]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/scsi_lib.c
[SCSI] scsi: Device scanning oops for offlined devices (resend)
[linux-2.6-omap-h63xx.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE         32
35
36 struct scsi_host_sg_pool {
37         size_t          size;
38         char            *name; 
39         kmem_cache_t    *slab;
40         mempool_t       *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x } 
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49         SP(8),
50         SP(16),
51         SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53         SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55         SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57         SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };      
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
200
201         /*
202          * head injection *required* here otherwise quiesce won't work
203          */
204         blk_execute_rq(req->q, NULL, req, 1);
205
206         ret = req->errors;
207  out:
208         blk_put_request(req);
209
210         return ret;
211 }
212 EXPORT_SYMBOL(scsi_execute);
213
214
215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
216                      int data_direction, void *buffer, unsigned bufflen,
217                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
218 {
219         char *sense = NULL;
220         int result;
221         
222         if (sshdr) {
223                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
224                 if (!sense)
225                         return DRIVER_ERROR << 24;
226         }
227         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
228                               sense, timeout, retries, 0);
229         if (sshdr)
230                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
231
232         kfree(sense);
233         return result;
234 }
235 EXPORT_SYMBOL(scsi_execute_req);
236
237 struct scsi_io_context {
238         void *data;
239         void (*done)(void *data, char *sense, int result, int resid);
240         char sense[SCSI_SENSE_BUFFERSIZE];
241 };
242
243 static kmem_cache_t *scsi_io_context_cache;
244
245 static void scsi_end_async(struct request *req, int uptodate)
246 {
247         struct scsi_io_context *sioc = req->end_io_data;
248
249         if (sioc->done)
250                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
251
252         kmem_cache_free(scsi_io_context_cache, sioc);
253         __blk_put_request(req->q, req);
254 }
255
256 static int scsi_merge_bio(struct request *rq, struct bio *bio)
257 {
258         struct request_queue *q = rq->q;
259
260         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
261         if (rq_data_dir(rq) == WRITE)
262                 bio->bi_rw |= (1 << BIO_RW);
263         blk_queue_bounce(q, &bio);
264
265         if (!rq->bio)
266                 blk_rq_bio_prep(q, rq, bio);
267         else if (!q->back_merge_fn(q, rq, bio))
268                 return -EINVAL;
269         else {
270                 rq->biotail->bi_next = bio;
271                 rq->biotail = bio;
272                 rq->hard_nr_sectors += bio_sectors(bio);
273                 rq->nr_sectors = rq->hard_nr_sectors;
274         }
275
276         return 0;
277 }
278
279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
280 {
281         if (bio->bi_size)
282                 return 1;
283
284         bio_put(bio);
285         return 0;
286 }
287
288 /**
289  * scsi_req_map_sg - map a scatterlist into a request
290  * @rq:         request to fill
291  * @sg:         scatterlist
292  * @nsegs:      number of elements
293  * @bufflen:    len of buffer
294  * @gfp:        memory allocation flags
295  *
296  * scsi_req_map_sg maps a scatterlist into a request so that the
297  * request can be sent to the block layer. We do not trust the scatterlist
298  * sent to use, as some ULDs use that struct to only organize the pages.
299  */
300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
301                            int nsegs, unsigned bufflen, gfp_t gfp)
302 {
303         struct request_queue *q = rq->q;
304         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
305         unsigned int data_len = 0, len, bytes, off;
306         struct page *page;
307         struct bio *bio = NULL;
308         int i, err, nr_vecs = 0;
309
310         for (i = 0; i < nsegs; i++) {
311                 page = sgl[i].page;
312                 off = sgl[i].offset;
313                 len = sgl[i].length;
314                 data_len += len;
315
316                 while (len > 0) {
317                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
318
319                         if (!bio) {
320                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
321                                 nr_pages -= nr_vecs;
322
323                                 bio = bio_alloc(gfp, nr_vecs);
324                                 if (!bio) {
325                                         err = -ENOMEM;
326                                         goto free_bios;
327                                 }
328                                 bio->bi_end_io = scsi_bi_endio;
329                         }
330
331                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
332                             bytes) {
333                                 bio_put(bio);
334                                 err = -EINVAL;
335                                 goto free_bios;
336                         }
337
338                         if (bio->bi_vcnt >= nr_vecs) {
339                                 err = scsi_merge_bio(rq, bio);
340                                 if (err) {
341                                         bio_endio(bio, bio->bi_size, 0);
342                                         goto free_bios;
343                                 }
344                                 bio = NULL;
345                         }
346
347                         page++;
348                         len -= bytes;
349                         off = 0;
350                 }
351         }
352
353         rq->buffer = rq->data = NULL;
354         rq->data_len = data_len;
355         return 0;
356
357 free_bios:
358         while ((bio = rq->bio) != NULL) {
359                 rq->bio = bio->bi_next;
360                 /*
361                  * call endio instead of bio_put incase it was bounced
362                  */
363                 bio_endio(bio, bio->bi_size, 0);
364         }
365
366         return err;
367 }
368
369 /**
370  * scsi_execute_async - insert request
371  * @sdev:       scsi device
372  * @cmd:        scsi command
373  * @cmd_len:    length of scsi cdb
374  * @data_direction: data direction
375  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
376  * @bufflen:    len of buffer
377  * @use_sg:     if buffer is a scatterlist this is the number of elements
378  * @timeout:    request timeout in seconds
379  * @retries:    number of times to retry request
380  * @flags:      or into request flags
381  **/
382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
383                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
384                        int use_sg, int timeout, int retries, void *privdata,
385                        void (*done)(void *, char *, int, int), gfp_t gfp)
386 {
387         struct request *req;
388         struct scsi_io_context *sioc;
389         int err = 0;
390         int write = (data_direction == DMA_TO_DEVICE);
391
392         sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
393         if (!sioc)
394                 return DRIVER_ERROR << 24;
395         memset(sioc, 0, sizeof(*sioc));
396
397         req = blk_get_request(sdev->request_queue, write, gfp);
398         if (!req)
399                 goto free_sense;
400         req->flags |= REQ_BLOCK_PC | REQ_QUIET;
401
402         if (use_sg)
403                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404         else if (bufflen)
405                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406
407         if (err)
408                 goto free_req;
409
410         req->cmd_len = cmd_len;
411         memcpy(req->cmd, cmd, req->cmd_len);
412         req->sense = sioc->sense;
413         req->sense_len = 0;
414         req->timeout = timeout;
415         req->retries = retries;
416         req->end_io_data = sioc;
417
418         sioc->data = privdata;
419         sioc->done = done;
420
421         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422         return 0;
423
424 free_req:
425         blk_put_request(req);
426 free_sense:
427         kfree(sioc);
428         return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431
432 /*
433  * Function:    scsi_init_cmd_errh()
434  *
435  * Purpose:     Initialize cmd fields related to error handling.
436  *
437  * Arguments:   cmd     - command that is ready to be queued.
438  *
439  * Returns:     Nothing
440  *
441  * Notes:       This function has the job of initializing a number of
442  *              fields related to error handling.   Typically this will
443  *              be called once for each command, as required.
444  */
445 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
446 {
447         cmd->serial_number = 0;
448
449         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450
451         if (cmd->cmd_len == 0)
452                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
453
454         /*
455          * We need saved copies of a number of fields - this is because
456          * error handling may need to overwrite these with different values
457          * to run different commands, and once error handling is complete,
458          * we will need to restore these values prior to running the actual
459          * command.
460          */
461         cmd->old_use_sg = cmd->use_sg;
462         cmd->old_cmd_len = cmd->cmd_len;
463         cmd->sc_old_data_direction = cmd->sc_data_direction;
464         cmd->old_underflow = cmd->underflow;
465         memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
466         cmd->buffer = cmd->request_buffer;
467         cmd->bufflen = cmd->request_bufflen;
468
469         return 1;
470 }
471
472 /*
473  * Function:   scsi_setup_cmd_retry()
474  *
475  * Purpose:    Restore the command state for a retry
476  *
477  * Arguments:  cmd      - command to be restored
478  *
479  * Returns:    Nothing
480  *
481  * Notes:      Immediately prior to retrying a command, we need
482  *             to restore certain fields that we saved above.
483  */
484 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
485 {
486         memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
487         cmd->request_buffer = cmd->buffer;
488         cmd->request_bufflen = cmd->bufflen;
489         cmd->use_sg = cmd->old_use_sg;
490         cmd->cmd_len = cmd->old_cmd_len;
491         cmd->sc_data_direction = cmd->sc_old_data_direction;
492         cmd->underflow = cmd->old_underflow;
493 }
494
495 void scsi_device_unbusy(struct scsi_device *sdev)
496 {
497         struct Scsi_Host *shost = sdev->host;
498         unsigned long flags;
499
500         spin_lock_irqsave(shost->host_lock, flags);
501         shost->host_busy--;
502         if (unlikely(scsi_host_in_recovery(shost) &&
503                      (shost->host_failed || shost->host_eh_scheduled)))
504                 scsi_eh_wakeup(shost);
505         spin_unlock(shost->host_lock);
506         spin_lock(sdev->request_queue->queue_lock);
507         sdev->device_busy--;
508         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
509 }
510
511 /*
512  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
513  * and call blk_run_queue for all the scsi_devices on the target -
514  * including current_sdev first.
515  *
516  * Called with *no* scsi locks held.
517  */
518 static void scsi_single_lun_run(struct scsi_device *current_sdev)
519 {
520         struct Scsi_Host *shost = current_sdev->host;
521         struct scsi_device *sdev, *tmp;
522         struct scsi_target *starget = scsi_target(current_sdev);
523         unsigned long flags;
524
525         spin_lock_irqsave(shost->host_lock, flags);
526         starget->starget_sdev_user = NULL;
527         spin_unlock_irqrestore(shost->host_lock, flags);
528
529         /*
530          * Call blk_run_queue for all LUNs on the target, starting with
531          * current_sdev. We race with others (to set starget_sdev_user),
532          * but in most cases, we will be first. Ideally, each LU on the
533          * target would get some limited time or requests on the target.
534          */
535         blk_run_queue(current_sdev->request_queue);
536
537         spin_lock_irqsave(shost->host_lock, flags);
538         if (starget->starget_sdev_user)
539                 goto out;
540         list_for_each_entry_safe(sdev, tmp, &starget->devices,
541                         same_target_siblings) {
542                 if (sdev == current_sdev)
543                         continue;
544                 if (scsi_device_get(sdev))
545                         continue;
546
547                 spin_unlock_irqrestore(shost->host_lock, flags);
548                 blk_run_queue(sdev->request_queue);
549                 spin_lock_irqsave(shost->host_lock, flags);
550         
551                 scsi_device_put(sdev);
552         }
553  out:
554         spin_unlock_irqrestore(shost->host_lock, flags);
555 }
556
557 /*
558  * Function:    scsi_run_queue()
559  *
560  * Purpose:     Select a proper request queue to serve next
561  *
562  * Arguments:   q       - last request's queue
563  *
564  * Returns:     Nothing
565  *
566  * Notes:       The previous command was completely finished, start
567  *              a new one if possible.
568  */
569 static void scsi_run_queue(struct request_queue *q)
570 {
571         struct scsi_device *sdev = q->queuedata;
572         struct Scsi_Host *shost = sdev->host;
573         unsigned long flags;
574
575         if (sdev->single_lun)
576                 scsi_single_lun_run(sdev);
577
578         spin_lock_irqsave(shost->host_lock, flags);
579         while (!list_empty(&shost->starved_list) &&
580                !shost->host_blocked && !shost->host_self_blocked &&
581                 !((shost->can_queue > 0) &&
582                   (shost->host_busy >= shost->can_queue))) {
583                 /*
584                  * As long as shost is accepting commands and we have
585                  * starved queues, call blk_run_queue. scsi_request_fn
586                  * drops the queue_lock and can add us back to the
587                  * starved_list.
588                  *
589                  * host_lock protects the starved_list and starved_entry.
590                  * scsi_request_fn must get the host_lock before checking
591                  * or modifying starved_list or starved_entry.
592                  */
593                 sdev = list_entry(shost->starved_list.next,
594                                           struct scsi_device, starved_entry);
595                 list_del_init(&sdev->starved_entry);
596                 spin_unlock_irqrestore(shost->host_lock, flags);
597
598                 blk_run_queue(sdev->request_queue);
599
600                 spin_lock_irqsave(shost->host_lock, flags);
601                 if (unlikely(!list_empty(&sdev->starved_entry)))
602                         /*
603                          * sdev lost a race, and was put back on the
604                          * starved list. This is unlikely but without this
605                          * in theory we could loop forever.
606                          */
607                         break;
608         }
609         spin_unlock_irqrestore(shost->host_lock, flags);
610
611         blk_run_queue(q);
612 }
613
614 /*
615  * Function:    scsi_requeue_command()
616  *
617  * Purpose:     Handle post-processing of completed commands.
618  *
619  * Arguments:   q       - queue to operate on
620  *              cmd     - command that may need to be requeued.
621  *
622  * Returns:     Nothing
623  *
624  * Notes:       After command completion, there may be blocks left
625  *              over which weren't finished by the previous command
626  *              this can be for a number of reasons - the main one is
627  *              I/O errors in the middle of the request, in which case
628  *              we need to request the blocks that come after the bad
629  *              sector.
630  * Notes:       Upon return, cmd is a stale pointer.
631  */
632 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
633 {
634         struct request *req = cmd->request;
635         unsigned long flags;
636
637         scsi_unprep_request(req);
638         spin_lock_irqsave(q->queue_lock, flags);
639         blk_requeue_request(q, req);
640         spin_unlock_irqrestore(q->queue_lock, flags);
641
642         scsi_run_queue(q);
643 }
644
645 void scsi_next_command(struct scsi_cmnd *cmd)
646 {
647         struct scsi_device *sdev = cmd->device;
648         struct request_queue *q = sdev->request_queue;
649
650         /* need to hold a reference on the device before we let go of the cmd */
651         get_device(&sdev->sdev_gendev);
652
653         scsi_put_command(cmd);
654         scsi_run_queue(q);
655
656         /* ok to remove device now */
657         put_device(&sdev->sdev_gendev);
658 }
659
660 void scsi_run_host_queues(struct Scsi_Host *shost)
661 {
662         struct scsi_device *sdev;
663
664         shost_for_each_device(sdev, shost)
665                 scsi_run_queue(sdev->request_queue);
666 }
667
668 /*
669  * Function:    scsi_end_request()
670  *
671  * Purpose:     Post-processing of completed commands (usually invoked at end
672  *              of upper level post-processing and scsi_io_completion).
673  *
674  * Arguments:   cmd      - command that is complete.
675  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
676  *              bytes    - number of bytes of completed I/O
677  *              requeue  - indicates whether we should requeue leftovers.
678  *
679  * Lock status: Assumed that lock is not held upon entry.
680  *
681  * Returns:     cmd if requeue required, NULL otherwise.
682  *
683  * Notes:       This is called for block device requests in order to
684  *              mark some number of sectors as complete.
685  * 
686  *              We are guaranteeing that the request queue will be goosed
687  *              at some point during this call.
688  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
689  */
690 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
691                                           int bytes, int requeue)
692 {
693         request_queue_t *q = cmd->device->request_queue;
694         struct request *req = cmd->request;
695         unsigned long flags;
696
697         /*
698          * If there are blocks left over at the end, set up the command
699          * to queue the remainder of them.
700          */
701         if (end_that_request_chunk(req, uptodate, bytes)) {
702                 int leftover = (req->hard_nr_sectors << 9);
703
704                 if (blk_pc_request(req))
705                         leftover = req->data_len;
706
707                 /* kill remainder if no retrys */
708                 if (!uptodate && blk_noretry_request(req))
709                         end_that_request_chunk(req, 0, leftover);
710                 else {
711                         if (requeue) {
712                                 /*
713                                  * Bleah.  Leftovers again.  Stick the
714                                  * leftovers in the front of the
715                                  * queue, and goose the queue again.
716                                  */
717                                 scsi_requeue_command(q, cmd);
718                                 cmd = NULL;
719                         }
720                         return cmd;
721                 }
722         }
723
724         add_disk_randomness(req->rq_disk);
725
726         spin_lock_irqsave(q->queue_lock, flags);
727         if (blk_rq_tagged(req))
728                 blk_queue_end_tag(q, req);
729         end_that_request_last(req, uptodate);
730         spin_unlock_irqrestore(q->queue_lock, flags);
731
732         /*
733          * This will goose the queue request function at the end, so we don't
734          * need to worry about launching another command.
735          */
736         scsi_next_command(cmd);
737         return NULL;
738 }
739
740 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741 {
742         struct scsi_host_sg_pool *sgp;
743         struct scatterlist *sgl;
744
745         BUG_ON(!cmd->use_sg);
746
747         switch (cmd->use_sg) {
748         case 1 ... 8:
749                 cmd->sglist_len = 0;
750                 break;
751         case 9 ... 16:
752                 cmd->sglist_len = 1;
753                 break;
754         case 17 ... 32:
755                 cmd->sglist_len = 2;
756                 break;
757 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
758         case 33 ... 64:
759                 cmd->sglist_len = 3;
760                 break;
761 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
762         case 65 ... 128:
763                 cmd->sglist_len = 4;
764                 break;
765 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
766         case 129 ... 256:
767                 cmd->sglist_len = 5;
768                 break;
769 #endif
770 #endif
771 #endif
772         default:
773                 return NULL;
774         }
775
776         sgp = scsi_sg_pools + cmd->sglist_len;
777         sgl = mempool_alloc(sgp->pool, gfp_mask);
778         return sgl;
779 }
780
781 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
782 {
783         struct scsi_host_sg_pool *sgp;
784
785         BUG_ON(index >= SG_MEMPOOL_NR);
786
787         sgp = scsi_sg_pools + index;
788         mempool_free(sgl, sgp->pool);
789 }
790
791 /*
792  * Function:    scsi_release_buffers()
793  *
794  * Purpose:     Completion processing for block device I/O requests.
795  *
796  * Arguments:   cmd     - command that we are bailing.
797  *
798  * Lock status: Assumed that no lock is held upon entry.
799  *
800  * Returns:     Nothing
801  *
802  * Notes:       In the event that an upper level driver rejects a
803  *              command, we must release resources allocated during
804  *              the __init_io() function.  Primarily this would involve
805  *              the scatter-gather table, and potentially any bounce
806  *              buffers.
807  */
808 static void scsi_release_buffers(struct scsi_cmnd *cmd)
809 {
810         struct request *req = cmd->request;
811
812         /*
813          * Free up any indirection buffers we allocated for DMA purposes. 
814          */
815         if (cmd->use_sg)
816                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
817         else if (cmd->request_buffer != req->buffer)
818                 kfree(cmd->request_buffer);
819
820         /*
821          * Zero these out.  They now point to freed memory, and it is
822          * dangerous to hang onto the pointers.
823          */
824         cmd->buffer  = NULL;
825         cmd->bufflen = 0;
826         cmd->request_buffer = NULL;
827         cmd->request_bufflen = 0;
828 }
829
830 /*
831  * Function:    scsi_io_completion()
832  *
833  * Purpose:     Completion processing for block device I/O requests.
834  *
835  * Arguments:   cmd   - command that is finished.
836  *
837  * Lock status: Assumed that no lock is held upon entry.
838  *
839  * Returns:     Nothing
840  *
841  * Notes:       This function is matched in terms of capabilities to
842  *              the function that created the scatter-gather list.
843  *              In other words, if there are no bounce buffers
844  *              (the normal case for most drivers), we don't need
845  *              the logic to deal with cleaning up afterwards.
846  *
847  *              We must do one of several things here:
848  *
849  *              a) Call scsi_end_request.  This will finish off the
850  *                 specified number of sectors.  If we are done, the
851  *                 command block will be released, and the queue
852  *                 function will be goosed.  If we are not done, then
853  *                 scsi_end_request will directly goose the queue.
854  *
855  *              b) We can just use scsi_requeue_command() here.  This would
856  *                 be used if we just wanted to retry, for example.
857  */
858 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
859 {
860         int result = cmd->result;
861         int this_count = cmd->bufflen;
862         request_queue_t *q = cmd->device->request_queue;
863         struct request *req = cmd->request;
864         int clear_errors = 1;
865         struct scsi_sense_hdr sshdr;
866         int sense_valid = 0;
867         int sense_deferred = 0;
868
869         /*
870          * Free up any indirection buffers we allocated for DMA purposes. 
871          * For the case of a READ, we need to copy the data out of the
872          * bounce buffer and into the real buffer.
873          */
874         if (cmd->use_sg)
875                 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
876         else if (cmd->buffer != req->buffer) {
877                 if (rq_data_dir(req) == READ) {
878                         unsigned long flags;
879                         char *to = bio_kmap_irq(req->bio, &flags);
880                         memcpy(to, cmd->buffer, cmd->bufflen);
881                         bio_kunmap_irq(to, &flags);
882                 }
883                 kfree(cmd->buffer);
884         }
885
886         if (result) {
887                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
888                 if (sense_valid)
889                         sense_deferred = scsi_sense_is_deferred(&sshdr);
890         }
891         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
892                 req->errors = result;
893                 if (result) {
894                         clear_errors = 0;
895                         if (sense_valid && req->sense) {
896                                 /*
897                                  * SG_IO wants current and deferred errors
898                                  */
899                                 int len = 8 + cmd->sense_buffer[7];
900
901                                 if (len > SCSI_SENSE_BUFFERSIZE)
902                                         len = SCSI_SENSE_BUFFERSIZE;
903                                 memcpy(req->sense, cmd->sense_buffer,  len);
904                                 req->sense_len = len;
905                         }
906                 } else
907                         req->data_len = cmd->resid;
908         }
909
910         /*
911          * Zero these out.  They now point to freed memory, and it is
912          * dangerous to hang onto the pointers.
913          */
914         cmd->buffer  = NULL;
915         cmd->bufflen = 0;
916         cmd->request_buffer = NULL;
917         cmd->request_bufflen = 0;
918
919         /*
920          * Next deal with any sectors which we were able to correctly
921          * handle.
922          */
923         if (good_bytes > 0) {
924                 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
925                                               "%d bytes done.\n",
926                                               req->nr_sectors, good_bytes));
927                 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
928
929                 if (clear_errors)
930                         req->errors = 0;
931
932                 /* A number of bytes were successfully read.  If there
933                  * is leftovers and there is some kind of error
934                  * (result != 0), retry the rest.
935                  */
936                 if (scsi_end_request(cmd, 1, good_bytes, !!result) == NULL)
937                         return;
938         }
939
940         /* good_bytes = 0, or (inclusive) there were leftovers and
941          * result = 0, so scsi_end_request couldn't retry.
942          */
943         if (sense_valid && !sense_deferred) {
944                 switch (sshdr.sense_key) {
945                 case UNIT_ATTENTION:
946                         if (cmd->device->removable) {
947                                 /* Detected disc change.  Set a bit
948                                  * and quietly refuse further access.
949                                  */
950                                 cmd->device->changed = 1;
951                                 scsi_end_request(cmd, 0, this_count, 1);
952                                 return;
953                         } else {
954                                 /* Must have been a power glitch, or a
955                                  * bus reset.  Could not have been a
956                                  * media change, so we just retry the
957                                  * request and see what happens.
958                                  */
959                                 scsi_requeue_command(q, cmd);
960                                 return;
961                         }
962                         break;
963                 case ILLEGAL_REQUEST:
964                         /* If we had an ILLEGAL REQUEST returned, then
965                          * we may have performed an unsupported
966                          * command.  The only thing this should be
967                          * would be a ten byte read where only a six
968                          * byte read was supported.  Also, on a system
969                          * where READ CAPACITY failed, we may have
970                          * read past the end of the disk.
971                          */
972                         if ((cmd->device->use_10_for_rw &&
973                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
974                             (cmd->cmnd[0] == READ_10 ||
975                              cmd->cmnd[0] == WRITE_10)) {
976                                 cmd->device->use_10_for_rw = 0;
977                                 /* This will cause a retry with a
978                                  * 6-byte command.
979                                  */
980                                 scsi_requeue_command(q, cmd);
981                                 return;
982                         } else {
983                                 scsi_end_request(cmd, 0, this_count, 1);
984                                 return;
985                         }
986                         break;
987                 case NOT_READY:
988                         /* If the device is in the process of becoming
989                          * ready, or has a temporary blockage, retry.
990                          */
991                         if (sshdr.asc == 0x04) {
992                                 switch (sshdr.ascq) {
993                                 case 0x01: /* becoming ready */
994                                 case 0x04: /* format in progress */
995                                 case 0x05: /* rebuild in progress */
996                                 case 0x06: /* recalculation in progress */
997                                 case 0x07: /* operation in progress */
998                                 case 0x08: /* Long write in progress */
999                                 case 0x09: /* self test in progress */
1000                                         scsi_requeue_command(q, cmd);
1001                                         return;
1002                                 default:
1003                                         break;
1004                                 }
1005                         }
1006                         if (!(req->flags & REQ_QUIET)) {
1007                                 scmd_printk(KERN_INFO, cmd,
1008                                             "Device not ready: ");
1009                                 scsi_print_sense_hdr("", &sshdr);
1010                         }
1011                         scsi_end_request(cmd, 0, this_count, 1);
1012                         return;
1013                 case VOLUME_OVERFLOW:
1014                         if (!(req->flags & REQ_QUIET)) {
1015                                 scmd_printk(KERN_INFO, cmd,
1016                                             "Volume overflow, CDB: ");
1017                                 __scsi_print_command(cmd->data_cmnd);
1018                                 scsi_print_sense("", cmd);
1019                         }
1020                         /* See SSC3rXX or current. */
1021                         scsi_end_request(cmd, 0, this_count, 1);
1022                         return;
1023                 default:
1024                         break;
1025                 }
1026         }
1027         if (host_byte(result) == DID_RESET) {
1028                 /* Third party bus reset or reset for error recovery
1029                  * reasons.  Just retry the request and see what
1030                  * happens.
1031                  */
1032                 scsi_requeue_command(q, cmd);
1033                 return;
1034         }
1035         if (result) {
1036                 if (!(req->flags & REQ_QUIET)) {
1037                         scmd_printk(KERN_INFO, cmd,
1038                                     "SCSI error: return code = 0x%08x\n",
1039                                     result);
1040                         if (driver_byte(result) & DRIVER_SENSE)
1041                                 scsi_print_sense("", cmd);
1042                 }
1043         }
1044         scsi_end_request(cmd, 0, this_count, !result);
1045 }
1046 EXPORT_SYMBOL(scsi_io_completion);
1047
1048 /*
1049  * Function:    scsi_init_io()
1050  *
1051  * Purpose:     SCSI I/O initialize function.
1052  *
1053  * Arguments:   cmd   - Command descriptor we wish to initialize
1054  *
1055  * Returns:     0 on success
1056  *              BLKPREP_DEFER if the failure is retryable
1057  *              BLKPREP_KILL if the failure is fatal
1058  */
1059 static int scsi_init_io(struct scsi_cmnd *cmd)
1060 {
1061         struct request     *req = cmd->request;
1062         struct scatterlist *sgpnt;
1063         int                count;
1064
1065         /*
1066          * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1067          */
1068         if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1069                 cmd->request_bufflen = req->data_len;
1070                 cmd->request_buffer = req->data;
1071                 req->buffer = req->data;
1072                 cmd->use_sg = 0;
1073                 return 0;
1074         }
1075
1076         /*
1077          * we used to not use scatter-gather for single segment request,
1078          * but now we do (it makes highmem I/O easier to support without
1079          * kmapping pages)
1080          */
1081         cmd->use_sg = req->nr_phys_segments;
1082
1083         /*
1084          * if sg table allocation fails, requeue request later.
1085          */
1086         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1087         if (unlikely(!sgpnt)) {
1088                 scsi_unprep_request(req);
1089                 return BLKPREP_DEFER;
1090         }
1091
1092         cmd->request_buffer = (char *) sgpnt;
1093         cmd->request_bufflen = req->nr_sectors << 9;
1094         if (blk_pc_request(req))
1095                 cmd->request_bufflen = req->data_len;
1096         req->buffer = NULL;
1097
1098         /* 
1099          * Next, walk the list, and fill in the addresses and sizes of
1100          * each segment.
1101          */
1102         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1103
1104         /*
1105          * mapped well, send it off
1106          */
1107         if (likely(count <= cmd->use_sg)) {
1108                 cmd->use_sg = count;
1109                 return 0;
1110         }
1111
1112         printk(KERN_ERR "Incorrect number of segments after building list\n");
1113         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1114         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1115                         req->current_nr_sectors);
1116
1117         /* release the command and kill it */
1118         scsi_release_buffers(cmd);
1119         scsi_put_command(cmd);
1120         return BLKPREP_KILL;
1121 }
1122
1123 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1124                                sector_t *error_sector)
1125 {
1126         struct scsi_device *sdev = q->queuedata;
1127         struct scsi_driver *drv;
1128
1129         if (sdev->sdev_state != SDEV_RUNNING)
1130                 return -ENXIO;
1131
1132         drv = *(struct scsi_driver **) disk->private_data;
1133         if (drv->issue_flush)
1134                 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1135
1136         return -EOPNOTSUPP;
1137 }
1138
1139 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1140 {
1141         BUG_ON(!blk_pc_request(cmd->request));
1142         /*
1143          * This will complete the whole command with uptodate=1 so
1144          * as far as the block layer is concerned the command completed
1145          * successfully. Since this is a REQ_BLOCK_PC command the
1146          * caller should check the request's errors value
1147          */
1148         scsi_io_completion(cmd, cmd->bufflen);
1149 }
1150
1151 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1152 {
1153         struct request *req = cmd->request;
1154
1155         BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1156         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1157         cmd->cmd_len = req->cmd_len;
1158         if (!req->data_len)
1159                 cmd->sc_data_direction = DMA_NONE;
1160         else if (rq_data_dir(req) == WRITE)
1161                 cmd->sc_data_direction = DMA_TO_DEVICE;
1162         else
1163                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1164         
1165         cmd->transfersize = req->data_len;
1166         cmd->allowed = req->retries;
1167         cmd->timeout_per_command = req->timeout;
1168         cmd->done = scsi_blk_pc_done;
1169 }
1170
1171 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1172 {
1173         struct scsi_device *sdev = q->queuedata;
1174         struct scsi_cmnd *cmd;
1175         int specials_only = 0;
1176
1177         /*
1178          * Just check to see if the device is online.  If it isn't, we
1179          * refuse to process any commands.  The device must be brought
1180          * online before trying any recovery commands
1181          */
1182         if (unlikely(!scsi_device_online(sdev))) {
1183                 sdev_printk(KERN_ERR, sdev,
1184                             "rejecting I/O to offline device\n");
1185                 goto kill;
1186         }
1187         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1188                 /* OK, we're not in a running state don't prep
1189                  * user commands */
1190                 if (sdev->sdev_state == SDEV_DEL) {
1191                         /* Device is fully deleted, no commands
1192                          * at all allowed down */
1193                         sdev_printk(KERN_ERR, sdev,
1194                                     "rejecting I/O to dead device\n");
1195                         goto kill;
1196                 }
1197                 /* OK, we only allow special commands (i.e. not
1198                  * user initiated ones */
1199                 specials_only = sdev->sdev_state;
1200         }
1201
1202         /*
1203          * Find the actual device driver associated with this command.
1204          * The SPECIAL requests are things like character device or
1205          * ioctls, which did not originate from ll_rw_blk.  Note that
1206          * the special field is also used to indicate the cmd for
1207          * the remainder of a partially fulfilled request that can 
1208          * come up when there is a medium error.  We have to treat
1209          * these two cases differently.  We differentiate by looking
1210          * at request->cmd, as this tells us the real story.
1211          */
1212         if (req->flags & REQ_SPECIAL && req->special) {
1213                 cmd = req->special;
1214         } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1215
1216                 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1217                         if(specials_only == SDEV_QUIESCE ||
1218                                         specials_only == SDEV_BLOCK)
1219                                 goto defer;
1220                         
1221                         sdev_printk(KERN_ERR, sdev,
1222                                     "rejecting I/O to device being removed\n");
1223                         goto kill;
1224                 }
1225                         
1226                         
1227                 /*
1228                  * Now try and find a command block that we can use.
1229                  */
1230                 if (!req->special) {
1231                         cmd = scsi_get_command(sdev, GFP_ATOMIC);
1232                         if (unlikely(!cmd))
1233                                 goto defer;
1234                 } else
1235                         cmd = req->special;
1236                 
1237                 /* pull a tag out of the request if we have one */
1238                 cmd->tag = req->tag;
1239         } else {
1240                 blk_dump_rq_flags(req, "SCSI bad req");
1241                 goto kill;
1242         }
1243         
1244         /* note the overloading of req->special.  When the tag
1245          * is active it always means cmd.  If the tag goes
1246          * back for re-queueing, it may be reset */
1247         req->special = cmd;
1248         cmd->request = req;
1249         
1250         /*
1251          * FIXME: drop the lock here because the functions below
1252          * expect to be called without the queue lock held.  Also,
1253          * previously, we dequeued the request before dropping the
1254          * lock.  We hope REQ_STARTED prevents anything untoward from
1255          * happening now.
1256          */
1257         if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1258                 int ret;
1259
1260                 /*
1261                  * This will do a couple of things:
1262                  *  1) Fill in the actual SCSI command.
1263                  *  2) Fill in any other upper-level specific fields
1264                  * (timeout).
1265                  *
1266                  * If this returns 0, it means that the request failed
1267                  * (reading past end of disk, reading offline device,
1268                  * etc).   This won't actually talk to the device, but
1269                  * some kinds of consistency checking may cause the     
1270                  * request to be rejected immediately.
1271                  */
1272
1273                 /* 
1274                  * This sets up the scatter-gather table (allocating if
1275                  * required).
1276                  */
1277                 ret = scsi_init_io(cmd);
1278                 switch(ret) {
1279                         /* For BLKPREP_KILL/DEFER the cmd was released */
1280                 case BLKPREP_KILL:
1281                         goto kill;
1282                 case BLKPREP_DEFER:
1283                         goto defer;
1284                 }
1285                 
1286                 /*
1287                  * Initialize the actual SCSI command for this request.
1288                  */
1289                 if (req->flags & REQ_BLOCK_PC) {
1290                         scsi_setup_blk_pc_cmnd(cmd);
1291                 } else if (req->rq_disk) {
1292                         struct scsi_driver *drv;
1293
1294                         drv = *(struct scsi_driver **)req->rq_disk->private_data;
1295                         if (unlikely(!drv->init_command(cmd))) {
1296                                 scsi_release_buffers(cmd);
1297                                 scsi_put_command(cmd);
1298                                 goto kill;
1299                         }
1300                 }
1301         }
1302
1303         /*
1304          * The request is now prepped, no need to come back here
1305          */
1306         req->flags |= REQ_DONTPREP;
1307         return BLKPREP_OK;
1308
1309  defer:
1310         /* If we defer, the elv_next_request() returns NULL, but the
1311          * queue must be restarted, so we plug here if no returning
1312          * command will automatically do that. */
1313         if (sdev->device_busy == 0)
1314                 blk_plug_device(q);
1315         return BLKPREP_DEFER;
1316  kill:
1317         req->errors = DID_NO_CONNECT << 16;
1318         return BLKPREP_KILL;
1319 }
1320
1321 /*
1322  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1323  * return 0.
1324  *
1325  * Called with the queue_lock held.
1326  */
1327 static inline int scsi_dev_queue_ready(struct request_queue *q,
1328                                   struct scsi_device *sdev)
1329 {
1330         if (sdev->device_busy >= sdev->queue_depth)
1331                 return 0;
1332         if (sdev->device_busy == 0 && sdev->device_blocked) {
1333                 /*
1334                  * unblock after device_blocked iterates to zero
1335                  */
1336                 if (--sdev->device_blocked == 0) {
1337                         SCSI_LOG_MLQUEUE(3,
1338                                    sdev_printk(KERN_INFO, sdev,
1339                                    "unblocking device at zero depth\n"));
1340                 } else {
1341                         blk_plug_device(q);
1342                         return 0;
1343                 }
1344         }
1345         if (sdev->device_blocked)
1346                 return 0;
1347
1348         return 1;
1349 }
1350
1351 /*
1352  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1353  * return 0. We must end up running the queue again whenever 0 is
1354  * returned, else IO can hang.
1355  *
1356  * Called with host_lock held.
1357  */
1358 static inline int scsi_host_queue_ready(struct request_queue *q,
1359                                    struct Scsi_Host *shost,
1360                                    struct scsi_device *sdev)
1361 {
1362         if (scsi_host_in_recovery(shost))
1363                 return 0;
1364         if (shost->host_busy == 0 && shost->host_blocked) {
1365                 /*
1366                  * unblock after host_blocked iterates to zero
1367                  */
1368                 if (--shost->host_blocked == 0) {
1369                         SCSI_LOG_MLQUEUE(3,
1370                                 printk("scsi%d unblocking host at zero depth\n",
1371                                         shost->host_no));
1372                 } else {
1373                         blk_plug_device(q);
1374                         return 0;
1375                 }
1376         }
1377         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1378             shost->host_blocked || shost->host_self_blocked) {
1379                 if (list_empty(&sdev->starved_entry))
1380                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1381                 return 0;
1382         }
1383
1384         /* We're OK to process the command, so we can't be starved */
1385         if (!list_empty(&sdev->starved_entry))
1386                 list_del_init(&sdev->starved_entry);
1387
1388         return 1;
1389 }
1390
1391 /*
1392  * Kill a request for a dead device
1393  */
1394 static void scsi_kill_request(struct request *req, request_queue_t *q)
1395 {
1396         struct scsi_cmnd *cmd = req->special;
1397         struct scsi_device *sdev = cmd->device;
1398         struct Scsi_Host *shost = sdev->host;
1399
1400         blkdev_dequeue_request(req);
1401
1402         if (unlikely(cmd == NULL)) {
1403                 printk(KERN_CRIT "impossible request in %s.\n",
1404                                  __FUNCTION__);
1405                 BUG();
1406         }
1407
1408         scsi_init_cmd_errh(cmd);
1409         cmd->result = DID_NO_CONNECT << 16;
1410         atomic_inc(&cmd->device->iorequest_cnt);
1411
1412         /*
1413          * SCSI request completion path will do scsi_device_unbusy(),
1414          * bump busy counts.  To bump the counters, we need to dance
1415          * with the locks as normal issue path does.
1416          */
1417         sdev->device_busy++;
1418         spin_unlock(sdev->request_queue->queue_lock);
1419         spin_lock(shost->host_lock);
1420         shost->host_busy++;
1421         spin_unlock(shost->host_lock);
1422         spin_lock(sdev->request_queue->queue_lock);
1423
1424         __scsi_done(cmd);
1425 }
1426
1427 static void scsi_softirq_done(struct request *rq)
1428 {
1429         struct scsi_cmnd *cmd = rq->completion_data;
1430         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1431         int disposition;
1432
1433         INIT_LIST_HEAD(&cmd->eh_entry);
1434
1435         disposition = scsi_decide_disposition(cmd);
1436         if (disposition != SUCCESS &&
1437             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1438                 sdev_printk(KERN_ERR, cmd->device,
1439                             "timing out command, waited %lus\n",
1440                             wait_for/HZ);
1441                 disposition = SUCCESS;
1442         }
1443                         
1444         scsi_log_completion(cmd, disposition);
1445
1446         switch (disposition) {
1447                 case SUCCESS:
1448                         scsi_finish_command(cmd);
1449                         break;
1450                 case NEEDS_RETRY:
1451                         scsi_retry_command(cmd);
1452                         break;
1453                 case ADD_TO_MLQUEUE:
1454                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1455                         break;
1456                 default:
1457                         if (!scsi_eh_scmd_add(cmd, 0))
1458                                 scsi_finish_command(cmd);
1459         }
1460 }
1461
1462 /*
1463  * Function:    scsi_request_fn()
1464  *
1465  * Purpose:     Main strategy routine for SCSI.
1466  *
1467  * Arguments:   q       - Pointer to actual queue.
1468  *
1469  * Returns:     Nothing
1470  *
1471  * Lock status: IO request lock assumed to be held when called.
1472  */
1473 static void scsi_request_fn(struct request_queue *q)
1474 {
1475         struct scsi_device *sdev = q->queuedata;
1476         struct Scsi_Host *shost;
1477         struct scsi_cmnd *cmd;
1478         struct request *req;
1479
1480         if (!sdev) {
1481                 printk("scsi: killing requests for dead queue\n");
1482                 while ((req = elv_next_request(q)) != NULL)
1483                         scsi_kill_request(req, q);
1484                 return;
1485         }
1486
1487         if(!get_device(&sdev->sdev_gendev))
1488                 /* We must be tearing the block queue down already */
1489                 return;
1490
1491         /*
1492          * To start with, we keep looping until the queue is empty, or until
1493          * the host is no longer able to accept any more requests.
1494          */
1495         shost = sdev->host;
1496         while (!blk_queue_plugged(q)) {
1497                 int rtn;
1498                 /*
1499                  * get next queueable request.  We do this early to make sure
1500                  * that the request is fully prepared even if we cannot 
1501                  * accept it.
1502                  */
1503                 req = elv_next_request(q);
1504                 if (!req || !scsi_dev_queue_ready(q, sdev))
1505                         break;
1506
1507                 if (unlikely(!scsi_device_online(sdev))) {
1508                         sdev_printk(KERN_ERR, sdev,
1509                                     "rejecting I/O to offline device\n");
1510                         scsi_kill_request(req, q);
1511                         continue;
1512                 }
1513
1514
1515                 /*
1516                  * Remove the request from the request list.
1517                  */
1518                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1519                         blkdev_dequeue_request(req);
1520                 sdev->device_busy++;
1521
1522                 spin_unlock(q->queue_lock);
1523                 cmd = req->special;
1524                 if (unlikely(cmd == NULL)) {
1525                         printk(KERN_CRIT "impossible request in %s.\n"
1526                                          "please mail a stack trace to "
1527                                          "linux-scsi@vger.kernel.org",
1528                                          __FUNCTION__);
1529                         BUG();
1530                 }
1531                 spin_lock(shost->host_lock);
1532
1533                 if (!scsi_host_queue_ready(q, shost, sdev))
1534                         goto not_ready;
1535                 if (sdev->single_lun) {
1536                         if (scsi_target(sdev)->starget_sdev_user &&
1537                             scsi_target(sdev)->starget_sdev_user != sdev)
1538                                 goto not_ready;
1539                         scsi_target(sdev)->starget_sdev_user = sdev;
1540                 }
1541                 shost->host_busy++;
1542
1543                 /*
1544                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1545                  *              take the lock again.
1546                  */
1547                 spin_unlock_irq(shost->host_lock);
1548
1549                 /*
1550                  * Finally, initialize any error handling parameters, and set up
1551                  * the timers for timeouts.
1552                  */
1553                 scsi_init_cmd_errh(cmd);
1554
1555                 /*
1556                  * Dispatch the command to the low-level driver.
1557                  */
1558                 rtn = scsi_dispatch_cmd(cmd);
1559                 spin_lock_irq(q->queue_lock);
1560                 if(rtn) {
1561                         /* we're refusing the command; because of
1562                          * the way locks get dropped, we need to 
1563                          * check here if plugging is required */
1564                         if(sdev->device_busy == 0)
1565                                 blk_plug_device(q);
1566
1567                         break;
1568                 }
1569         }
1570
1571         goto out;
1572
1573  not_ready:
1574         spin_unlock_irq(shost->host_lock);
1575
1576         /*
1577          * lock q, handle tag, requeue req, and decrement device_busy. We
1578          * must return with queue_lock held.
1579          *
1580          * Decrementing device_busy without checking it is OK, as all such
1581          * cases (host limits or settings) should run the queue at some
1582          * later time.
1583          */
1584         spin_lock_irq(q->queue_lock);
1585         blk_requeue_request(q, req);
1586         sdev->device_busy--;
1587         if(sdev->device_busy == 0)
1588                 blk_plug_device(q);
1589  out:
1590         /* must be careful here...if we trigger the ->remove() function
1591          * we cannot be holding the q lock */
1592         spin_unlock_irq(q->queue_lock);
1593         put_device(&sdev->sdev_gendev);
1594         spin_lock_irq(q->queue_lock);
1595 }
1596
1597 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1598 {
1599         struct device *host_dev;
1600         u64 bounce_limit = 0xffffffff;
1601
1602         if (shost->unchecked_isa_dma)
1603                 return BLK_BOUNCE_ISA;
1604         /*
1605          * Platforms with virtual-DMA translation
1606          * hardware have no practical limit.
1607          */
1608         if (!PCI_DMA_BUS_IS_PHYS)
1609                 return BLK_BOUNCE_ANY;
1610
1611         host_dev = scsi_get_device(shost);
1612         if (host_dev && host_dev->dma_mask)
1613                 bounce_limit = *host_dev->dma_mask;
1614
1615         return bounce_limit;
1616 }
1617 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1618
1619 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1620 {
1621         struct Scsi_Host *shost = sdev->host;
1622         struct request_queue *q;
1623
1624         q = blk_init_queue(scsi_request_fn, NULL);
1625         if (!q)
1626                 return NULL;
1627
1628         blk_queue_prep_rq(q, scsi_prep_fn);
1629
1630         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1631         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1632         blk_queue_max_sectors(q, shost->max_sectors);
1633         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1634         blk_queue_segment_boundary(q, shost->dma_boundary);
1635         blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1636         blk_queue_softirq_done(q, scsi_softirq_done);
1637
1638         if (!shost->use_clustering)
1639                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1640         return q;
1641 }
1642
1643 void scsi_free_queue(struct request_queue *q)
1644 {
1645         blk_cleanup_queue(q);
1646 }
1647
1648 /*
1649  * Function:    scsi_block_requests()
1650  *
1651  * Purpose:     Utility function used by low-level drivers to prevent further
1652  *              commands from being queued to the device.
1653  *
1654  * Arguments:   shost       - Host in question
1655  *
1656  * Returns:     Nothing
1657  *
1658  * Lock status: No locks are assumed held.
1659  *
1660  * Notes:       There is no timer nor any other means by which the requests
1661  *              get unblocked other than the low-level driver calling
1662  *              scsi_unblock_requests().
1663  */
1664 void scsi_block_requests(struct Scsi_Host *shost)
1665 {
1666         shost->host_self_blocked = 1;
1667 }
1668 EXPORT_SYMBOL(scsi_block_requests);
1669
1670 /*
1671  * Function:    scsi_unblock_requests()
1672  *
1673  * Purpose:     Utility function used by low-level drivers to allow further
1674  *              commands from being queued to the device.
1675  *
1676  * Arguments:   shost       - Host in question
1677  *
1678  * Returns:     Nothing
1679  *
1680  * Lock status: No locks are assumed held.
1681  *
1682  * Notes:       There is no timer nor any other means by which the requests
1683  *              get unblocked other than the low-level driver calling
1684  *              scsi_unblock_requests().
1685  *
1686  *              This is done as an API function so that changes to the
1687  *              internals of the scsi mid-layer won't require wholesale
1688  *              changes to drivers that use this feature.
1689  */
1690 void scsi_unblock_requests(struct Scsi_Host *shost)
1691 {
1692         shost->host_self_blocked = 0;
1693         scsi_run_host_queues(shost);
1694 }
1695 EXPORT_SYMBOL(scsi_unblock_requests);
1696
1697 int __init scsi_init_queue(void)
1698 {
1699         int i;
1700
1701         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1702                                         sizeof(struct scsi_io_context),
1703                                         0, 0, NULL, NULL);
1704         if (!scsi_io_context_cache) {
1705                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1706                 return -ENOMEM;
1707         }
1708
1709         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1710                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1711                 int size = sgp->size * sizeof(struct scatterlist);
1712
1713                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1714                                 SLAB_HWCACHE_ALIGN, NULL, NULL);
1715                 if (!sgp->slab) {
1716                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1717                                         sgp->name);
1718                 }
1719
1720                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1721                                                      sgp->slab);
1722                 if (!sgp->pool) {
1723                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1724                                         sgp->name);
1725                 }
1726         }
1727
1728         return 0;
1729 }
1730
1731 void scsi_exit_queue(void)
1732 {
1733         int i;
1734
1735         kmem_cache_destroy(scsi_io_context_cache);
1736
1737         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1738                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1739                 mempool_destroy(sgp->pool);
1740                 kmem_cache_destroy(sgp->slab);
1741         }
1742 }
1743
1744 /**
1745  *      scsi_mode_select - issue a mode select
1746  *      @sdev:  SCSI device to be queried
1747  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1748  *      @sp:    Save page bit (0 == don't save, 1 == save)
1749  *      @modepage: mode page being requested
1750  *      @buffer: request buffer (may not be smaller than eight bytes)
1751  *      @len:   length of request buffer.
1752  *      @timeout: command timeout
1753  *      @retries: number of retries before failing
1754  *      @data: returns a structure abstracting the mode header data
1755  *      @sense: place to put sense data (or NULL if no sense to be collected).
1756  *              must be SCSI_SENSE_BUFFERSIZE big.
1757  *
1758  *      Returns zero if successful; negative error number or scsi
1759  *      status on error
1760  *
1761  */
1762 int
1763 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1764                  unsigned char *buffer, int len, int timeout, int retries,
1765                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1766 {
1767         unsigned char cmd[10];
1768         unsigned char *real_buffer;
1769         int ret;
1770
1771         memset(cmd, 0, sizeof(cmd));
1772         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1773
1774         if (sdev->use_10_for_ms) {
1775                 if (len > 65535)
1776                         return -EINVAL;
1777                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1778                 if (!real_buffer)
1779                         return -ENOMEM;
1780                 memcpy(real_buffer + 8, buffer, len);
1781                 len += 8;
1782                 real_buffer[0] = 0;
1783                 real_buffer[1] = 0;
1784                 real_buffer[2] = data->medium_type;
1785                 real_buffer[3] = data->device_specific;
1786                 real_buffer[4] = data->longlba ? 0x01 : 0;
1787                 real_buffer[5] = 0;
1788                 real_buffer[6] = data->block_descriptor_length >> 8;
1789                 real_buffer[7] = data->block_descriptor_length;
1790
1791                 cmd[0] = MODE_SELECT_10;
1792                 cmd[7] = len >> 8;
1793                 cmd[8] = len;
1794         } else {
1795                 if (len > 255 || data->block_descriptor_length > 255 ||
1796                     data->longlba)
1797                         return -EINVAL;
1798
1799                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1800                 if (!real_buffer)
1801                         return -ENOMEM;
1802                 memcpy(real_buffer + 4, buffer, len);
1803                 len += 4;
1804                 real_buffer[0] = 0;
1805                 real_buffer[1] = data->medium_type;
1806                 real_buffer[2] = data->device_specific;
1807                 real_buffer[3] = data->block_descriptor_length;
1808                 
1809
1810                 cmd[0] = MODE_SELECT;
1811                 cmd[4] = len;
1812         }
1813
1814         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1815                                sshdr, timeout, retries);
1816         kfree(real_buffer);
1817         return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(scsi_mode_select);
1820
1821 /**
1822  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1823  *              six bytes if necessary.
1824  *      @sdev:  SCSI device to be queried
1825  *      @dbd:   set if mode sense will allow block descriptors to be returned
1826  *      @modepage: mode page being requested
1827  *      @buffer: request buffer (may not be smaller than eight bytes)
1828  *      @len:   length of request buffer.
1829  *      @timeout: command timeout
1830  *      @retries: number of retries before failing
1831  *      @data: returns a structure abstracting the mode header data
1832  *      @sense: place to put sense data (or NULL if no sense to be collected).
1833  *              must be SCSI_SENSE_BUFFERSIZE big.
1834  *
1835  *      Returns zero if unsuccessful, or the header offset (either 4
1836  *      or 8 depending on whether a six or ten byte command was
1837  *      issued) if successful.
1838  **/
1839 int
1840 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1841                   unsigned char *buffer, int len, int timeout, int retries,
1842                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1843 {
1844         unsigned char cmd[12];
1845         int use_10_for_ms;
1846         int header_length;
1847         int result;
1848         struct scsi_sense_hdr my_sshdr;
1849
1850         memset(data, 0, sizeof(*data));
1851         memset(&cmd[0], 0, 12);
1852         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1853         cmd[2] = modepage;
1854
1855         /* caller might not be interested in sense, but we need it */
1856         if (!sshdr)
1857                 sshdr = &my_sshdr;
1858
1859  retry:
1860         use_10_for_ms = sdev->use_10_for_ms;
1861
1862         if (use_10_for_ms) {
1863                 if (len < 8)
1864                         len = 8;
1865
1866                 cmd[0] = MODE_SENSE_10;
1867                 cmd[8] = len;
1868                 header_length = 8;
1869         } else {
1870                 if (len < 4)
1871                         len = 4;
1872
1873                 cmd[0] = MODE_SENSE;
1874                 cmd[4] = len;
1875                 header_length = 4;
1876         }
1877
1878         memset(buffer, 0, len);
1879
1880         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1881                                   sshdr, timeout, retries);
1882
1883         /* This code looks awful: what it's doing is making sure an
1884          * ILLEGAL REQUEST sense return identifies the actual command
1885          * byte as the problem.  MODE_SENSE commands can return
1886          * ILLEGAL REQUEST if the code page isn't supported */
1887
1888         if (use_10_for_ms && !scsi_status_is_good(result) &&
1889             (driver_byte(result) & DRIVER_SENSE)) {
1890                 if (scsi_sense_valid(sshdr)) {
1891                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1892                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1893                                 /* 
1894                                  * Invalid command operation code
1895                                  */
1896                                 sdev->use_10_for_ms = 0;
1897                                 goto retry;
1898                         }
1899                 }
1900         }
1901
1902         if(scsi_status_is_good(result)) {
1903                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1904                              (modepage == 6 || modepage == 8))) {
1905                         /* Initio breakage? */
1906                         header_length = 0;
1907                         data->length = 13;
1908                         data->medium_type = 0;
1909                         data->device_specific = 0;
1910                         data->longlba = 0;
1911                         data->block_descriptor_length = 0;
1912                 } else if(use_10_for_ms) {
1913                         data->length = buffer[0]*256 + buffer[1] + 2;
1914                         data->medium_type = buffer[2];
1915                         data->device_specific = buffer[3];
1916                         data->longlba = buffer[4] & 0x01;
1917                         data->block_descriptor_length = buffer[6]*256
1918                                 + buffer[7];
1919                 } else {
1920                         data->length = buffer[0] + 1;
1921                         data->medium_type = buffer[1];
1922                         data->device_specific = buffer[2];
1923                         data->block_descriptor_length = buffer[3];
1924                 }
1925                 data->header_length = header_length;
1926         }
1927
1928         return result;
1929 }
1930 EXPORT_SYMBOL(scsi_mode_sense);
1931
1932 int
1933 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1934 {
1935         char cmd[] = {
1936                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1937         };
1938         struct scsi_sense_hdr sshdr;
1939         int result;
1940         
1941         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1942                                   timeout, retries);
1943
1944         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1945
1946                 if ((scsi_sense_valid(&sshdr)) &&
1947                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1948                      (sshdr.sense_key == NOT_READY))) {
1949                         sdev->changed = 1;
1950                         result = 0;
1951                 }
1952         }
1953         return result;
1954 }
1955 EXPORT_SYMBOL(scsi_test_unit_ready);
1956
1957 /**
1958  *      scsi_device_set_state - Take the given device through the device
1959  *              state model.
1960  *      @sdev:  scsi device to change the state of.
1961  *      @state: state to change to.
1962  *
1963  *      Returns zero if unsuccessful or an error if the requested 
1964  *      transition is illegal.
1965  **/
1966 int
1967 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1968 {
1969         enum scsi_device_state oldstate = sdev->sdev_state;
1970
1971         if (state == oldstate)
1972                 return 0;
1973
1974         switch (state) {
1975         case SDEV_CREATED:
1976                 /* There are no legal states that come back to
1977                  * created.  This is the manually initialised start
1978                  * state */
1979                 goto illegal;
1980                         
1981         case SDEV_RUNNING:
1982                 switch (oldstate) {
1983                 case SDEV_CREATED:
1984                 case SDEV_OFFLINE:
1985                 case SDEV_QUIESCE:
1986                 case SDEV_BLOCK:
1987                         break;
1988                 default:
1989                         goto illegal;
1990                 }
1991                 break;
1992
1993         case SDEV_QUIESCE:
1994                 switch (oldstate) {
1995                 case SDEV_RUNNING:
1996                 case SDEV_OFFLINE:
1997                         break;
1998                 default:
1999                         goto illegal;
2000                 }
2001                 break;
2002
2003         case SDEV_OFFLINE:
2004                 switch (oldstate) {
2005                 case SDEV_CREATED:
2006                 case SDEV_RUNNING:
2007                 case SDEV_QUIESCE:
2008                 case SDEV_BLOCK:
2009                         break;
2010                 default:
2011                         goto illegal;
2012                 }
2013                 break;
2014
2015         case SDEV_BLOCK:
2016                 switch (oldstate) {
2017                 case SDEV_CREATED:
2018                 case SDEV_RUNNING:
2019                         break;
2020                 default:
2021                         goto illegal;
2022                 }
2023                 break;
2024
2025         case SDEV_CANCEL:
2026                 switch (oldstate) {
2027                 case SDEV_CREATED:
2028                 case SDEV_RUNNING:
2029                 case SDEV_QUIESCE:
2030                 case SDEV_OFFLINE:
2031                 case SDEV_BLOCK:
2032                         break;
2033                 default:
2034                         goto illegal;
2035                 }
2036                 break;
2037
2038         case SDEV_DEL:
2039                 switch (oldstate) {
2040                 case SDEV_CREATED:
2041                 case SDEV_RUNNING:
2042                 case SDEV_OFFLINE:
2043                 case SDEV_CANCEL:
2044                         break;
2045                 default:
2046                         goto illegal;
2047                 }
2048                 break;
2049
2050         }
2051         sdev->sdev_state = state;
2052         return 0;
2053
2054  illegal:
2055         SCSI_LOG_ERROR_RECOVERY(1, 
2056                                 sdev_printk(KERN_ERR, sdev,
2057                                             "Illegal state transition %s->%s\n",
2058                                             scsi_device_state_name(oldstate),
2059                                             scsi_device_state_name(state))
2060                                 );
2061         return -EINVAL;
2062 }
2063 EXPORT_SYMBOL(scsi_device_set_state);
2064
2065 /**
2066  *      scsi_device_quiesce - Block user issued commands.
2067  *      @sdev:  scsi device to quiesce.
2068  *
2069  *      This works by trying to transition to the SDEV_QUIESCE state
2070  *      (which must be a legal transition).  When the device is in this
2071  *      state, only special requests will be accepted, all others will
2072  *      be deferred.  Since special requests may also be requeued requests,
2073  *      a successful return doesn't guarantee the device will be 
2074  *      totally quiescent.
2075  *
2076  *      Must be called with user context, may sleep.
2077  *
2078  *      Returns zero if unsuccessful or an error if not.
2079  **/
2080 int
2081 scsi_device_quiesce(struct scsi_device *sdev)
2082 {
2083         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2084         if (err)
2085                 return err;
2086
2087         scsi_run_queue(sdev->request_queue);
2088         while (sdev->device_busy) {
2089                 msleep_interruptible(200);
2090                 scsi_run_queue(sdev->request_queue);
2091         }
2092         return 0;
2093 }
2094 EXPORT_SYMBOL(scsi_device_quiesce);
2095
2096 /**
2097  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2098  *      @sdev:  scsi device to resume.
2099  *
2100  *      Moves the device from quiesced back to running and restarts the
2101  *      queues.
2102  *
2103  *      Must be called with user context, may sleep.
2104  **/
2105 void
2106 scsi_device_resume(struct scsi_device *sdev)
2107 {
2108         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2109                 return;
2110         scsi_run_queue(sdev->request_queue);
2111 }
2112 EXPORT_SYMBOL(scsi_device_resume);
2113
2114 static void
2115 device_quiesce_fn(struct scsi_device *sdev, void *data)
2116 {
2117         scsi_device_quiesce(sdev);
2118 }
2119
2120 void
2121 scsi_target_quiesce(struct scsi_target *starget)
2122 {
2123         starget_for_each_device(starget, NULL, device_quiesce_fn);
2124 }
2125 EXPORT_SYMBOL(scsi_target_quiesce);
2126
2127 static void
2128 device_resume_fn(struct scsi_device *sdev, void *data)
2129 {
2130         scsi_device_resume(sdev);
2131 }
2132
2133 void
2134 scsi_target_resume(struct scsi_target *starget)
2135 {
2136         starget_for_each_device(starget, NULL, device_resume_fn);
2137 }
2138 EXPORT_SYMBOL(scsi_target_resume);
2139
2140 /**
2141  * scsi_internal_device_block - internal function to put a device
2142  *                              temporarily into the SDEV_BLOCK state
2143  * @sdev:       device to block
2144  *
2145  * Block request made by scsi lld's to temporarily stop all
2146  * scsi commands on the specified device.  Called from interrupt
2147  * or normal process context.
2148  *
2149  * Returns zero if successful or error if not
2150  *
2151  * Notes:       
2152  *      This routine transitions the device to the SDEV_BLOCK state
2153  *      (which must be a legal transition).  When the device is in this
2154  *      state, all commands are deferred until the scsi lld reenables
2155  *      the device with scsi_device_unblock or device_block_tmo fires.
2156  *      This routine assumes the host_lock is held on entry.
2157  **/
2158 int
2159 scsi_internal_device_block(struct scsi_device *sdev)
2160 {
2161         request_queue_t *q = sdev->request_queue;
2162         unsigned long flags;
2163         int err = 0;
2164
2165         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2166         if (err)
2167                 return err;
2168
2169         /* 
2170          * The device has transitioned to SDEV_BLOCK.  Stop the
2171          * block layer from calling the midlayer with this device's
2172          * request queue. 
2173          */
2174         spin_lock_irqsave(q->queue_lock, flags);
2175         blk_stop_queue(q);
2176         spin_unlock_irqrestore(q->queue_lock, flags);
2177
2178         return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2181  
2182 /**
2183  * scsi_internal_device_unblock - resume a device after a block request
2184  * @sdev:       device to resume
2185  *
2186  * Called by scsi lld's or the midlayer to restart the device queue
2187  * for the previously suspended scsi device.  Called from interrupt or
2188  * normal process context.
2189  *
2190  * Returns zero if successful or error if not.
2191  *
2192  * Notes:       
2193  *      This routine transitions the device to the SDEV_RUNNING state
2194  *      (which must be a legal transition) allowing the midlayer to
2195  *      goose the queue for this device.  This routine assumes the 
2196  *      host_lock is held upon entry.
2197  **/
2198 int
2199 scsi_internal_device_unblock(struct scsi_device *sdev)
2200 {
2201         request_queue_t *q = sdev->request_queue; 
2202         int err;
2203         unsigned long flags;
2204         
2205         /* 
2206          * Try to transition the scsi device to SDEV_RUNNING
2207          * and goose the device queue if successful.  
2208          */
2209         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2210         if (err)
2211                 return err;
2212
2213         spin_lock_irqsave(q->queue_lock, flags);
2214         blk_start_queue(q);
2215         spin_unlock_irqrestore(q->queue_lock, flags);
2216
2217         return 0;
2218 }
2219 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2220
2221 static void
2222 device_block(struct scsi_device *sdev, void *data)
2223 {
2224         scsi_internal_device_block(sdev);
2225 }
2226
2227 static int
2228 target_block(struct device *dev, void *data)
2229 {
2230         if (scsi_is_target_device(dev))
2231                 starget_for_each_device(to_scsi_target(dev), NULL,
2232                                         device_block);
2233         return 0;
2234 }
2235
2236 void
2237 scsi_target_block(struct device *dev)
2238 {
2239         if (scsi_is_target_device(dev))
2240                 starget_for_each_device(to_scsi_target(dev), NULL,
2241                                         device_block);
2242         else
2243                 device_for_each_child(dev, NULL, target_block);
2244 }
2245 EXPORT_SYMBOL_GPL(scsi_target_block);
2246
2247 static void
2248 device_unblock(struct scsi_device *sdev, void *data)
2249 {
2250         scsi_internal_device_unblock(sdev);
2251 }
2252
2253 static int
2254 target_unblock(struct device *dev, void *data)
2255 {
2256         if (scsi_is_target_device(dev))
2257                 starget_for_each_device(to_scsi_target(dev), NULL,
2258                                         device_unblock);
2259         return 0;
2260 }
2261
2262 void
2263 scsi_target_unblock(struct device *dev)
2264 {
2265         if (scsi_is_target_device(dev))
2266                 starget_for_each_device(to_scsi_target(dev), NULL,
2267                                         device_unblock);
2268         else
2269                 device_for_each_child(dev, NULL, target_unblock);
2270 }
2271 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2272
2273 /**
2274  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2275  * @sg:         scatter-gather list
2276  * @sg_count:   number of segments in sg
2277  * @offset:     offset in bytes into sg, on return offset into the mapped area
2278  * @len:        bytes to map, on return number of bytes mapped
2279  *
2280  * Returns virtual address of the start of the mapped page
2281  */
2282 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2283                           size_t *offset, size_t *len)
2284 {
2285         int i;
2286         size_t sg_len = 0, len_complete = 0;
2287         struct page *page;
2288
2289         for (i = 0; i < sg_count; i++) {
2290                 len_complete = sg_len; /* Complete sg-entries */
2291                 sg_len += sg[i].length;
2292                 if (sg_len > *offset)
2293                         break;
2294         }
2295
2296         if (unlikely(i == sg_count)) {
2297                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2298                         "elements %d\n",
2299                        __FUNCTION__, sg_len, *offset, sg_count);
2300                 WARN_ON(1);
2301                 return NULL;
2302         }
2303
2304         /* Offset starting from the beginning of first page in this sg-entry */
2305         *offset = *offset - len_complete + sg[i].offset;
2306
2307         /* Assumption: contiguous pages can be accessed as "page + i" */
2308         page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2309         *offset &= ~PAGE_MASK;
2310
2311         /* Bytes in this sg-entry from *offset to the end of the page */
2312         sg_len = PAGE_SIZE - *offset;
2313         if (*len > sg_len)
2314                 *len = sg_len;
2315
2316         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2317 }
2318 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2319
2320 /**
2321  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2322  *                         mapped with scsi_kmap_atomic_sg
2323  * @virt:       virtual address to be unmapped
2324  */
2325 void scsi_kunmap_atomic_sg(void *virt)
2326 {
2327         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2328 }
2329 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);