258         readl(&regs->outbound_intr_mask);
259 }
260
261 /**
262  * megasas_read_fw_status_reg_ppc - returns the current FW status value
263  * @regs:                       MFI register set
264  */
265 static u32
266 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
267 {
268         return readl(&(regs)->outbound_scratch_pad);
269 }
270
271 /**
272  * megasas_clear_interrupt_ppc -        Check & clear interrupt
273  * @regs:                               MFI register set
274  */
275 static int 
276 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
277 {
278         u32 status;
279         /*
280          * Check if it is our interrupt
281          */
282         status = readl(&regs->outbound_intr_status);
283
284         if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
285                 return 1;
286         }
287
288         /*
289          * Clear the interrupt by writing back the same value
290          */
291         writel(status, &regs->outbound_doorbell_clear);
292
293         return 0;
294 }
295 /**
296  * megasas_fire_cmd_ppc -       Sends command to the FW
297  * @frame_phys_addr :           Physical address of cmd
298  * @frame_count :               Number of frames for the command
299  * @regs :                      MFI register set
300  */
301 static inline void 
302 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
303 {
304         writel((frame_phys_addr | (frame_count<<1))|1, 
305                         &(regs)->inbound_queue_port);
306 }
307
308 static struct megasas_instance_template megasas_instance_template_ppc = {
309         
310         .fire_cmd = megasas_fire_cmd_ppc,
311         .enable_intr = megasas_enable_intr_ppc,
312         .disable_intr = megasas_disable_intr_ppc,
313         .clear_intr = megasas_clear_intr_ppc,
314         .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
315 };
316
317 /**
318 *       This is the end of set of functions & definitions
319 *       specific to ppc (deviceid : 0x60) controllers
320 */
321
322 /**
323  * megasas_issue_polled -       Issues a polling command
324  * @instance:                   Adapter soft state
325  * @cmd:                        Command packet to be issued 
326  *
327  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
328  */
329 static int
330 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
331 {
332         int i;
333         u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
334
335         struct megasas_header *frame_hdr = &cmd->frame->hdr;
336
337         frame_hdr->cmd_status = 0xFF;
338         frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
339
340         /*
341          * Issue the frame using inbound queue port
342          */
343         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
344
345         /*
346          * Wait for cmd_status to change
347          */
348         for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
349                 rmb();
350                 msleep(1);
351         }
352
353         if (frame_hdr->cmd_status == 0xff)
354                 return -ETIME;
355
356         return 0;
357 }
358
359 /**
360  * megasas_issue_blocked_cmd -  Synchronous wrapper around regular FW cmds
361  * @instance:                   Adapter soft state
362  * @cmd:                        Command to be issued
363  *
364  * This function waits on an event for the command to be returned from ISR.
365  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
366  * Used to issue ioctl commands.
367  */
368 static int
369 megasas_issue_blocked_cmd(struct megasas_instance *instance,
370                           struct megasas_cmd *cmd)
371 {
372         cmd->cmd_status = ENODATA;
373
374         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
375
376         wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
377                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
378
379         return 0;
380 }
381
382 /**
383  * megasas_issue_blocked_abort_cmd -    Aborts previously issued cmd
384  * @instance:                           Adapter soft state
385  * @cmd_to_abort:                       Previously issued cmd to be aborted
386  *
387  * MFI firmware can abort previously issued AEN comamnd (automatic event
388  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
389  * cmd and waits for return status.
390  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
391  */
392 static int
393 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
394                                 struct megasas_cmd *cmd_to_abort)
395 {
396         struct megasas_cmd *cmd;
397         struct megasas_abort_frame *abort_fr;
398
399         cmd = megasas_get_cmd(instance);
400
401         if (!cmd)
402                 return -1;
403
404         abort_fr = &cmd->frame->abort;
405
406         /*
407          * Prepare and issue the abort frame
408          */
409         abort_fr->cmd = MFI_CMD_ABORT;
410         abort_fr->cmd_status = 0xFF;
411         abort_fr->flags = 0;
412         abort_fr->abort_context = cmd_to_abort->index;
413         abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
414         abort_fr->abort_mfi_phys_addr_hi = 0;
415
416         cmd->sync_cmd = 1;
417         cmd->cmd_status = 0xFF;
418
419         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
420
421         /*
422          * Wait for this cmd to complete
423          */
424         wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
425                 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
426
427         megasas_return_cmd(instance, cmd);
428         return 0;
429 }
430
431 /**
432  * megasas_make_sgl32 - Prepares 32-bit SGL
433  * @instance:           Adapter soft state
434  * @scp:                SCSI command from the mid-layer
435  * @mfi_sgl:            SGL to be filled in
436  *
437  * If successful, this function returns the number of SG elements. Otherwise,
438  * it returnes -1.
439  */
440 static int
441 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
442                    union megasas_sgl *mfi_sgl)
443 {
444         int i;
445         int sge_count;
446         struct scatterlist *os_sgl;
447
448         sge_count = scsi_dma_map(scp);
449         BUG_ON(sge_count < 0);
450
451         if (sge_count) {
452                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
453                         mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
454                         mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
455                 }
456         }
457         return sge_count;
458 }
459
460 /**
461  * megasas_make_sgl64 - Prepares 64-bit SGL
462  * @instance:           Adapter soft state
463  * @scp:                SCSI command from the mid-layer
464  * @mfi_sgl:            SGL to be filled in
465  *
466  * If successful, this function returns the number of SG elements. Otherwise,
467  * it returnes -1.
468  */
469 static int
470 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
471                    union megasas_sgl *mfi_sgl)
472 {
473         int i;
474         int sge_count;
475         struct scatterlist *os_sgl;
476
477         sge_count = scsi_dma_map(scp);
478         BUG_ON(sge_count < 0);
479
480         if (sge_count) {
481                 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
482                         mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
483                         mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
484                 }
485         }
486         return sge_count;
487 }
488
489  /**
490  * megasas_get_frame_count - Computes the number of frames
491  * @frame_type          : type of frame- io or pthru frame
492  * @sge_count           : number of sg elements
493  *
494  * Returns the number of frames required for numnber of sge's (sge_count)
495  */
496
497 static u32 megasas_get_frame_count(u8 sge_count, u8 frame_type)
498 {
499         int num_cnt;
500         int sge_bytes;
501         u32 sge_sz;
502         u32 frame_count=0;
503
504         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
505             sizeof(struct megasas_sge32);
506
507         /*
508          * Main frame can contain 2 SGEs for 64-bit SGLs and
509          * 3 SGEs for 32-bit SGLs for ldio &
510          * 1 SGEs for 64-bit SGLs and
511          * 2 SGEs for 32-bit SGLs for pthru frame
512          */
513         if (unlikely(frame_type == PTHRU_FRAME)) {
514                 if (IS_DMA64)
515                         num_cnt = sge_count - 1;
516                 else
517                         num_cnt = sge_count - 2;
518         } else {
519                 if (IS_DMA64)
520                         num_cnt = sge_count - 2;
521                 else
522                         num_cnt = sge_count - 3;
523         }
524
525         if(num_cnt>0){
526                 sge_bytes = sge_sz * num_cnt;
527
528                 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
529                     ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
530         }
531         /* Main frame */
532         frame_count +=1;
533
534         if (frame_count > 7)
535                 frame_count = 8;
536         return frame_count;
537 }
538
539 /**
540  * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
541  * @instance:           Adapter soft state
542  * @scp:                SCSI command
543  * @cmd:                Command to be prepared in
544  *
545  * This function prepares CDB commands. These are typcially pass-through
546  * commands to the devices.
547  */
548 static int
549 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
550                    struct megasas_cmd *cmd)
551 {
552         u32 is_logical;
553         u32 device_id;
554         u16 flags = 0;
555         struct megasas_pthru_frame *pthru;
556
557         is_logical = MEGASAS_IS_LOGICAL(scp);
558         device_id = MEGASAS_DEV_INDEX(instance, scp);
559         pthru = (struct megasas_pthru_frame *)cmd->frame;
560
561         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
562                 flags = MFI_FRAME_DIR_WRITE;
563         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
564                 flags = MFI_FRAME_DIR_READ;
565         else if (scp->sc_data_direction == PCI_DMA_NONE)
566                 flags = MFI_FRAME_DIR_NONE;
567
568         /*
569          * Prepare the DCDB frame
570          */
571         pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
572         pthru->cmd_status = 0x0;
573         pthru->scsi_status = 0x0;
574         pthru->target_id = device_id;
575         pthru->lun = scp->device->lun;
576         pthru->cdb_len = scp->cmd_len;
577         pthru->timeout = 0;
578         pthru->flags = flags;
579         pthru->data_xfer_len = scsi_bufflen(scp);
580
581         memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
582
583         /*
584          * Construct SGL
585          */
586         if (IS_DMA64) {
587                 pthru->flags |= MFI_FRAME_SGL64;
588                 pthru->sge_count = megasas_make_sgl64(instance, scp,
589                                                       &pthru->sgl);
590         } else
591                 pthru->sge_count = megasas_make_sgl32(instance, scp,
592                                                       &pthru->sgl);
593
594         /*
595          * Sense info specific
596          */
597         pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
598         pthru->sense_buf_phys_addr_hi = 0;
599         pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
600
601         /*
602          * Compute the total number of frames this command consumes. FW uses
603          * this number to pull sufficient number of frames from host memory.
604          */
605         cmd->frame_count = megasas_get_frame_count(pthru->sge_count,
606                                                         PTHRU_FRAME);
607
608         return cmd->frame_count;
609 }
610
611 /**
612  * megasas_build_ldio - Prepares IOs to logical devices
613  * @instance:           Adapter soft state
614  * @scp:                SCSI command
615  * @cmd:                Command to to be prepared
616  *
617  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
618  */
619 static int
620 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
621                    struct megasas_cmd *cmd)
622 {
623         u32 device_id;
624         u8 sc = scp->cmnd[0];
625         u16 flags = 0;
626         struct megasas_io_frame *ldio;
627
628         device_id = MEGASAS_DEV_INDEX(instance, scp);
629         ldio = (struct megasas_io_frame *)cmd->frame;
630
631         if (scp->sc_data_direction == PCI_DMA_TODEVICE)
632                 flags = MFI_FRAME_DIR_WRITE;
633         else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
634                 flags = MFI_FRAME_DIR_READ;
635
636         /*
637          * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
638          */
639         ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
640         ldio->cmd_status = 0x0;
641         ldio->scsi_status = 0x0;
642         ldio->target_id = device_id;
643         ldio->timeout = 0;
644         ldio->reserved_0 = 0;
645         ldio->pad_0 = 0;
646         ldio->flags = flags;
647         ldio->start_lba_hi = 0;
648         ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
649
650         /*
651          * 6-byte READ(0x08) or WRITE(0x0A) cdb
652          */
653         if (scp->cmd_len == 6) {
654                 ldio->lba_count = (u32) scp->cmnd[4];
655                 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
656                     ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
657
658                 ldio->start_lba_lo &= 0x1FFFFF;
659         }
660
661         /*
662          * 10-byte READ(0x28) or WRITE(0x2A) cdb
663          */
664         else if (scp->cmd_len == 10) {
665                 ldio->lba_count = (u32) scp->cmnd[8] |
666                     ((u32) scp->cmnd[7] << 8);
667                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
668                     ((u32) scp->cmnd[3] << 16) |
669                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
670         }
671
672         /*
673          * 12-byte READ(0xA8) or WRITE(0xAA) cdb
674          */
675         else if (scp->cmd_len == 12) {
676                 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
677                     ((u32) scp->cmnd[7] << 16) |
678                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
679
680                 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
681                     ((u32) scp->cmnd[3] << 16) |
682                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
683         }
684
685         /*
686          * 16-byte READ(0x88) or WRITE(0x8A) cdb
687          */
688         else if (scp->cmd_len == 16) {
689                 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
690                     ((u32) scp->cmnd[11] << 16) |
691                     ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
692
693                 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
694                     ((u32) scp->cmnd[7] << 16) |
695                     ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
696
697                 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
698                     ((u32) scp->cmnd[3] << 16) |
699                     ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
700
701         }
702
703         /*
704          * Construct SGL
705          */
706         if (IS_DMA64) {
707                 ldio->flags |= MFI_FRAME_SGL64;
708                 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
709         } else
710                 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
711
712         /*
713          * Sense info specific
714          */
715         ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
716         ldio->sense_buf_phys_addr_hi = 0;
717         ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
718
719         /*
720          * Compute the total number of frames this command consumes. FW uses
721          * this number to pull sufficient number of frames from host memory.
722          */
723         cmd->frame_count = megasas_get_frame_count(ldio->sge_count, IO_FRAME);
724
725         return cmd->frame_count;
726 }
727
728 /**
729  * megasas_is_ldio -            Checks if the cmd is for logical drive
730  * @scmd:                       SCSI command
731  *      
732  * Called by megasas_queue_command to find out if the command to be queued
733  * is a logical drive command   
734  */
735 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
736 {
737         if (!MEGASAS_IS_LOGICAL(cmd))
738                 return 0;
739         switch (cmd->cmnd[0]) {
740         case READ_10:
741         case WRITE_10:
742         case READ_12:
743         case WRITE_12:
744         case READ_6:
745         case WRITE_6:
746         case READ_16:
747         case WRITE_16:
748                 return 1;
749         default:
750                 return 0;
751         }
752 }
753
754  /**
755  * megasas_dump_pending_frames -        Dumps the frame address of all pending cmds
756  *                                      in FW
757  * @instance:                           Adapter soft state
758  */
759 static inline void
760 megasas_dump_pending_frames(struct megasas_instance *instance)
761 {
762         struct megasas_cmd *cmd;
763         int i,n;
764         union megasas_sgl *mfi_sgl;
765         struct megasas_io_frame *ldio;
766         struct megasas_pthru_frame *pthru;
767         u32 sgcount;
768         u32 max_cmd = instance->max_fw_cmds;
769
770         printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
771         printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
772         if (IS_DMA64)
773                 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
774         else
775                 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
776
777         printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
778         for (i = 0; i < max_cmd; i++) {
779                 cmd = instance->cmd_list[i];
780                 if(!cmd->scmd)
781                         continue;
782                 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
783                 if (megasas_is_ldio(cmd->scmd)){
784                         ldio = (struct megasas_io_frame *)cmd->frame;
785                         mfi_sgl = &ldio->sgl;
786                         sgcount = ldio->sge_count;
787                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
788                 }
789                 else {
790                         pthru = (struct megasas_pthru_frame *) cmd->frame;
791                         mfi_sgl = &pthru->sgl;
792                         sgcount = pthru->sge_count;
793                         printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
794                 }
795         if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
796                 for (n = 0; n < sgcount; n++){
797                         if (IS_DMA64)
798                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
799                         else
800                                 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
801                         }
802                 }
803                 printk(KERN_ERR "\n");
804         } /*for max_cmd*/
805         printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
806         for (i = 0; i < max_cmd; i++) {
807
808                 cmd = instance->cmd_list[i];
809
810                 if(cmd->sync_cmd == 1){
811                         printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
812                 }
813         }
814         printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
815 }
816
817 /**
818  * megasas_queue_command -      Queue entry point
819  * @scmd:                       SCSI command to be queued
820  * @done:                       Callback entry point
821  */
822 static int
823 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
824 {
825         u32 frame_count;
826         struct megasas_cmd *cmd;
827         struct megasas_instance *instance;
828
829         instance = (struct megasas_instance *)
830             scmd->device->host->hostdata;
831
832         /* Don't process if we have already declared adapter dead */
833         if (instance->hw_crit_error)
834                 return SCSI_MLQUEUE_HOST_BUSY;
835
836         scmd->scsi_done = done;
837         scmd->result = 0;
838
839         if (MEGASAS_IS_LOGICAL(scmd) &&
840             (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
841                 scmd->result = DID_BAD_TARGET << 16;
842                 goto out_done;
843         }
844
845         switch (scmd->cmnd[0]) {
846         case SYNCHRONIZE_CACHE:
847                 /*
848                  * FW takes care of flush cache on its own
849                  * No need to send it down
850                  */
851                 scmd->result = DID_OK << 16;
852                 goto out_done;
853         default:
854                 break;
855         }
856
857         cmd = megasas_get_cmd(instance);
858         if (!cmd)
859                 return SCSI_MLQUEUE_HOST_BUSY;
860
861         /*
862          * Logical drive command
863          */
864         if (megasas_is_ldio(scmd))
865                 frame_count = megasas_build_ldio(instance, scmd, cmd);
866         else
867                 frame_count = megasas_build_dcdb(instance, scmd, cmd);
868
869         if (!frame_count)
870                 goto out_return_cmd;
871
872         cmd->scmd = scmd;
873         scmd->SCp.ptr = (char *)cmd;
874
875         /*
876          * Issue the command to the FW
877          */
878         atomic_inc(&instance->fw_outstanding);
879
880         instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
881         /*
882          * Check if we have pend cmds to be completed
883          */
884         if (poll_mode_io && atomic_read(&instance->fw_outstanding))
885                 tasklet_schedule(&instance->isr_tasklet);
886
887
888         return 0;
889
890  out_return_cmd:
891         megasas_return_cmd(instance, cmd);
892  out_done:
893         done(scmd);
894         return 0;
895 }
896
897 static int megasas_slave_configure(struct scsi_device *sdev)
898 {
899         /*
900          * Don't export physical disk devices to the disk driver.
901          *
902          * FIXME: Currently we don't export them to the midlayer at all.
903          *        That will be fixed once LSI engineers have audited the
904          *        firmware for possible issues.
905          */
906         if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
907                 return -ENXIO;
908
909         /*
910          * The RAID firmware may require extended timeouts.
911          */
912         if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
913                 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
914         return 0;
915 }
916
917 /**
918  * megasas_complete_cmd_dpc      -      Returns FW's controller structure
919  * @instance_addr:                      Address of adapter soft state
920  *
921  * Tasklet to complete cmds
922  */
923 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
924 {
925         u32 producer;
926         u32 consumer;
927         u32 context;
928         struct megasas_cmd *cmd;
929         struct megasas_instance *instance =
930                                 (struct megasas_instance *)instance_addr;
931         unsigned long flags;
932
933         /* If we have already declared adapter dead, donot complete cmds */
934         if (instance->hw_crit_error)
935                 return;
936
937         spin_lock_irqsave(&instance->completion_lock, flags);
938
939         producer = *instance->producer;
940         consumer = *instance->consumer;
941
942         while (consumer != producer) {
943                 context = instance->reply_queue[consumer];
944
945                 cmd = instance->cmd_list[context];
946
947                 megasas_complete_cmd(instance, cmd, DID_OK);
948
949                 consumer++;
950                 if (consumer == (instance->max_fw_cmds + 1)) {
951                         consumer = 0;
952                 }
953         }
954
955         *instance->consumer = producer;
956
957         spin_unlock_irqrestore(&instance->completion_lock, flags);
958
959         /*
960          * Check if we can restore can_queue
961          */
962         if (instance->flag & MEGASAS_FW_BUSY
963                 && time_after(jiffies, instance->last_time + 5 * HZ)
964                 && atomic_read(&instance->fw_outstanding) < 17) {
965
966                 spin_lock_irqsave(instance->host->host_lock, flags);
967                 instance->flag &= ~MEGASAS_FW_BUSY;
968                 instance->host->can_queue =
969                                 instance->max_fw_cmds - MEGASAS_INT_CMDS;
970
971                 spin_unlock_irqrestore(instance->host->host_lock, flags);
972         }
973 }
974
975 /**
976  * megasas_wait_for_outstanding -       Wait for all outstanding cmds
977  * @instance:                           Adapter soft state
978  *
979  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
980  * complete all its outstanding commands. Returns error if one or more IOs
981  * are pending after this time period. It also marks the controller dead.
982  */
983 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
984 {
985         int i;
986         u32 wait_time = MEGASAS_RESET_WAIT_TIME;
987
988         for (i = 0; i < wait_time; i++) {
989
990                 int outstanding = atomic_read(&instance->fw_outstanding);
991
992                 if (!outstanding)
993                         break;
994
995                 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
996                         printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
997                                "commands to complete\n",i,outstanding);
998                         /*
999                          * Call cmd completion routine. Cmd to be
1000                          * be completed directly without depending on isr.
1001                          */
1002                         megasas_complete_cmd_dpc((unsigned long)instance);
1003                 }
1004
1005                 msleep(1000);
1006         }
1007
1008         if (atomic_read(&instance->fw_outstanding)) {
1009                 /*
1010                 * Send signal to FW to stop processing any pending cmds.
1011                 * The controller will be taken offline by the OS now.
1012                 */
1013                 writel(MFI_STOP_ADP,
1014                                 &instance->reg_set->inbound_doorbell);
1015                 megasas_dump_pending_frames(instance);
1016                 instance->hw_crit_error = 1;
1017                 return FAILED;
1018         }
1019
1020         return SUCCESS;
1021 }
1022
1023 /**
1024  * megasas_generic_reset -      Generic reset routine
1025  * @scmd:                       Mid-layer SCSI command
1026  *
1027  * This routine implements a generic reset handler for device, bus and host
1028  * reset requests. Device, bus and host specific reset handlers can use this
1029  * function after they do their specific tasks.
1030  */
1031 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1032 {
1033         int ret_val;
1034         struct megasas_instance *instance;
1035
1036         instance = (struct megasas_instance *)scmd->device->host->hostdata;
1037
1038         scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1039                  scmd->serial_number, scmd->cmnd[0], scmd->retries);
1040
1041         if (instance->hw_crit_error) {
1042                 printk(KERN_ERR "megasas: cannot recover from previous reset "
1043                        "failures\n");
1044                 return FAILED;
1045         }
1046
1047         ret_val = megasas_wait_for_outstanding(instance);
1048         if (ret_val == SUCCESS)
1049                 printk(KERN_NOTICE "megasas: reset successful \n");
1050         else
1051                 printk(KERN_ERR "megasas: failed to do reset\n");
1052
1053         return ret_val;
1054 }
1055
1056 /**
1057  * megasas_reset_timer - quiesce the adapter if required
1058  * @scmd:               scsi cmnd
1059  *
1060  * Sets the FW busy flag and reduces the host->can_queue if the
1061  * cmd has not been completed within the timeout period.
1062  */
1063 static enum
1064 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1065 {
1066         struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1067         struct megasas_instance *instance;
1068         unsigned long flags;
1069
1070         if (time_after(jiffies, scmd->jiffies_at_alloc +
1071                                 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1072                 return EH_NOT_HANDLED;
1073         }
1074
1075         instance = cmd->instance;
1076         if (!(instance->flag & MEGASAS_FW_BUSY)) {
1077                 /* FW is busy, throttle IO */
1078                 spin_lock_irqsave(instance->host->host_lock, flags);
1079
1080                 instance->host->can_queue = 16;
1081                 instance->last_time = jiffies;
1082                 instance->flag |= MEGASAS_FW_BUSY;
1083
1084                 spin_unlock_irqrestore(instance->host->host_lock, flags);
1085         }
1086         return EH_RESET_TIMER;
1087 }
1088
1089 /**
1090  * megasas_reset_device -       Device reset handler entry point
1091  */
1092 static int megasas_reset_device(struct scsi_cmnd *scmd)
1093 {
1094         int ret;
1095
1096         /*
1097          * First wait for all commands to complete
1098          */
1099         ret = megasas_generic_reset(scmd);
1100
1101         return ret;
1102 }
1103
1104 /**
1105  * megasas_reset_bus_host -     Bus & host reset handler entry point
1106  */
1107 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1108 {
1109         int ret;
1110
1111         /*
1112          * First wait for all commands to complete
1113          */
1114         ret = megasas_generic_reset(scmd);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * megasas_bios_param - Returns disk geometry for a disk
1121  * @sdev:               device handle
1122  * @bdev:               block device
1123  * @capacity:           drive capacity
1124  * @geom:               geometry parameters
1125  */
1126 static int
1127 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1128                  sector_t capacity, int geom[])
1129 {
1130         int heads;
1131         int sectors;
1132         sector_t cylinders;
1133         unsigned long tmp;
1134         /* Default heads (64) & sectors (32) */
1135         heads = 64;
1136         sectors = 32;
1137
1138         tmp = heads * sectors;
1139         cylinders = capacity;
1140
1141         sector_div(cylinders, tmp);
1142
1143         /*
1144          * Handle extended translation size for logical drives > 1Gb
1145          */
1146
1147         if (capacity >= 0x200000) {
1148                 heads = 255;
1149                 sectors = 63;
1150                 tmp = heads*sectors;
1151                 cylinders = capacity;
1152                 sector_div(cylinders, tmp);
1153         }
1154
1155         geom[0] = heads;
1156         geom[1] = sectors;
1157         geom[2] = cylinders;
1158
1159         return 0;
1160 }
1161
1162 /**
1163  * megasas_service_aen -        Processes an event notification
1164  * @instance:                   Adapter soft state
1165  * @cmd:                        AEN command completed by the ISR
1166  *
1167  * For AEN, driver sends a command down to FW that is held by the FW till an
1168  * event occurs. When an event of interest occurs, FW completes the command
1169  * that it was previously holding.
1170  *
1171  * This routines sends SIGIO signal to processes that have registered with the
1172  * driver for AEN.
1173  */
1174 static void
1175 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1176 {
1177         /*
1178          * Don't signal app if it is just an aborted previously registered aen
1179          */
1180         if (!cmd->abort_aen)
1181                 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1182         else
1183                 cmd->abort_aen = 0;
1184
1185         instance->aen_cmd = NULL;
1186         megasas_return_cmd(instance, cmd);
1187 }
1188
1189 /*
1190  * Scsi host template for megaraid_sas driver
1191  */
1192 static struct scsi_host_template megasas_template = {
1193
1194         .module = THIS_MODULE,
1195         .name = "LSI SAS based MegaRAID driver",
1196         .proc_name = "megaraid_sas",
1197         .slave_configure = megasas_slave_configure,
1198         .queuecommand = megasas_queue_command,
1199         .eh_device_reset_handler = megasas_reset_device,
1200         .eh_bus_reset_handler = megasas_reset_bus_host,
1201         .eh_host_reset_handler = megasas_reset_bus_host,
1202         .eh_timed_out = megasas_reset_timer,
1203         .bios_param = megasas_bios_param,
1204         .use_clustering = ENABLE_CLUSTERING,
1205 };
1206
1207 /**
1208  * megasas_complete_int_cmd -   Completes an internal command
1209  * @instance:                   Adapter soft state
1210  * @cmd:                        Command to be completed
1211  *
1212  * The megasas_issue_blocked_cmd() function waits for a command to complete
1213  * after it issues a command. This function wakes up that waiting routine by
1214  * calling wake_up() on the wait queue.
1215  */
1216 static void
1217 megasas_complete_int_cmd(struct megasas_instance *instance,
1218                          struct megasas_cmd *cmd)
1219 {
1220         cmd->cmd_status = cmd->frame->io.cmd_status;
1221
1222         if (cmd->cmd_status == ENODATA) {
1223                 cmd->cmd_status = 0;
1224         }
1225         wake_up(&instance->int_cmd_wait_q);
1226 }
1227
1228 /**
1229  * megasas_complete_abort -     Completes aborting a command
1230  * @instance:                   Adapter soft state
1231  * @cmd:                        Cmd that was issued to abort another cmd
1232  *
1233  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q 
1234  * after it issues an abort on a previously issued command. This function 
1235  * wakes up all functions waiting on the same wait queue.
1236  */
1237 static void
1238 megasas_complete_abort(struct megasas_instance *instance,
1239                        struct megasas_cmd *cmd)
1240 {
1241         if (cmd->sync_cmd) {
1242                 cmd->sync_cmd = 0;
1243                 cmd->cmd_status = 0;
1244                 wake_up(&instance->abort_cmd_wait_q);
1245         }
1246
1247         return;
1248 }
1249
1250 /**
1251  * megasas_complete_cmd -       Completes a command
1252  * @instance:                   Adapter soft state
1253  * @cmd:                        Command to be completed
1254  * @alt_status:                 If non-zero, use this value as status to 
1255  *                              SCSI mid-layer instead of the value returned
1256  *                              by the FW. This should be used if caller wants
1257  *                              an alternate status (as in the case of aborted
1258  *                              commands)
1259  */
1260 static void
1261 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1262                      u8 alt_status)
1263 {
1264         int exception = 0;
1265         struct megasas_header *hdr = &cmd->frame->hdr;
1266
1267         if (cmd->scmd)
1268                 cmd->scmd->SCp.ptr = NULL;
1269
1270         switch (hdr->cmd) {
1271
1272         case MFI_CMD_PD_SCSI_IO:
1273         case MFI_CMD_LD_SCSI_IO:
1274
1275                 /*
1276                  * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1277                  * issued either through an IO path or an IOCTL path. If it
1278                  * was via IOCTL, we will send it to internal completion.
1279                  */
1280                 if (cmd->sync_cmd) {
1281                         cmd->sync_cmd = 0;
1282                         megasas_complete_int_cmd(instance, cmd);
1283                         break;
1284                 }
1285
1286         case MFI_CMD_LD_READ:
1287         case MFI_CMD_LD_WRITE:
1288
1289                 if (alt_status) {
1290                         cmd->scmd->result = alt_status << 16;
1291                         exception = 1;
1292                 }
1293
1294                 if (exception) {
1295
1296                         atomic_dec(&instance->fw_outstanding);
1297
1298                         scsi_dma_unmap(cmd->scmd);
1299                         cmd->scmd->scsi_done(cmd->scmd);
1300                         megasas_return_cmd(instance, cmd);
1301
1302                         break;
1303                 }
1304
1305                 switch (hdr->cmd_status) {
1306
1307                 case MFI_STAT_OK:
1308                         cmd->scmd->result = DID_OK << 16;
1309                         break;
1310
1311                 case MFI_STAT_SCSI_IO_FAILED:
1312                 case MFI_STAT_LD_INIT_IN_PROGRESS:
1313                         cmd->scmd->result =
1314                             (DID_ERROR << 16) | hdr->scsi_status;
1315                         break;
1316
1317                 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1318
1319                         cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1320
1321                         if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1322                                 memset(cmd->scmd->sense_buffer, 0,
1323                                        SCSI_SENSE_BUFFERSIZE);
1324                                 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1325                                        hdr->sense_len);
1326
1327                                 cmd->scmd->result |= DRIVER_SENSE << 24;
1328                         }
1329
1330                         break;
1331
1332                 case MFI_STAT_LD_OFFLINE:
1333                 case MFI_STAT_DEVICE_NOT_FOUND:
1334                         cmd->scmd->result = DID_BAD_TARGET << 16;
1335                         break;
1336
1337                 default:
1338                         printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1339                                hdr->cmd_status);
1340                         cmd->scmd->result = DID_ERROR << 16;
1341                         break;
1342                 }
1343
1344                 atomic_dec(&instance->fw_outstanding);
1345
1346                 scsi_dma_unmap(cmd->scmd);
1347                 cmd->scmd->scsi_done(cmd->scmd);
1348                 megasas_return_cmd(instance, cmd);
1349
1350                 break;
1351
1352         case MFI_CMD_SMP:
1353         case MFI_CMD_STP:
1354         case MFI_CMD_DCMD:
1355
1356                 /*
1357                  * See if got an event notification
1358                  */
1359                 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1360                         megasas_service_aen(instance, cmd);
1361                 else
1362                         megasas_complete_int_cmd(instance, cmd);
1363
1364                 break;
1365
1366         case MFI_CMD_ABORT:
1367                 /*
1368                  * Cmd issued to abort another cmd returned
1369                  */
1370                 megasas_complete_abort(instance, cmd);
1371                 break;
1372
1373         default:
1374                 printk("megasas: Unknown command completed! [0x%X]\n",
1375                        hdr->cmd);
1376                 break;
1377         }
1378 }
1379
1380 /**
1381  * megasas_deplete_reply_queue -        Processes all completed commands
1382  * @instance:                           Adapter soft state
1383  * @alt_status:                         Alternate status to be returned to
1384  *                                      SCSI mid-layer instead of the status
1385  *                                      returned by the FW
1386  */
1387 static int
1388 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1389 {
1390         /*
1391          * Check if it is our interrupt
1392          * Clear the interrupt 
1393          */
1394         if(instance->instancet->clear_intr(instance->reg_set))
1395                 return IRQ_NONE;
1396
1397         if (instance->hw_crit_error)
1398                 goto out_done;
1399         /*
1400          * Schedule the tasklet for cmd completion
1401          */
1402         tasklet_schedule(&instance->isr_tasklet);
1403 out_done:
1404         return IRQ_HANDLED;
1405 }
1406
1407 /**
1408  * megasas_isr - isr entry point
1409  */
1410 static irqreturn_t megasas_isr(int irq, void *devp)
1411 {
1412         return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1413                                            DID_OK);
1414 }
1415
1416 /**
1417  * megasas_transition_to_ready -        Move the FW to READY state
1418  * @instance:                           Adapter soft state
1419  *
1420  * During the initialization, FW passes can potentially be in any one of
1421  * several possible states. If the FW in operational, waiting-for-handshake
1422  * states, driver must take steps to bring it to ready state. Otherwise, it
1423  * has to wait for the ready state.
1424  */
1425 static int
1426 megasas_transition_to_ready(struct megasas_instance* instance)
1427 {
1428         int i;
1429         u8 max_wait;
1430         u32 fw_state;
1431         u32 cur_state;
1432
1433         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1434
1435         if (fw_state != MFI_STATE_READY)
1436                 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1437                        " state\n");
1438
1439         while (fw_state != MFI_STATE_READY) {
1440
1441                 switch (fw_state) {
1442
1443                 case MFI_STATE_FAULT:
1444
1445                         printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1446                         return -ENODEV;
1447
1448                 case MFI_STATE_WAIT_HANDSHAKE:
1449                         /*
1450                          * Set the CLR bit in inbound doorbell
1451                          */
1452                         writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1453                                 &instance->reg_set->inbound_doorbell);
1454
1455                         max_wait = 2;
1456                         cur_state = MFI_STATE_WAIT_HANDSHAKE;
1457                         break;
1458
1459                 case MFI_STATE_BOOT_MESSAGE_PENDING:
1460                         writel(MFI_INIT_HOTPLUG,
1461                                 &instance->reg_set->inbound_doorbell);
1462
1463                         max_wait = 10;
1464                         cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1465                         break;
1466
1467                 case MFI_STATE_OPERATIONAL:
1468                         /*
1469                          * Bring it to READY state; assuming max wait 10 secs
1470                          */
1471                         instance->instancet->disable_intr(instance->reg_set);
1472                         writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1473
1474                         max_wait = 10;
1475                         cur_state = MFI_STATE_OPERATIONAL;
1476                         break;
1477
1478                 case MFI_STATE_UNDEFINED:
1479                         /*
1480                          * This state should not last for more than 2 seconds
1481                          */
1482                         max_wait = 2;
1483                         cur_state = MFI_STATE_UNDEFINED;
1484                         break;
1485
1486                 case MFI_STATE_BB_INIT:
1487                         max_wait = 2;
1488                         cur_state = MFI_STATE_BB_INIT;
1489                         break;
1490
1491                 case MFI_STATE_FW_INIT:
1492                         max_wait = 20;
1493                         cur_state = MFI_STATE_FW_INIT;
1494                         break;
1495
1496                 case MFI_STATE_FW_INIT_2:
1497                         max_wait = 20;
1498                         cur_state = MFI_STATE_FW_INIT_2;
1499                         break;
1500
1501                 case MFI_STATE_DEVICE_SCAN:
1502                         max_wait = 20;
1503                         cur_state = MFI_STATE_DEVICE_SCAN;
1504                         break;
1505
1506                 case MFI_STATE_FLUSH_CACHE:
1507                         max_wait = 20;
1508                         cur_state = MFI_STATE_FLUSH_CACHE;
1509                         break;
1510
1511                 default:
1512                         printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1513                                fw_state);
1514                         return -ENODEV;
1515                 }
1516
1517                 /*
1518                  * The cur_state should not last for more than max_wait secs
1519                  */
1520                 for (i = 0; i < (max_wait * 1000); i++) {
1521                         fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &  
1522                                         MFI_STATE_MASK ;
1523
1524                         if (fw_state == cur_state) {
1525                                 msleep(1);
1526                         } else
1527                                 break;
1528                 }
1529
1530                 /*
1531                  * Return error if fw_state hasn't changed after max_wait
1532                  */
1533                 if (fw_state == cur_state) {
1534                         printk(KERN_DEBUG "FW state [%d] hasn't changed "
1535                                "in %d secs\n", fw_state, max_wait);
1536                         return -ENODEV;
1537                 }
1538         };
1539         printk(KERN_INFO "megasas: FW now in Ready state\n");
1540
1541         return 0;
1542 }
1543
1544 /**
1545  * megasas_teardown_frame_pool -        Destroy the cmd frame DMA pool
1546  * @instance:                           Adapter soft state
1547  */
1548 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1549 {
1550         int i;
1551         u32 max_cmd = instance->max_fw_cmds;
1552         struct megasas_cmd *cmd;
1553
1554         if (!instance->frame_dma_pool)
1555                 return;
1556
1557         /*
1558          * Return all frames to pool
1559          */
1560         for (i = 0; i < max_cmd; i++) {
1561
1562                 cmd = instance->cmd_list[i];
1563
1564                 if (cmd->frame)
1565                         pci_pool_free(instance->frame_dma_pool, cmd->frame,
1566                                       cmd->frame_phys_addr);
1567
1568                 if (cmd->sense)
1569                         pci_pool_free(instance->sense_dma_pool, cmd->sense,
1570                                       cmd->sense_phys_addr);
1571         }
1572
1573         /*
1574          * Now destroy the pool itself
1575          */
1576         pci_pool_destroy(instance->frame_dma_pool);
1577         pci_pool_destroy(instance->sense_dma_pool);
1578
1579         instance->frame_dma_pool = NULL;
1580         instance->sense_dma_pool = NULL;
1581 }
1582
1583 /**
1584  * megasas_create_frame_pool -  Creates DMA pool for cmd frames
1585  * @instance:                   Adapter soft state
1586  *
1587  * Each command packet has an embedded DMA memory buffer that is used for
1588  * filling MFI frame and the SG list that immediately follows the frame. This
1589  * function creates those DMA memory buffers for each command packet by using
1590  * PCI pool facility.
1591  */
1592 static int megasas_create_frame_pool(struct megasas_instance *instance)
1593 {
1594         int i;
1595         u32 max_cmd;
1596         u32 sge_sz;
1597         u32 sgl_sz;
1598         u32 total_sz;
1599         u32 frame_count;
1600         struct megasas_cmd *cmd;
1601
1602         max_cmd = instance->max_fw_cmds;
1603
1604         /*
1605          * Size of our frame is 64 bytes for MFI frame, followed by max SG
1606          * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1607          */
1608         sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1609             sizeof(struct megasas_sge32);
1610
1611         /*
1612          * Calculated the number of 64byte frames required for SGL
1613          */
1614         sgl_sz = sge_sz * instance->max_num_sge;
1615         frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1616
1617         /*
1618          * We need one extra frame for the MFI command
1619          */
1620         frame_count++;
1621
1622         total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1623         /*
1624          * Use DMA pool facility provided by PCI layer
1625          */
1626         instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1627                                                    instance->pdev, total_sz, 64,
1628                                                    0);
1629
1630         if (!instance->frame_dma_pool) {
1631                 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1632                 return -ENOMEM;
1633         }
1634
1635         instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1636                                                    instance->pdev, 128, 4, 0);
1637
1638         if (!instance->sense_dma_pool) {
1639                 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1640
1641                 pci_pool_destroy(instance->frame_dma_pool);
1642                 instance->frame_dma_pool = NULL;
1643
1644                 return -ENOMEM;
1645         }
1646
1647         /*
1648          * Allocate and attach a frame to each of the commands in cmd_list.
1649          * By making cmd->index as the context instead of the &cmd, we can
1650          * always use 32bit context regardless of the architecture
1651          */
1652         for (i = 0; i < max_cmd; i++) {
1653
1654                 cmd = instance->cmd_list[i];
1655
1656                 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1657                                             GFP_KERNEL, &cmd->frame_phys_addr);
1658
1659                 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1660                                             GFP_KERNEL, &cmd->sense_phys_addr);
1661
1662                 /*
1663                  * megasas_teardown_frame_pool() takes care of freeing
1664                  * whatever has been allocated
1665                  */
1666                 if (!cmd->frame || !cmd->sense) {
1667                         printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1668                         megasas_teardown_frame_pool(instance);
1669                         return -ENOMEM;
1670                 }
1671
1672                 cmd->frame->io.context = cmd->index;
1673         }
1674
1675         return 0;
1676 }
1677
1678 /**
1679  * megasas_free_cmds -  Free all the cmds in the free cmd pool
1680  * @instance:           Adapter soft state
1681  */
1682 static void megasas_free_cmds(struct megasas_instance *instance)
1683 {
1684         int i;
1685         /* First free the MFI frame pool */
1686         megasas_teardown_frame_pool(instance);
1687
1688         /* Free all the commands in the cmd_list */
1689         for (i = 0; i < instance->max_fw_cmds; i++)
1690                 kfree(instance->cmd_list[i]);
1691
1692         /* Free the cmd_list buffer itself */
1693         kfree(instance->cmd_list);
1694         instance->cmd_list = NULL;
1695
1696         INIT_LIST_HEAD(&instance->cmd_pool);
1697 }
1698
1699 /**
1700  * megasas_alloc_cmds - Allocates the command packets
1701  * @instance:           Adapter soft state
1702  *
1703  * Each command that is issued to the FW, whether IO commands from the OS or
1704  * internal commands like IOCTLs, are wrapped in local data structure called
1705  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1706  * the FW.
1707  *
1708  * Each frame has a 32-bit field called context (tag). This context is used
1709  * to get back the megasas_cmd from the frame when a frame gets completed in
1710  * the ISR. Typically the address of the megasas_cmd itself would be used as
1711  * the context. But we wanted to keep the differences between 32 and 64 bit
1712  * systems to the mininum. We always use 32 bit integers for the context. In
1713  * this driver, the 32 bit values are the indices into an array cmd_list.
1714  * This array is used only to look up the megasas_cmd given the context. The
1715  * free commands themselves are maintained in a linked list called cmd_pool.
1716  */
1717 static int megasas_alloc_cmds(struct megasas_instance *instance)
1718 {
1719         int i;
1720         int j;
1721         u32 max_cmd;
1722         struct megasas_cmd *cmd;
1723
1724         max_cmd = instance->max_fw_cmds;
1725
1726         /*
1727          * instance->cmd_list is an array of struct megasas_cmd pointers.
1728          * Allocate the dynamic array first and then allocate individual
1729          * commands.
1730          */
1731         instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1732
1733         if (!instance->cmd_list) {
1734                 printk(KERN_DEBUG "megasas: out of memory\n");
1735                 return -ENOMEM;
1736         }
1737
1738
1739         for (i = 0; i < max_cmd; i++) {
1740                 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1741                                                 GFP_KERNEL);
1742
1743                 if (!instance->cmd_list[i]) {
1744
1745                         for (j = 0; j < i; j++)
1746                                 kfree(instance->cmd_list[j]);
1747
1748                         kfree(instance->cmd_list);
1749                         instance->cmd_list = NULL;
1750
1751                         return -ENOMEM;
1752                 }
1753         }
1754
1755         /*
1756          * Add all the commands to command pool (instance->cmd_pool)
1757          */
1758         for (i = 0; i < max_cmd; i++) {
1759                 cmd = instance->cmd_list[i];
1760                 memset(cmd, 0, sizeof(struct megasas_cmd));
1761                 cmd->index = i;
1762                 cmd->instance = instance;
1763
1764                 list_add_tail(&cmd->list, &instance->cmd_pool);
1765         }
1766
1767         /*
1768          * Create a frame pool and assign one frame to each cmd
1769          */
1770         if (megasas_create_frame_pool(instance)) {
1771                 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1772                 megasas_free_cmds(instance);
1773         }
1774
1775         return 0;
1776 }
1777
1778 /**
1779  * megasas_get_controller_info -        Returns FW's controller structure
1780  * @instance:                           Adapter soft state
1781  * @ctrl_info:                          Controller information structure
1782  *
1783  * Issues an internal command (DCMD) to get the FW's controller structure.
1784  * This information is mainly used to find out the maximum IO transfer per
1785  * command supported by the FW.
1786  */
1787 static int
1788 megasas_get_ctrl_info(struct megasas_instance *instance,
1789                       struct megasas_ctrl_info *ctrl_info)
1790 {
1791         int ret = 0;
1792         struct megasas_cmd *cmd;
1793         struct megasas_dcmd_frame *dcmd;
1794         struct megasas_ctrl_info *ci;
1795         dma_addr_t ci_h = 0;
1796
1797         cmd = megasas_get_cmd(instance);
1798
1799         if (!cmd) {
1800                 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1801                 return -ENOMEM;
1802         }
1803
1804         dcmd = &cmd->frame->dcmd;
1805
1806         ci = pci_alloc_consistent(instance->pdev,
1807                                   sizeof(struct megasas_ctrl_info), &ci_h);
1808
1809         if (!ci) {
1810                 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1811                 megasas_return_cmd(instance, cmd);
1812                 return -ENOMEM;
1813         }
1814
1815         memset(ci, 0, sizeof(*ci));
1816         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1817
1818         dcmd->cmd = MFI_CMD_DCMD;
1819         dcmd->cmd_status = 0xFF;
1820         dcmd->sge_count = 1;
1821         dcmd->flags = MFI_FRAME_DIR_READ;
1822         dcmd->timeout = 0;
1823         dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1824         dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1825         dcmd->sgl.sge32[0].phys_addr = ci_h;
1826         dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1827
1828         if (!megasas_issue_polled(instance, cmd)) {
1829                 ret = 0;
1830                 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1831         } else {
1832                 ret = -1;
1833         }
1834
1835         pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1836                             ci, ci_h);
1837
1838         megasas_return_cmd(instance, cmd);
1839         return ret;
1840 }
1841
1842 /**
1843  * megasas_issue_init_mfi -     Initializes the FW
1844  * @instance:           Adapter soft state
1845  *
1846  * Issues the INIT MFI cmd
1847  */
1848 static int
1849 megasas_issue_init_mfi(struct megasas_instance *instance)
1850 {
1851         u32 context;
1852
1853         struct megasas_cmd *cmd;
1854
1855         struct megasas_init_frame *init_frame;
1856         struct megasas_init_queue_info *initq_info;
1857         dma_addr_t init_frame_h;
1858         dma_addr_t initq_info_h;
1859
1860         /*
1861          * Prepare a init frame. Note the init frame points to queue info
1862          * structure. Each frame has SGL allocated after first 64 bytes. For
1863          * this frame - since we don't need any SGL - we use SGL's space as
1864          * queue info structure
1865          *
1866          * We will not get a NULL command below. We just created the pool.
1867          */
1868         cmd = megasas_get_cmd(instance);
1869
1870         init_frame = (struct megasas_init_frame *)cmd->frame;
1871         initq_info = (struct megasas_init_queue_info *)
1872                 ((unsigned long)init_frame + 64);
1873
1874         init_frame_h = cmd->frame_phys_addr;
1875         initq_info_h = init_frame_h + 64;
1876
1877         context = init_frame->context;
1878         memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1879         memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1880         init_frame->context = context;
1881
1882         initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1883         initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1884
1885         initq_info->producer_index_phys_addr_lo = instance->producer_h;
1886         initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1887
1888         init_frame->cmd = MFI_CMD_INIT;
1889         init_frame->cmd_status = 0xFF;
1890         init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1891
1892         init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1893
1894         /*
1895          * disable the intr before firing the init frame to FW
1896          */
1897         instance->instancet->disable_intr(instance->reg_set);
1898
1899         /*
1900          * Issue the init frame in polled mode
1901          */
1902
1903         if (megasas_issue_polled(instance, cmd)) {
1904                 printk(KERN_ERR "megasas: Failed to init firmware\n");
1905                 megasas_return_cmd(instance, cmd);
1906                 goto fail_fw_init;
1907         }
1908
1909         megasas_return_cmd(instance, cmd);
1910
1911         return 0;
1912
1913 fail_fw_init:
1914         return -EINVAL;
1915 }
1916
1917 /**
1918  * megasas_start_timer - Initializes a timer object
1919  * @instance:           Adapter soft state
1920  * @timer:              timer object to be initialized
1921  * @fn:                 timer function
1922  * @interval:           time interval between timer function call
1923  */
1924 static inline void
1925 megasas_start_timer(struct megasas_instance *instance,
1926                         struct timer_list *timer,
1927                         void *fn, unsigned long interval)
1928 {
1929         init_timer(timer);
1930         timer->expires = jiffies + interval;
1931         timer->data = (unsigned long)instance;
1932         timer->function = fn;
1933         add_timer(timer);
1934 }
1935
1936 /**
1937  * megasas_io_completion_timer - Timer fn
1938  * @instance_addr:      Address of adapter soft state
1939  *
1940  * Schedules tasklet for cmd completion
1941  * if poll_mode_io is set
1942  */
1943 static void
1944 megasas_io_completion_timer(unsigned long instance_addr)
1945 {
1946         struct megasas_instance *instance =
1947                         (struct megasas_instance *)instance_addr;
1948
1949         if (atomic_read(&instance->fw_outstanding))
1950                 tasklet_schedule(&instance->isr_tasklet);
1951
1952         /* Restart timer */
1953         if (poll_mode_io)
1954                 mod_timer(&instance->io_completion_timer,
1955                         jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
1956 }
1957
1958 /**
1959  * megasas_init_mfi -   Initializes the FW
1960  * @instance:           Adapter soft state
1961  *
1962  * This is the main function for initializing MFI firmware.
1963  */
1964 static int megasas_init_mfi(struct megasas_instance *instance)
1965 {
1966         u32 context_sz;
1967         u32 reply_q_sz;
1968         u32 max_sectors_1;
1969         u32 max_sectors_2;
1970         u32 tmp_sectors;
1971         struct megasas_register_set __iomem *reg_set;
1972         struct megasas_ctrl_info *ctrl_info;
1973         /*
1974          * Map the message registers
1975          */
1976         instance->base_addr = pci_resource_start(instance->pdev, 0);
1977
1978         if (pci_request_regions(instance->pdev, "megasas: LSI")) {
1979                 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1980                 return -EBUSY;
1981         }
1982
1983         instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1984
1985         if (!instance->reg_set) {
1986                 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1987                 goto fail_ioremap;
1988         }
1989
1990         reg_set = instance->reg_set;
1991
1992         switch(instance->pdev->device)
1993         {
1994                 case PCI_DEVICE_ID_LSI_SAS1078R:        
1995                         instance->instancet = &megasas_instance_template_ppc;
1996                         break;
1997                 case PCI_DEVICE_ID_LSI_SAS1064R:
1998                 case PCI_DEVICE_ID_DELL_PERC5:
1999                 default:
2000                         instance->instancet = &megasas_instance_template_xscale;
2001                         break;
2002         }
2003
2004         /*
2005          * We expect the FW state to be READY
2006          */
2007         if (megasas_transition_to_ready(instance))
2008                 goto fail_ready_state;
2009
2010         /*
2011          * Get various operational parameters from status register
2012          */
2013         instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2014         /*
2015          * Reduce the max supported cmds by 1. This is to ensure that the
2016          * reply_q_sz (1 more than the max cmd that driver may send)
2017          * does not exceed max cmds that the FW can support
2018          */
2019         instance->max_fw_cmds = instance->max_fw_cmds-1;
2020         instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 
2021                                         0x10;
2022         /*
2023          * Create a pool of commands
2024          */
2025         if (megasas_alloc_cmds(instance))
2026                 goto fail_alloc_cmds;
2027
2028         /*
2029          * Allocate memory for reply queue. Length of reply queue should
2030          * be _one_ more than the maximum commands handled by the firmware.
2031          *
2032          * Note: When FW completes commands, it places corresponding contex
2033          * values in this circular reply queue. This circular queue is a fairly
2034          * typical producer-consumer queue. FW is the producer (of completed
2035          * commands) and the driver is the consumer.
2036          */
2037         context_sz = sizeof(u32);
2038         reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2039
2040         instance->reply_queue = pci_alloc_consistent(instance->pdev,
2041                                                      reply_q_sz,
2042                                                      &instance->reply_queue_h);
2043
2044         if (!instance->reply_queue) {
2045                 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2046                 goto fail_reply_queue;
2047         }
2048
2049         if (megasas_issue_init_mfi(instance))
2050                 goto fail_fw_init;
2051
2052         ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2053
2054         /*
2055          * Compute the max allowed sectors per IO: The controller info has two
2056          * limits on max sectors. Driver should use the minimum of these two.
2057          *
2058          * 1 << stripe_sz_ops.min = max sectors per strip
2059          *
2060          * Note that older firmwares ( < FW ver 30) didn't report information
2061          * to calculate max_sectors_1. So the number ended up as zero always.
2062          */
2063         tmp_sectors = 0;
2064         if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2065
2066                 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2067                     ctrl_info->max_strips_per_io;
2068                 max_sectors_2 = ctrl_info->max_request_size;
2069
2070                 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2071         }
2072
2073         instance->max_sectors_per_req = instance->max_num_sge *
2074                                                 PAGE_SIZE / 512;
2075         if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2076                 instance->max_sectors_per_req = tmp_sectors;
2077
2078         kfree(ctrl_info);
2079
2080         /*
2081         * Setup tasklet for cmd completion
2082         */
2083
2084         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2085                 (unsigned long)instance);
2086
2087         /* Initialize the cmd completion timer */
2088         if (poll_mode_io)
2089                 megasas_start_timer(instance, &instance->io_completion_timer,
2090                                 megasas_io_completion_timer,
2091                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2092         return 0;
2093
2094       fail_fw_init:
2095
2096         pci_free_consistent(instance->pdev, reply_q_sz,
2097                             instance->reply_queue, instance->reply_queue_h);
2098       fail_reply_queue:
2099         megasas_free_cmds(instance);
2100
2101       fail_alloc_cmds:
2102       fail_ready_state:
2103         iounmap(instance->reg_set);
2104
2105       fail_ioremap:
2106         pci_release_regions(instance->pdev);
2107
2108         return -EINVAL;
2109 }
2110
2111 /**
2112  * megasas_release_mfi -        Reverses the FW initialization
2113  * @intance:                    Adapter soft state
2114  */
2115 static void megasas_release_mfi(struct megasas_instance *instance)
2116 {
2117         u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2118
2119         pci_free_consistent(instance->pdev, reply_q_sz,
2120                             instance->reply_queue, instance->reply_queue_h);
2121
2122         megasas_free_cmds(instance);
2123
2124         iounmap(instance->reg_set);
2125
2126         pci_release_regions(instance->pdev);
2127 }
2128
2129 /**
2130  * megasas_get_seq_num -        Gets latest event sequence numbers
2131  * @instance:                   Adapter soft state
2132  * @eli:                        FW event log sequence numbers information
2133  *
2134  * FW maintains a log of all events in a non-volatile area. Upper layers would
2135  * usually find out the latest sequence number of the events, the seq number at
2136  * the boot etc. They would "read" all the events below the latest seq number
2137  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2138  * number), they would subsribe to AEN (asynchronous event notification) and
2139  * wait for the events to happen.
2140  */
2141 static int
2142 megasas_get_seq_num(struct megasas_instance *instance,
2143                     struct megasas_evt_log_info *eli)
2144 {
2145         struct megasas_cmd *cmd;
2146         struct megasas_dcmd_frame *dcmd;
2147         struct megasas_evt_log_info *el_info;
2148         dma_addr_t el_info_h = 0;
2149
2150         cmd = megasas_get_cmd(instance);
2151
2152         if (!cmd) {
2153                 return -ENOMEM;
2154         }
2155
2156         dcmd = &cmd->frame->dcmd;
2157         el_info = pci_alloc_consistent(instance->pdev,
2158                                        sizeof(struct megasas_evt_log_info),
2159                                        &el_info_h);
2160
2161         if (!el_info) {
2162                 megasas_return_cmd(instance, cmd);
2163                 return -ENOMEM;
2164         }
2165
2166         memset(el_info, 0, sizeof(*el_info));
2167         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2168
2169         dcmd->cmd = MFI_CMD_DCMD;
2170         dcmd->cmd_status = 0x0;
2171         dcmd->sge_count = 1;
2172         dcmd->flags = MFI_FRAME_DIR_READ;
2173         dcmd->timeout = 0;
2174         dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2175         dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2176         dcmd->sgl.sge32[0].phys_addr = el_info_h;
2177         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2178
2179         megasas_issue_blocked_cmd(instance, cmd);
2180
2181         /*
2182          * Copy the data back into callers buffer
2183          */
2184         memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2185
2186         pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2187                             el_info, el_info_h);
2188
2189         megasas_return_cmd(instance, cmd);
2190
2191         return 0;
2192 }
2193
2194 /**
2195  * megasas_register_aen -       Registers for asynchronous event notification
2196  * @instance:                   Adapter soft state
2197  * @seq_num:                    The starting sequence number
2198  * @class_locale:               Class of the event
2199  *
2200  * This function subscribes for AEN for events beyond the @seq_num. It requests
2201  * to be notified if and only if the event is of type @class_locale
2202  */
2203 static int
2204 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2205                      u32 class_locale_word)
2206 {
2207         int ret_val;
2208         struct megasas_cmd *cmd;
2209         struct megasas_dcmd_frame *dcmd;
2210         union megasas_evt_class_locale curr_aen;
2211         union megasas_evt_class_locale prev_aen;
2212
2213         /*
2214          * If there an AEN pending already (aen_cmd), check if the
2215          * class_locale of that pending AEN is inclusive of the new
2216          * AEN request we currently have. If it is, then we don't have
2217          * to do anything. In other words, whichever events the current
2218          * AEN request is subscribing to, have already been subscribed
2219          * to.
2220          *
2221          * If the old_cmd is _not_ inclusive, then we have to abort
2222          * that command, form a class_locale that is superset of both
2223          * old and current and re-issue to the FW
2224          */
2225
2226         curr_aen.word = class_locale_word;
2227
2228         if (instance->aen_cmd) {
2229
2230                 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2231
2232                 /*
2233                  * A class whose enum value is smaller is inclusive of all
2234                  * higher values. If a PROGRESS (= -1) was previously
2235                  * registered, then a new registration requests for higher
2236                  * classes need not be sent to FW. They are automatically
2237                  * included.
2238                  *
2239                  * Locale numbers don't have such hierarchy. They are bitmap
2240                  * values
2241                  */
2242                 if ((prev_aen.members.class <= curr_aen.members.class) &&
2243                     !((prev_aen.members.locale & curr_aen.members.locale) ^
2244                       curr_aen.members.locale)) {
2245                         /*
2246                          * Previously issued event registration includes
2247                          * current request. Nothing to do.
2248                          */
2249                         return 0;
2250                 } else {
2251                         curr_aen.members.locale |= prev_aen.members.locale;
2252
2253                         if (prev_aen.members.class < curr_aen.members.class)
2254                                 curr_aen.members.class = prev_aen.members.class;
2255
2256                         instance->aen_cmd->abort_aen = 1;
2257                         ret_val = megasas_issue_blocked_abort_cmd(instance,
2258                                                                   instance->
2259                                                                   aen_cmd);
2260
2261                         if (ret_val) {
2262                                 printk(KERN_DEBUG "megasas: Failed to abort "
2263                                        "previous AEN command\n");
2264                                 return ret_val;
2265                         }
2266                 }
2267         }
2268
2269         cmd = megasas_get_cmd(instance);
2270
2271         if (!cmd)
2272                 return -ENOMEM;
2273
2274         dcmd = &cmd->frame->dcmd;
2275
2276         memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2277
2278         /*
2279          * Prepare DCMD for aen registration
2280          */
2281         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2282
2283         dcmd->cmd = MFI_CMD_DCMD;
2284         dcmd->cmd_status = 0x0;
2285         dcmd->sge_count = 1;
2286         dcmd->flags = MFI_FRAME_DIR_READ;
2287         dcmd->timeout = 0;
2288         dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2289         dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2290         dcmd->mbox.w[0] = seq_num;
2291         dcmd->mbox.w[1] = curr_aen.word;
2292         dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2293         dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2294
2295         /*
2296          * Store reference to the cmd used to register for AEN. When an
2297          * application wants us to register for AEN, we have to abort this
2298          * cmd and re-register with a new EVENT LOCALE supplied by that app
2299          */
2300         instance->aen_cmd = cmd;
2301
2302         /*
2303          * Issue the aen registration frame
2304          */
2305         instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2306
2307         return 0;
2308 }
2309
2310 /**
2311  * megasas_start_aen -  Subscribes to AEN during driver load time
2312  * @instance:           Adapter soft state
2313  */
2314 static int megasas_start_aen(struct megasas_instance *instance)
2315 {
2316         struct megasas_evt_log_info eli;
2317         union megasas_evt_class_locale class_locale;
2318
2319         /*
2320          * Get the latest sequence number from FW
2321          */
2322         memset(&eli, 0, sizeof(eli));
2323
2324         if (megasas_get_seq_num(instance, &eli))
2325                 return -1;
2326
2327         /*
2328          * Register AEN with FW for latest sequence number plus 1
2329          */
2330         class_locale.members.reserved = 0;
2331         class_locale.members.locale = MR_EVT_LOCALE_ALL;
2332         class_locale.members.class = MR_EVT_CLASS_DEBUG;
2333
2334         return megasas_register_aen(instance, eli.newest_seq_num + 1,
2335                                     class_locale.word);
2336 }
2337
2338 /**
2339  * megasas_io_attach -  Attaches this driver to SCSI mid-layer
2340  * @instance:           Adapter soft state
2341  */
2342 static int megasas_io_attach(struct megasas_instance *instance)
2343 {
2344         struct Scsi_Host *host = instance->host;
2345
2346         /*
2347          * Export parameters required by SCSI mid-layer
2348          */
2349         host->irq = instance->pdev->irq;
2350         host->unique_id = instance->unique_id;
2351         host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2352         host->this_id = instance->init_id;
2353         host->sg_tablesize = instance->max_num_sge;
2354         host->max_sectors = instance->max_sectors_per_req;
2355         host->cmd_per_lun = 128;
2356         host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2357         host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2358         host->max_lun = MEGASAS_MAX_LUN;
2359         host->max_cmd_len = 16;
2360
2361         /*
2362          * Notify the mid-layer about the new controller
2363          */
2364         if (scsi_add_host(host, &instance->pdev->dev)) {
2365                 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2366                 return -ENODEV;
2367         }
2368
2369         /*
2370          * Trigger SCSI to scan our drives
2371          */
2372         scsi_scan_host(host);
2373         return 0;
2374 }
2375
2376 static int
2377 megasas_set_dma_mask(struct pci_dev *pdev)
2378 {
2379         /*
2380          * All our contollers are capable of performing 64-bit DMA
2381          */
2382         if (IS_DMA64) {
2383                 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2384
2385                         if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2386                                 goto fail_set_dma_mask;
2387                 }
2388         } else {
2389                 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2390                         goto fail_set_dma_mask;
2391         }
2392         return 0;
2393
2394 fail_set_dma_mask:
2395         return 1;
2396 }
2397
2398 /**
2399  * megasas_probe_one -  PCI hotplug entry point
2400  * @pdev:               PCI device structure
2401  * @id:                 PCI ids of supported hotplugged adapter 
2402  */
2403 static int __devinit
2404 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2405 {
2406         int rval;
2407         struct Scsi_Host *host;
2408         struct megasas_instance *instance;
2409
2410         /*
2411          * Announce PCI information
2412          */
2413         printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2414                pdev->vendor, pdev->device, pdev->subsystem_vendor,
2415                pdev->subsystem_device);
2416
2417         printk("bus %d:slot %d:func %d\n",
2418                pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2419
2420         /*
2421          * PCI prepping: enable device set bus mastering and dma mask
2422          */
2423         rval = pci_enable_device(pdev);
2424
2425         if (rval) {
2426                 return rval;
2427         }
2428
2429         pci_set_master(pdev);
2430
2431         if (megasas_set_dma_mask(pdev))
2432                 goto fail_set_dma_mask;
2433
2434         host = scsi_host_alloc(&megasas_template,
2435                                sizeof(struct megasas_instance));
2436
2437         if (!host) {
2438                 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2439                 goto fail_alloc_instance;
2440         }
2441
2442         instance = (struct megasas_instance *)host->hostdata;
2443         memset(instance, 0, sizeof(*instance));
2444
2445         instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2446                                                   &instance->producer_h);
2447         instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2448                                                   &instance->consumer_h);
2449
2450         if (!instance->producer || !instance->consumer) {
2451                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2452                        "producer, consumer\n");
2453                 goto fail_alloc_dma_buf;
2454         }
2455
2456         *instance->producer = 0;
2457         *instance->consumer = 0;
2458
2459         instance->evt_detail = pci_alloc_consistent(pdev,
2460                                                     sizeof(struct
2461                                                            megasas_evt_detail),
2462                                                     &instance->evt_detail_h);
2463
2464         if (!instance->evt_detail) {
2465                 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2466                        "event detail structure\n");
2467                 goto fail_alloc_dma_buf;
2468         }
2469
2470         /*
2471          * Initialize locks and queues
2472          */
2473         INIT_LIST_HEAD(&instance->cmd_pool);
2474
2475         atomic_set(&instance->fw_outstanding,0);
2476
2477         init_waitqueue_head(&instance->int_cmd_wait_q);
2478         init_waitqueue_head(&instance->abort_cmd_wait_q);
2479
2480         spin_lock_init(&instance->cmd_pool_lock);
2481         spin_lock_init(&instance->completion_lock);
2482
2483         mutex_init(&instance->aen_mutex);
2484         sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2485
2486         /*
2487          * Initialize PCI related and misc parameters
2488          */
2489         instance->pdev = pdev;
2490         instance->host = host;
2491         instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2492         instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2493
2494         megasas_dbg_lvl = 0;
2495         instance->flag = 0;
2496         instance->last_time = 0;
2497
2498         /*
2499          * Initialize MFI Firmware
2500          */
2501         if (megasas_init_mfi(instance))
2502                 goto fail_init_mfi;
2503
2504         /*
2505          * Register IRQ
2506          */
2507         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2508                 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2509                 goto fail_irq;
2510         }
2511
2512         instance->instancet->enable_intr(instance->reg_set);
2513
2514         /*
2515          * Store instance in PCI softstate
2516          */
2517         pci_set_drvdata(pdev, instance);
2518
2519         /*
2520          * Add this controller to megasas_mgmt_info structure so that it
2521          * can be exported to management applications
2522          */
2523         megasas_mgmt_info.count++;
2524         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2525         megasas_mgmt_info.max_index++;
2526
2527         /*
2528          * Initiate AEN (Asynchronous Event Notification)
2529          */
2530         if (megasas_start_aen(instance)) {
2531                 printk(KERN_DEBUG "megasas: start aen failed\n");
2532                 goto fail_start_aen;
2533         }
2534
2535         /*
2536          * Register with SCSI mid-layer
2537          */
2538         if (megasas_io_attach(instance))
2539                 goto fail_io_attach;
2540
2541         return 0;
2542
2543       fail_start_aen:
2544       fail_io_attach:
2545         megasas_mgmt_info.count--;
2546         megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2547         megasas_mgmt_info.max_index--;
2548
2549         pci_set_drvdata(pdev, NULL);
2550         instance->instancet->disable_intr(instance->reg_set);
2551         free_irq(instance->pdev->irq, instance);
2552
2553         megasas_release_mfi(instance);
2554
2555       fail_irq:
2556       fail_init_mfi:
2557       fail_alloc_dma_buf:
2558         if (instance->evt_detail)
2559                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2560                                     instance->evt_detail,
2561                                     instance->evt_detail_h);
2562
2563         if (instance->producer)
2564                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2565                                     instance->producer_h);
2566         if (instance->consumer)
2567                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2568                                     instance->consumer_h);
2569         scsi_host_put(host);
2570
2571       fail_alloc_instance:
2572       fail_set_dma_mask:
2573         pci_disable_device(pdev);
2574
2575         return -ENODEV;
2576 }
2577
2578 /**
2579  * megasas_flush_cache -        Requests FW to flush all its caches
2580  * @instance:                   Adapter soft state
2581  */
2582 static void megasas_flush_cache(struct megasas_instance *instance)
2583 {
2584         struct megasas_cmd *cmd;
2585         struct megasas_dcmd_frame *dcmd;
2586
2587         cmd = megasas_get_cmd(instance);
2588
2589         if (!cmd)
2590                 return;
2591
2592         dcmd = &cmd->frame->dcmd;
2593
2594         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2595
2596         dcmd->cmd = MFI_CMD_DCMD;
2597         dcmd->cmd_status = 0x0;
2598         dcmd->sge_count = 0;
2599         dcmd->flags = MFI_FRAME_DIR_NONE;
2600         dcmd->timeout = 0;
2601         dcmd->data_xfer_len = 0;
2602         dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2603         dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2604
2605         megasas_issue_blocked_cmd(instance, cmd);
2606
2607         megasas_return_cmd(instance, cmd);
2608
2609         return;
2610 }
2611
2612 /**
2613  * megasas_shutdown_controller -        Instructs FW to shutdown the controller
2614  * @instance:                           Adapter soft state
2615  * @opcode:                             Shutdown/Hibernate
2616  */
2617 static void megasas_shutdown_controller(struct megasas_instance *instance,
2618                                         u32 opcode)
2619 {
2620         struct megasas_cmd *cmd;
2621         struct megasas_dcmd_frame *dcmd;
2622
2623         cmd = megasas_get_cmd(instance);
2624
2625         if (!cmd)
2626                 return;
2627
2628         if (instance->aen_cmd)
2629                 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2630
2631         dcmd = &cmd->frame->dcmd;
2632
2633         memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2634
2635         dcmd->cmd = MFI_CMD_DCMD;
2636         dcmd->cmd_status = 0x0;
2637         dcmd->sge_count = 0;
2638         dcmd->flags = MFI_FRAME_DIR_NONE;
2639         dcmd->timeout = 0;
2640         dcmd->data_xfer_len = 0;
2641         dcmd->opcode = opcode;
2642
2643         megasas_issue_blocked_cmd(instance, cmd);
2644
2645         megasas_return_cmd(instance, cmd);
2646
2647         return;
2648 }
2649
2650 /**
2651  * megasas_suspend -    driver suspend entry point
2652  * @pdev:               PCI device structure
2653  * @state:              PCI power state to suspend routine
2654  */
2655 static int __devinit
2656 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2657 {
2658         struct Scsi_Host *host;
2659         struct megasas_instance *instance;
2660
2661         instance = pci_get_drvdata(pdev);
2662         host = instance->host;
2663
2664         if (poll_mode_io)
2665                 del_timer_sync(&instance->io_completion_timer);
2666
2667         megasas_flush_cache(instance);
2668         megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2669         tasklet_kill(&instance->isr_tasklet);
2670
2671         pci_set_drvdata(instance->pdev, instance);
2672         instance->instancet->disable_intr(instance->reg_set);
2673         free_irq(instance->pdev->irq, instance);
2674
2675         pci_save_state(pdev);
2676         pci_disable_device(pdev);
2677
2678         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2679
2680         return 0;
2681 }
2682
2683 /**
2684  * megasas_resume-      driver resume entry point
2685  * @pdev:               PCI device structure
2686  */
2687 static int __devinit
2688 megasas_resume(struct pci_dev *pdev)
2689 {
2690         int rval;
2691         struct Scsi_Host *host;
2692         struct megasas_instance *instance;
2693
2694         instance = pci_get_drvdata(pdev);
2695         host = instance->host;
2696         pci_set_power_state(pdev, PCI_D0);
2697         pci_enable_wake(pdev, PCI_D0, 0);
2698         pci_restore_state(pdev);
2699
2700         /*
2701          * PCI prepping: enable device set bus mastering and dma mask
2702          */
2703         rval = pci_enable_device(pdev);
2704
2705         if (rval) {
2706                 printk(KERN_ERR "megasas: Enable device failed\n");
2707                 return rval;
2708         }
2709
2710         pci_set_master(pdev);
2711
2712         if (megasas_set_dma_mask(pdev))
2713                 goto fail_set_dma_mask;
2714
2715         /*
2716          * Initialize MFI Firmware
2717          */
2718
2719         *instance->producer = 0;
2720         *instance->consumer = 0;
2721
2722         atomic_set(&instance->fw_outstanding, 0);
2723
2724         /*
2725          * We expect the FW state to be READY
2726          */
2727         if (megasas_transition_to_ready(instance))
2728                 goto fail_ready_state;
2729
2730         if (megasas_issue_init_mfi(instance))
2731                 goto fail_init_mfi;
2732
2733         tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2734                         (unsigned long)instance);
2735
2736         /*
2737          * Register IRQ
2738          */
2739         if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2740                 "megasas", instance)) {
2741                 printk(KERN_ERR "megasas: Failed to register IRQ\n");
2742                 goto fail_irq;
2743         }
2744
2745         instance->instancet->enable_intr(instance->reg_set);
2746
2747         /*
2748          * Initiate AEN (Asynchronous Event Notification)
2749          */
2750         if (megasas_start_aen(instance))
2751                 printk(KERN_ERR "megasas: Start AEN failed\n");
2752
2753         /* Initialize the cmd completion timer */
2754         if (poll_mode_io)
2755                 megasas_start_timer(instance, &instance->io_completion_timer,
2756                                 megasas_io_completion_timer,
2757                                 MEGASAS_COMPLETION_TIMER_INTERVAL);
2758         return 0;
2759
2760 fail_irq:
2761 fail_init_mfi:
2762         if (instance->evt_detail)
2763                 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2764                                 instance->evt_detail,
2765                                 instance->evt_detail_h);
2766
2767         if (instance->producer)
2768                 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2769                                 instance->producer_h);
2770         if (instance->consumer)
2771                 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2772                                 instance->consumer_h);
2773         scsi_host_put(host);
2774
2775 fail_set_dma_mask:
2776 fail_ready_state:
2777
2778         pci_disable_device(pdev);
2779
2780         return -ENODEV;
2781 }
2782
2783 /**
2784  * megasas_detach_one - PCI hot"un"plug entry point
2785  * @pdev:               PCI device structure
2786  */
2787 static void megasas_detach_one(struct pci_dev *pdev)
2788 {
2789         int i;
2790         struct Scsi_Host *host;
2791         struct megasas_instance *instance;
2792
2793         instance = pci_get_drvdata(pdev);
2794         host = instance->host;
2795
2796         if (poll_mode_io)
2797                 del_timer_sync(&instance->io_completion_timer);
2798
2799         scsi_remove_host(instance->host);
2800         megasas_flush_cache(instance);
2801         megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2802         tasklet_kill(&instance->isr_tasklet);
2803
2804         /*
2805          * Take the instance off the instance array. Note that we will not
2806          * decrement the max_index. We let this array be sparse array
2807          */
2808         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2809                 if (megasas_mgmt_info.instance[i] == instance) {
2810                         megasas_mgmt_info.count--;
2811                         megasas_mgmt_info.instance[i] = NULL;
2812
2813                         break;
2814                 }
2815         }
2816
2817         pci_set_drvdata(instance->pdev, NULL);
2818
2819         instance->instancet->disable_intr(instance->reg_set);
2820
2821         free_irq(instance->pdev->irq, instance);
2822
2823         megasas_release_mfi(instance);
2824
2825         pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2826                             instance->evt_detail, instance->evt_detail_h);
2827
2828         pci_free_consistent(pdev, sizeof(u32), instance->producer,
2829                             instance->producer_h);
2830
2831         pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2832                             instance->consumer_h);
2833
2834         scsi_host_put(host);
2835
2836         pci_set_drvdata(pdev, NULL);
2837
2838         pci_disable_device(pdev);
2839
2840         return;
2841 }
2842
2843 /**
2844  * megasas_shutdown -   Shutdown entry point
2845  * @device:             Generic device structure
2846  */
2847 static void megasas_shutdown(struct pci_dev *pdev)
2848 {
2849         struct megasas_instance *instance = pci_get_drvdata(pdev);
2850         megasas_flush_cache(instance);
2851 }
2852
2853 /**
2854  * megasas_mgmt_open -  char node "open" entry point
2855  */
2856 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2857 {
2858         /*
2859          * Allow only those users with admin rights
2860          */
2861         if (!capable(CAP_SYS_ADMIN))
2862                 return -EACCES;
2863
2864         return 0;
2865 }
2866
2867 /**
2868  * megasas_mgmt_release - char node "release" entry point
2869  */
2870 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2871 {
2872         filep->private_data = NULL;
2873         fasync_helper(-1, filep, 0, &megasas_async_queue);
2874
2875         return 0;
2876 }
2877
2878 /**
2879  * megasas_mgmt_fasync -        Async notifier registration from applications
2880  *
2881  * This function adds the calling process to a driver global queue. When an
2882  * event occurs, SIGIO will be sent to all processes in this queue.
2883  */
2884 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2885 {
2886         int rc;
2887
2888         mutex_lock(&megasas_async_queue_mutex);
2889
2890         rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2891
2892         mutex_unlock(&megasas_async_queue_mutex);
2893
2894         if (rc >= 0) {
2895                 /* For sanity check when we get ioctl */
2896                 filep->private_data = filep;
2897                 return 0;
2898         }
2899
2900         printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2901
2902         return rc;
2903 }
2904
2905 /**
2906  * megasas_mgmt_fw_ioctl -      Issues management ioctls to FW
2907  * @instance:                   Adapter soft state
2908  * @argp:                       User's ioctl packet
2909  */
2910 static int
2911 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2912                       struct megasas_iocpacket __user * user_ioc,
2913                       struct megasas_iocpacket *ioc)
2914 {
2915         struct megasas_sge32 *kern_sge32;
2916         struct megasas_cmd *cmd;
2917         void *kbuff_arr[MAX_IOCTL_SGE];
2918         dma_addr_t buf_handle = 0;
2919         int error = 0, i;
2920         void *sense = NULL;
2921         dma_addr_t sense_handle;
2922         u32 *sense_ptr;
2923
2924         memset(kbuff_arr, 0, sizeof(kbuff_arr));
2925
2926         if (ioc->sge_count > MAX_IOCTL_SGE) {
2927                 printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
2928                        ioc->sge_count, MAX_IOCTL_SGE);
2929                 return -EINVAL;
2930         }
2931
2932         cmd = megasas_get_cmd(instance);
2933         if (!cmd) {
2934                 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2935                 return -ENOMEM;
2936         }
2937
2938         /*
2939          * User's IOCTL packet has 2 frames (maximum). Copy those two
2940          * frames into our cmd's frames. cmd->frame's context will get
2941          * overwritten when we copy from user's frames. So set that value
2942          * alone separately
2943          */
2944         memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2945         cmd->frame->hdr.context = cmd->index;
2946
2947         /*
2948          * The management interface between applications and the fw uses
2949          * MFI frames. E.g, RAID configuration changes, LD property changes
2950          * etc are accomplishes through different kinds of MFI frames. The
2951          * driver needs to care only about substituting user buffers with
2952          * kernel buffers in SGLs. The location of SGL is embedded in the
2953          * struct iocpacket itself.
2954          */
2955         kern_sge32 = (struct megasas_sge32 *)
2956             ((unsigned long)cmd->frame + ioc->sgl_off);
2957
2958         /*
2959          * For each user buffer, create a mirror buffer and copy in
2960          */
2961         for (i = 0; i < ioc->sge_count; i++) {
2962                 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2963                                                     ioc->sgl[i].iov_len,
2964                                                     &buf_handle, GFP_KERNEL);
2965                 if (!kbuff_arr[i]) {
2966                         printk(KERN_DEBUG "megasas: Failed to alloc "
2967                                "kernel SGL buffer for IOCTL \n");
2968                         error = -ENOMEM;
2969                         goto out;
2970                 }
2971
2972                 /*
2973                  * We don't change the dma_coherent_mask, so
2974                  * pci_alloc_consistent only returns 32bit addresses
2975                  */
2976                 kern_sge32[i].phys_addr = (u32) buf_handle;
2977                 kern_sge32[i].length = ioc->sgl[i].iov_len;
2978
2979                 /*
2980                  * We created a kernel buffer corresponding to the
2981                  * user buffer. Now copy in from the user buffer
2982                  */
2983                 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2984                                    (u32) (ioc->sgl[i].iov_len))) {
2985                         error = -EFAULT;
2986                         goto out;
2987                 }
2988         }
2989
2990         if (ioc->sense_len) {
2991                 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2992                                              &sense_handle, GFP_KERNEL);
2993                 if (!sense) {
2994                         error = -ENOMEM;
2995                         goto out;
2996                 }
2997
2998                 sense_ptr =
2999                     (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
3000                 *sense_ptr = sense_handle;
3001         }
3002
3003         /*
3004          * Set the sync_cmd flag so that the ISR knows not to complete this
3005          * cmd to the SCSI mid-layer
3006          */
3007         cmd->sync_cmd = 1;
3008         megasas_issue_blocked_cmd(instance, cmd);
3009         cmd->sync_cmd = 0;
3010
3011         /*
3012          * copy out the kernel buffers to user buffers
3013          */
3014         for (i = 0; i < ioc->sge_count; i++) {
3015                 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3016                                  ioc->sgl[i].iov_len)) {
3017                         error = -EFAULT;
3018                         goto out;
3019                 }
3020         }
3021
3022         /*
3023          * copy out the sense
3024          */
3025         if (ioc->sense_len) {
3026                 /*
3027                  * sense_ptr points to the location that has the user
3028                  * sense buffer address
3029                  */
3030                 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
3031                                      ioc->sense_off);
3032
3033                 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
3034                                  sense, ioc->sense_len)) {
3035                         printk(KERN_ERR "megasas: Failed to copy out to user "
3036                                         "sense data\n");
3037                         error = -EFAULT;
3038                         goto out;
3039                 }
3040         }
3041
3042         /*
3043          * copy the status codes returned by the fw
3044          */
3045         if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3046                          &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3047                 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3048                 error = -EFAULT;
3049         }
3050
3051       out:
3052         if (sense) {
3053                 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3054                                     sense, sense_handle);
3055         }
3056
3057         for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3058                 dma_free_coherent(&instance->pdev->dev,
3059                                     kern_sge32[i].length,
3060                                     kbuff_arr[i], kern_sge32[i].phys_addr);
3061         }
3062
3063         megasas_return_cmd(instance, cmd);
3064         return error;
3065 }
3066
3067 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3068 {
3069         int i;
3070
3071         for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3072
3073                 if ((megasas_mgmt_info.instance[i]) &&
3074                     (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3075                         return megasas_mgmt_info.instance[i];
3076         }
3077
3078         return NULL;
3079 }
3080
3081 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3082 {
3083         struct megasas_iocpacket __user *user_ioc =
3084             (struct megasas_iocpacket __user *)arg;
3085         struct megasas_iocpacket *ioc;
3086         struct megasas_instance *instance;
3087         int error;
3088
3089         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3090         if (!ioc)
3091                 return -ENOMEM;
3092
3093         if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3094                 error = -EFAULT;
3095                 goto out_kfree_ioc;
3096         }
3097
3098         instance = megasas_lookup_instance(ioc->host_no);
3099         if (!instance) {
3100                 error = -ENODEV;
3101                 goto out_kfree_ioc;
3102         }
3103
3104         /*
3105          * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3106          */
3107         if (down_interruptible(&instance->ioctl_sem)) {
3108                 error = -ERESTARTSYS;
3109                 goto out_kfree_ioc;
3110         }
3111         error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3112         up(&instance->ioctl_sem);
3113
3114       out_kfree_ioc:
3115         kfree(ioc);
3116         return error;
3117 }
3118
3119 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3120 {
3121         struct megasas_instance *instance;
3122         struct megasas_aen aen;
3123         int error;
3124
3125         if (file->private_data != file) {
3126                 printk(KERN_DEBUG "megasas: fasync_helper was not "
3127                        "called first\n");
3128                 return -EINVAL;
3129         }
3130
3131         if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3132                 return -EFAULT;
3133
3134         instance = megasas_lookup_instance(aen.host_no);
3135
3136         if (!instance)
3137                 return -ENODEV;
3138
3139         mutex_lock(&instance->aen_mutex);
3140         error = megasas_register_aen(instance, aen.seq_num,
3141                                      aen.class_locale_word);
3142         mutex_unlock(&instance->aen_mutex);
3143         return error;
3144 }
3145
3146 /**
3147  * megasas_mgmt_ioctl - char node ioctl entry point
3148  */
3149 static long
3150 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3151 {
3152         switch (cmd) {
3153         case MEGASAS_IOC_FIRMWARE:
3154                 return megasas_mgmt_ioctl_fw(file, arg);
3155
3156         case MEGASAS_IOC_GET_AEN:
3157                 return megasas_mgmt_ioctl_aen(file, arg);
3158         }
3159
3160         return -ENOTTY;
3161 }
3162
3163 #ifdef CONFIG_COMPAT
3164 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3165 {
3166         struct compat_megasas_iocpacket __user *cioc =
3167             (struct compat_megasas_iocpacket __user *)arg;
3168         struct megasas_iocpacket __user *ioc =
3169             compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3170         int i;
3171         int error = 0;
3172
3173         if (clear_user(ioc, sizeof(*ioc)))
3174                 return -EFAULT;
3175
3176         if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3177             copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3178             copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3179             copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3180             copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3181             copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3182                 return -EFAULT;
3183
3184         for (i = 0; i < MAX_IOCTL_SGE; i++) {
3185                 compat_uptr_t ptr;
3186
3187                 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3188                     put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3189                     copy_in_user(&ioc->sgl[i].iov_len,
3190                                  &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3191                         return -EFAULT;
3192         }
3193
3194         error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3195
3196         if (copy_in_user(&cioc->frame.hdr.cmd_status,
3197                          &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3198                 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3199                 return -EFAULT;
3200         }
3201         return error;
3202 }
3203
3204 static long
3205 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3206                           unsigned long arg)
3207 {
3208         switch (cmd) {
3209         case MEGASAS_IOC_FIRMWARE32:
3210                 return megasas_mgmt_compat_ioctl_fw(file, arg);
3211         case MEGASAS_IOC_GET_AEN:
3212                 return megasas_mgmt_ioctl_aen(file, arg);
3213         }
3214
3215         return -ENOTTY;
3216 }
3217 #endif
3218
3219 /*
3220  * File operations structure for management interface
3221  */
3222 static const struct file_operations megasas_mgmt_fops = {
3223         .owner = THIS_MODULE,
3224         .open = megasas_mgmt_open,
3225         .release = megasas_mgmt_release,
3226         .fasync = megasas_mgmt_fasync,
3227         .unlocked_ioctl = megasas_mgmt_ioctl,
3228 #ifdef CONFIG_COMPAT
3229         .compat_ioctl = megasas_mgmt_compat_ioctl,
3230 #endif
3231 };
3232
3233 /*
3234  * PCI hotplug support registration structure
3235  */
3236 static struct pci_driver megasas_pci_driver = {
3237
3238         .name = "megaraid_sas",
3239         .id_table = megasas_pci_table,
3240         .probe = megasas_probe_one,
3241         .remove = __devexit_p(megasas_detach_one),
3242         .suspend = megasas_suspend,
3243         .resume = megasas_resume,
3244         .shutdown = megasas_shutdown,
3245 };
3246
3247 /*
3248  * Sysfs driver attributes
3249  */
3250 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3251 {
3252         return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3253                         MEGASAS_VERSION);
3254 }
3255
3256 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3257
3258 static ssize_t
3259 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3260 {
3261         return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3262                         MEGASAS_RELDATE);
3263 }
3264
3265 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3266                    NULL);
3267
3268 static ssize_t
3269 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3270 {
3271         return sprintf(buf, "%u\n", megasas_dbg_lvl);
3272 }
3273
3274 static ssize_t
3275 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3276 {
3277         int retval = count;
3278         if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3279                 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3280                 retval = -EINVAL;
3281         }
3282         return retval;
3283 }
3284
3285 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3286                 megasas_sysfs_set_dbg_lvl);
3287
3288 static ssize_t
3289 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3290 {
3291         return sprintf(buf, "%u\n", poll_mode_io);
3292 }
3293
3294 static ssize_t
3295 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3296                                 const char *buf, size_t count)
3297 {
3298         int retval = count;
3299         int tmp = poll_mode_io;
3300         int i;
3301         struct megasas_instance *instance;
3302
3303         if (sscanf(buf, "%u", &poll_mode_io) < 1) {
3304                 printk(KERN_ERR "megasas: could not set poll_mode_io\n");
3305                 retval = -EINVAL;
3306         }
3307
3308         /*
3309          * Check if poll_mode_io is already set or is same as previous value
3310          */
3311         if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
3312                 goto out;
3313
3314         if (poll_mode_io) {
3315                 /*
3316                  * Start timers for all adapters
3317                  */
3318                 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3319                         instance = megasas_mgmt_info.instance[i];
3320                         if (instance) {
3321                                 megasas_start_timer(instance,
3322                                         &instance->io_completion_timer,
3323                                         megasas_io_completion_timer,
3324                                         MEGASAS_COMPLETION_TIMER_INTERVAL);
3325                         }
3326                 }
3327         } else {
3328                 /*
3329                  * Delete timers for all adapters
3330                  */
3331                 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3332                         instance = megasas_mgmt_info.instance[i];
3333                         if (instance)
3334                                 del_timer_sync(&instance->io_completion_timer);
3335                 }
3336         }
3337
3338 out:
3339         return retval;
3340 }
3341
3342 static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUGO,
3343                 megasas_sysfs_show_poll_mode_io,
3344                 megasas_sysfs_set_poll_mode_io);
3345
3346 /**
3347  * megasas_init - Driver load entry point
3348  */
3349 static int __init megasas_init(void)
3350 {
3351         int rval;
3352
3353         /*
3354          * Announce driver version and other information
3355          */
3356         printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3357                MEGASAS_EXT_VERSION);
3358
3359         memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3360
3361         /*
3362          * Register character device node
3363          */
3364         rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3365
3366         if (rval < 0) {
3367                 printk(KERN_DEBUG "megasas: failed to open device node\n");
3368                 return rval;
3369         }
3370
3371         megasas_mgmt_majorno = rval;
3372
3373         /*
3374          * Register ourselves as PCI hotplug module
3375          */
3376         rval = pci_register_driver(&megasas_pci_driver);
3377
3378         if (rval) {
3379                 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3380                 goto err_pcidrv;
3381         }
3382
3383         rval = driver_create_file(&megasas_pci_driver.driver,
3384                                   &driver_attr_version);
3385         if (rval)
3386                 goto err_dcf_attr_ver;
3387         rval = driver_create_file(&megasas_pci_driver.driver,
3388                                   &driver_attr_release_date);
3389         if (rval)
3390                 goto err_dcf_rel_date;
3391         rval = driver_create_file(&megasas_pci_driver.driver,
3392                                   &driver_attr_dbg_lvl);
3393         if (rval)
3394                 goto err_dcf_dbg_lvl;
3395         rval = driver_create_file(&megasas_pci_driver.driver,
3396                                   &driver_attr_poll_mode_io);
3397         if (rval)
3398                 goto err_dcf_poll_mode_io;
3399
3400         return rval;
3401
3402 err_dcf_poll_mode_io:
3403         driver_remove_file(&megasas_pci_driver.driver,
3404                            &driver_attr_dbg_lvl);
3405 err_dcf_dbg_lvl:
3406         driver_remove_file(&megasas_pci_driver.driver,
3407                            &driver_attr_release_date);
3408 err_dcf_rel_date:
3409         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3410 err_dcf_attr_ver:
3411         pci_unregister_driver(&megasas_pci_driver);
3412 err_pcidrv:
3413         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3414         return rval;
3415 }
3416
3417 /**
3418  * megasas_exit - Driver unload entry point
3419  */
3420 static void __exit megasas_exit(void)
3421 {
3422         driver_remove_file(&megasas_pci_driver.driver,
3423                            &driver_attr_poll_mode_io);
3424         driver_remove_file(&megasas_pci_driver.driver,
3425                            &driver_attr_dbg_lvl);
3426         driver_remove_file(&megasas_pci_driver.driver,
3427                            &driver_attr_release_date);
3428         driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3429
3430         pci_unregister_driver(&megasas_pci_driver);
3431         unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3432 }
3433
3434 module_init(megasas_init);
3435 module_exit(megasas_exit);