]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/video/vermilion/vermilion.c
select: deal with math overflow from borderline valid userland data
[linux-2.6-omap-h63xx.git] / drivers / video / vermilion / vermilion.c
1 /*
2  * Copyright (c) Intel Corp. 2007.
3  * All Rights Reserved.
4  *
5  * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
6  * develop this driver.
7  *
8  * This file is part of the Vermilion Range fb driver.
9  * The Vermilion Range fb driver is free software;
10  * you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * The Vermilion Range fb driver is distributed
16  * in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this driver; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
24  *
25  * Authors:
26  *   Thomas Hellström <thomas-at-tungstengraphics-dot-com>
27  *   Michel Dänzer <michel-at-tungstengraphics-dot-com>
28  *   Alan Hourihane <alanh-at-tungstengraphics-dot-com>
29  */
30
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/fb.h>
38 #include <linux/pci.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <linux/mmzone.h>
42
43 /* #define VERMILION_DEBUG */
44
45 #include "vermilion.h"
46
47 #define MODULE_NAME "vmlfb"
48
49 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
50
51 static struct mutex vml_mutex;
52 static struct list_head global_no_mode;
53 static struct list_head global_has_mode;
54 static struct fb_ops vmlfb_ops;
55 static struct vml_sys *subsys = NULL;
56 static char *vml_default_mode = "1024x768@60";
57 static struct fb_videomode defaultmode = {
58         NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
59         0, FB_VMODE_NONINTERLACED
60 };
61
62 static u32 vml_mem_requested = (10 * 1024 * 1024);
63 static u32 vml_mem_contig = (4 * 1024 * 1024);
64 static u32 vml_mem_min = (4 * 1024 * 1024);
65
66 static u32 vml_clocks[] = {
67         6750,
68         13500,
69         27000,
70         29700,
71         37125,
72         54000,
73         59400,
74         74250,
75         120000,
76         148500
77 };
78
79 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
80
81 /*
82  * Allocate a contiguous vram area and make its linear kernel map
83  * uncached.
84  */
85
86 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
87                                  unsigned min_order)
88 {
89         gfp_t flags;
90         unsigned long i;
91
92         max_order++;
93         do {
94                 /*
95                  * Really try hard to get the needed memory.
96                  * We need memory below the first 32MB, so we
97                  * add the __GFP_DMA flag that guarantees that we are
98                  * below the first 16MB.
99                  */
100
101                 flags = __GFP_DMA | __GFP_HIGH;
102                 va->logical =
103                          __get_free_pages(flags, --max_order);
104         } while (va->logical == 0 && max_order > min_order);
105
106         if (!va->logical)
107                 return -ENOMEM;
108
109         va->phys = virt_to_phys((void *)va->logical);
110         va->size = PAGE_SIZE << max_order;
111         va->order = max_order;
112
113         /*
114          * It seems like __get_free_pages only ups the usage count
115          * of the first page. This doesn't work with fault mapping, so
116          * up the usage count once more (XXX: should use split_page or
117          * compound page).
118          */
119
120         memset((void *)va->logical, 0x00, va->size);
121         for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
122                 get_page(virt_to_page(i));
123         }
124
125         /*
126          * Change caching policy of the linear kernel map to avoid
127          * mapping type conflicts with user-space mappings.
128          */
129         set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
130
131         printk(KERN_DEBUG MODULE_NAME
132                ": Allocated %ld bytes vram area at 0x%08lx\n",
133                va->size, va->phys);
134
135         return 0;
136 }
137
138 /*
139  * Free a contiguous vram area and reset its linear kernel map
140  * mapping type.
141  */
142
143 static void vmlfb_free_vram_area(struct vram_area *va)
144 {
145         unsigned long j;
146
147         if (va->logical) {
148
149                 /*
150                  * Reset the linear kernel map caching policy.
151                  */
152
153                 set_pages_wb(virt_to_page(va->logical),
154                                  va->size >> PAGE_SHIFT);
155
156                 /*
157                  * Decrease the usage count on the pages we've used
158                  * to compensate for upping when allocating.
159                  */
160
161                 for (j = va->logical; j < va->logical + va->size;
162                      j += PAGE_SIZE) {
163                         (void)put_page_testzero(virt_to_page(j));
164                 }
165
166                 printk(KERN_DEBUG MODULE_NAME
167                        ": Freeing %ld bytes vram area at 0x%08lx\n",
168                        va->size, va->phys);
169                 free_pages(va->logical, va->order);
170
171                 va->logical = 0;
172         }
173 }
174
175 /*
176  * Free allocated vram.
177  */
178
179 static void vmlfb_free_vram(struct vml_info *vinfo)
180 {
181         int i;
182
183         for (i = 0; i < vinfo->num_areas; ++i) {
184                 vmlfb_free_vram_area(&vinfo->vram[i]);
185         }
186         vinfo->num_areas = 0;
187 }
188
189 /*
190  * Allocate vram. Currently we try to allocate contiguous areas from the
191  * __GFP_DMA zone and puzzle them together. A better approach would be to
192  * allocate one contiguous area for scanout and use one-page allocations for
193  * offscreen areas. This requires user-space and GPU virtual mappings.
194  */
195
196 static int vmlfb_alloc_vram(struct vml_info *vinfo,
197                             size_t requested,
198                             size_t min_total, size_t min_contig)
199 {
200         int i, j;
201         int order;
202         int contiguous;
203         int err;
204         struct vram_area *va;
205         struct vram_area *va2;
206
207         vinfo->num_areas = 0;
208         for (i = 0; i < VML_VRAM_AREAS; ++i) {
209                 va = &vinfo->vram[i];
210                 order = 0;
211
212                 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
213                         order++;
214
215                 err = vmlfb_alloc_vram_area(va, order, 0);
216
217                 if (err)
218                         break;
219
220                 if (i == 0) {
221                         vinfo->vram_start = va->phys;
222                         vinfo->vram_logical = (void __iomem *) va->logical;
223                         vinfo->vram_contig_size = va->size;
224                         vinfo->num_areas = 1;
225                 } else {
226                         contiguous = 0;
227
228                         for (j = 0; j < i; ++j) {
229                                 va2 = &vinfo->vram[j];
230                                 if (va->phys + va->size == va2->phys ||
231                                     va2->phys + va2->size == va->phys) {
232                                         contiguous = 1;
233                                         break;
234                                 }
235                         }
236
237                         if (contiguous) {
238                                 vinfo->num_areas++;
239                                 if (va->phys < vinfo->vram_start) {
240                                         vinfo->vram_start = va->phys;
241                                         vinfo->vram_logical =
242                                                 (void __iomem *)va->logical;
243                                 }
244                                 vinfo->vram_contig_size += va->size;
245                         } else {
246                                 vmlfb_free_vram_area(va);
247                                 break;
248                         }
249                 }
250
251                 if (requested < va->size)
252                         break;
253                 else
254                         requested -= va->size;
255         }
256
257         if (vinfo->vram_contig_size > min_total &&
258             vinfo->vram_contig_size > min_contig) {
259
260                 printk(KERN_DEBUG MODULE_NAME
261                        ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
262                        (unsigned long)vinfo->vram_contig_size,
263                        (unsigned long)vinfo->vram_start);
264
265                 return 0;
266         }
267
268         printk(KERN_ERR MODULE_NAME
269                ": Could not allocate requested minimal amount of vram.\n");
270
271         vmlfb_free_vram(vinfo);
272
273         return -ENOMEM;
274 }
275
276 /*
277  * Find the GPU to use with our display controller.
278  */
279
280 static int vmlfb_get_gpu(struct vml_par *par)
281 {
282         mutex_lock(&vml_mutex);
283
284         par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
285
286         if (!par->gpu) {
287                 mutex_unlock(&vml_mutex);
288                 return -ENODEV;
289         }
290
291         mutex_unlock(&vml_mutex);
292
293         if (pci_enable_device(par->gpu) < 0)
294                 return -ENODEV;
295
296         return 0;
297 }
298
299 /*
300  * Find a contiguous vram area that contains a given offset from vram start.
301  */
302 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
303 {
304         unsigned long aoffset;
305         unsigned i;
306
307         for (i = 0; i < vinfo->num_areas; ++i) {
308                 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
309
310                 if (aoffset < vinfo->vram[i].size) {
311                         return 0;
312                 }
313         }
314
315         return -EINVAL;
316 }
317
318 /*
319  * Remap the MMIO register spaces of the VDC and the GPU.
320  */
321
322 static int vmlfb_enable_mmio(struct vml_par *par)
323 {
324         int err;
325
326         par->vdc_mem_base = pci_resource_start(par->vdc, 0);
327         par->vdc_mem_size = pci_resource_len(par->vdc, 0);
328         if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
329                 printk(KERN_ERR MODULE_NAME
330                        ": Could not claim display controller MMIO.\n");
331                 return -EBUSY;
332         }
333         par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
334         if (par->vdc_mem == NULL) {
335                 printk(KERN_ERR MODULE_NAME
336                        ": Could not map display controller MMIO.\n");
337                 err = -ENOMEM;
338                 goto out_err_0;
339         }
340
341         par->gpu_mem_base = pci_resource_start(par->gpu, 0);
342         par->gpu_mem_size = pci_resource_len(par->gpu, 0);
343         if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
344                 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
345                 err = -EBUSY;
346                 goto out_err_1;
347         }
348         par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
349         if (par->gpu_mem == NULL) {
350                 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
351                 err = -ENOMEM;
352                 goto out_err_2;
353         }
354
355         return 0;
356
357 out_err_2:
358         release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
359 out_err_1:
360         iounmap(par->vdc_mem);
361 out_err_0:
362         release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
363         return err;
364 }
365
366 /*
367  * Unmap the VDC and GPU register spaces.
368  */
369
370 static void vmlfb_disable_mmio(struct vml_par *par)
371 {
372         iounmap(par->gpu_mem);
373         release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
374         iounmap(par->vdc_mem);
375         release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
376 }
377
378 /*
379  * Release and uninit the VDC and GPU.
380  */
381
382 static void vmlfb_release_devices(struct vml_par *par)
383 {
384         if (atomic_dec_and_test(&par->refcount)) {
385                 pci_set_drvdata(par->vdc, NULL);
386                 pci_disable_device(par->gpu);
387                 pci_disable_device(par->vdc);
388         }
389 }
390
391 /*
392  * Free up allocated resources for a device.
393  */
394
395 static void __devexit vml_pci_remove(struct pci_dev *dev)
396 {
397         struct fb_info *info;
398         struct vml_info *vinfo;
399         struct vml_par *par;
400
401         info = pci_get_drvdata(dev);
402         if (info) {
403                 vinfo = container_of(info, struct vml_info, info);
404                 par = vinfo->par;
405                 mutex_lock(&vml_mutex);
406                 unregister_framebuffer(info);
407                 fb_dealloc_cmap(&info->cmap);
408                 vmlfb_free_vram(vinfo);
409                 vmlfb_disable_mmio(par);
410                 vmlfb_release_devices(par);
411                 kfree(vinfo);
412                 kfree(par);
413                 mutex_unlock(&vml_mutex);
414         }
415 }
416
417 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
418 {
419         switch (var->bits_per_pixel) {
420         case 16:
421                 var->blue.offset = 0;
422                 var->blue.length = 5;
423                 var->green.offset = 5;
424                 var->green.length = 5;
425                 var->red.offset = 10;
426                 var->red.length = 5;
427                 var->transp.offset = 15;
428                 var->transp.length = 1;
429                 break;
430         case 32:
431                 var->blue.offset = 0;
432                 var->blue.length = 8;
433                 var->green.offset = 8;
434                 var->green.length = 8;
435                 var->red.offset = 16;
436                 var->red.length = 8;
437                 var->transp.offset = 24;
438                 var->transp.length = 0;
439                 break;
440         default:
441                 break;
442         }
443
444         var->blue.msb_right = var->green.msb_right =
445             var->red.msb_right = var->transp.msb_right = 0;
446 }
447
448 /*
449  * Device initialization.
450  * We initialize one vml_par struct per device and one vml_info
451  * struct per pipe. Currently we have only one pipe.
452  */
453
454 static int __devinit vml_pci_probe(struct pci_dev *dev,
455                                    const struct pci_device_id *id)
456 {
457         struct vml_info *vinfo;
458         struct fb_info *info;
459         struct vml_par *par;
460         int err = 0;
461
462         par = kzalloc(sizeof(*par), GFP_KERNEL);
463         if (par == NULL)
464                 return -ENOMEM;
465
466         vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
467         if (vinfo == NULL) {
468                 err = -ENOMEM;
469                 goto out_err_0;
470         }
471
472         vinfo->par = par;
473         par->vdc = dev;
474         atomic_set(&par->refcount, 1);
475
476         switch (id->device) {
477         case VML_DEVICE_VDC:
478                 if ((err = vmlfb_get_gpu(par)))
479                         goto out_err_1;
480                 pci_set_drvdata(dev, &vinfo->info);
481                 break;
482         default:
483                 err = -ENODEV;
484                 goto out_err_1;
485                 break;
486         }
487
488         info = &vinfo->info;
489         info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
490
491         err = vmlfb_enable_mmio(par);
492         if (err)
493                 goto out_err_2;
494
495         err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
496                                vml_mem_contig, vml_mem_min);
497         if (err)
498                 goto out_err_3;
499
500         strcpy(info->fix.id, "Vermilion Range");
501         info->fix.mmio_start = 0;
502         info->fix.mmio_len = 0;
503         info->fix.smem_start = vinfo->vram_start;
504         info->fix.smem_len = vinfo->vram_contig_size;
505         info->fix.type = FB_TYPE_PACKED_PIXELS;
506         info->fix.visual = FB_VISUAL_TRUECOLOR;
507         info->fix.ypanstep = 1;
508         info->fix.xpanstep = 1;
509         info->fix.ywrapstep = 0;
510         info->fix.accel = FB_ACCEL_NONE;
511         info->screen_base = vinfo->vram_logical;
512         info->pseudo_palette = vinfo->pseudo_palette;
513         info->par = par;
514         info->fbops = &vmlfb_ops;
515         info->device = &dev->dev;
516
517         INIT_LIST_HEAD(&vinfo->head);
518         vinfo->pipe_disabled = 1;
519         vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
520
521         info->var.grayscale = 0;
522         info->var.bits_per_pixel = 16;
523         vmlfb_set_pref_pixel_format(&info->var);
524
525         if (!fb_find_mode
526             (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
527                 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
528         }
529
530         if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
531                 err = -ENOMEM;
532                 goto out_err_4;
533         }
534
535         err = register_framebuffer(info);
536         if (err) {
537                 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
538                 goto out_err_5;
539         }
540
541         printk("Initialized vmlfb\n");
542
543         return 0;
544
545 out_err_5:
546         fb_dealloc_cmap(&info->cmap);
547 out_err_4:
548         vmlfb_free_vram(vinfo);
549 out_err_3:
550         vmlfb_disable_mmio(par);
551 out_err_2:
552         vmlfb_release_devices(par);
553 out_err_1:
554         kfree(vinfo);
555 out_err_0:
556         kfree(par);
557         return err;
558 }
559
560 static int vmlfb_open(struct fb_info *info, int user)
561 {
562         /*
563          * Save registers here?
564          */
565         return 0;
566 }
567
568 static int vmlfb_release(struct fb_info *info, int user)
569 {
570         /*
571          * Restore registers here.
572          */
573
574         return 0;
575 }
576
577 static int vml_nearest_clock(int clock)
578 {
579
580         int i;
581         int cur_index;
582         int cur_diff;
583         int diff;
584
585         cur_index = 0;
586         cur_diff = clock - vml_clocks[0];
587         cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
588         for (i = 1; i < vml_num_clocks; ++i) {
589                 diff = clock - vml_clocks[i];
590                 diff = (diff < 0) ? -diff : diff;
591                 if (diff < cur_diff) {
592                         cur_index = i;
593                         cur_diff = diff;
594                 }
595         }
596         return vml_clocks[cur_index];
597 }
598
599 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
600                                   struct vml_info *vinfo)
601 {
602         u32 pitch;
603         u64 mem;
604         int nearest_clock;
605         int clock;
606         int clock_diff;
607         struct fb_var_screeninfo v;
608
609         v = *var;
610         clock = PICOS2KHZ(var->pixclock);
611
612         if (subsys && subsys->nearest_clock) {
613                 nearest_clock = subsys->nearest_clock(subsys, clock);
614         } else {
615                 nearest_clock = vml_nearest_clock(clock);
616         }
617
618         /*
619          * Accept a 20% diff.
620          */
621
622         clock_diff = nearest_clock - clock;
623         clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
624         if (clock_diff > clock / 5) {
625 #if 0
626                 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
627 #endif
628                 return -EINVAL;
629         }
630
631         v.pixclock = KHZ2PICOS(nearest_clock);
632
633         if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
634                 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
635                 return -EINVAL;
636         }
637         if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
638                 printk(KERN_DEBUG MODULE_NAME
639                        ": Virtual resolution failure.\n");
640                 return -EINVAL;
641         }
642         switch (v.bits_per_pixel) {
643         case 0 ... 16:
644                 v.bits_per_pixel = 16;
645                 break;
646         case 17 ... 32:
647                 v.bits_per_pixel = 32;
648                 break;
649         default:
650                 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
651                        var->bits_per_pixel);
652                 return -EINVAL;
653         }
654
655         pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
656         mem = pitch * var->yres_virtual;
657         if (mem > vinfo->vram_contig_size) {
658                 return -ENOMEM;
659         }
660
661         switch (v.bits_per_pixel) {
662         case 16:
663                 if (var->blue.offset != 0 ||
664                     var->blue.length != 5 ||
665                     var->green.offset != 5 ||
666                     var->green.length != 5 ||
667                     var->red.offset != 10 ||
668                     var->red.length != 5 ||
669                     var->transp.offset != 15 || var->transp.length != 1) {
670                         vmlfb_set_pref_pixel_format(&v);
671                 }
672                 break;
673         case 32:
674                 if (var->blue.offset != 0 ||
675                     var->blue.length != 8 ||
676                     var->green.offset != 8 ||
677                     var->green.length != 8 ||
678                     var->red.offset != 16 ||
679                     var->red.length != 8 ||
680                     (var->transp.length != 0 && var->transp.length != 8) ||
681                     (var->transp.length == 8 && var->transp.offset != 24)) {
682                         vmlfb_set_pref_pixel_format(&v);
683                 }
684                 break;
685         default:
686                 return -EINVAL;
687         }
688
689         *var = v;
690
691         return 0;
692 }
693
694 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
695 {
696         struct vml_info *vinfo = container_of(info, struct vml_info, info);
697         int ret;
698
699         mutex_lock(&vml_mutex);
700         ret = vmlfb_check_var_locked(var, vinfo);
701         mutex_unlock(&vml_mutex);
702
703         return ret;
704 }
705
706 static void vml_wait_vblank(struct vml_info *vinfo)
707 {
708         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
709         mdelay(20);
710 }
711
712 static void vmlfb_disable_pipe(struct vml_info *vinfo)
713 {
714         struct vml_par *par = vinfo->par;
715
716         /* Disable the MDVO pad */
717         VML_WRITE32(par, VML_RCOMPSTAT, 0);
718         while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
719
720         /* Disable display planes */
721         VML_WRITE32(par, VML_DSPCCNTR,
722                     VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
723         (void)VML_READ32(par, VML_DSPCCNTR);
724         /* Wait for vblank for the disable to take effect */
725         vml_wait_vblank(vinfo);
726
727         /* Next, disable display pipes */
728         VML_WRITE32(par, VML_PIPEACONF, 0);
729         (void)VML_READ32(par, VML_PIPEACONF);
730
731         vinfo->pipe_disabled = 1;
732 }
733
734 #ifdef VERMILION_DEBUG
735 static void vml_dump_regs(struct vml_info *vinfo)
736 {
737         struct vml_par *par = vinfo->par;
738
739         printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
740         printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A         : 0x%08x\n",
741                (unsigned)VML_READ32(par, VML_HTOTAL_A));
742         printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A         : 0x%08x\n",
743                (unsigned)VML_READ32(par, VML_HBLANK_A));
744         printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A          : 0x%08x\n",
745                (unsigned)VML_READ32(par, VML_HSYNC_A));
746         printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A         : 0x%08x\n",
747                (unsigned)VML_READ32(par, VML_VTOTAL_A));
748         printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A         : 0x%08x\n",
749                (unsigned)VML_READ32(par, VML_VBLANK_A));
750         printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A          : 0x%08x\n",
751                (unsigned)VML_READ32(par, VML_VSYNC_A));
752         printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE       : 0x%08x\n",
753                (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
754         printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE         : 0x%08x\n",
755                (unsigned)VML_READ32(par, VML_DSPCSIZE));
756         printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS          : 0x%08x\n",
757                (unsigned)VML_READ32(par, VML_DSPCPOS));
758         printk(KERN_DEBUG MODULE_NAME ": \tDSPARB           : 0x%08x\n",
759                (unsigned)VML_READ32(par, VML_DSPARB));
760         printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR         : 0x%08x\n",
761                (unsigned)VML_READ32(par, VML_DSPCADDR));
762         printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A        : 0x%08x\n",
763                (unsigned)VML_READ32(par, VML_BCLRPAT_A));
764         printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A       : 0x%08x\n",
765                (unsigned)VML_READ32(par, VML_CANVSCLR_A));
766         printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC         : 0x%08x\n",
767                (unsigned)VML_READ32(par, VML_PIPEASRC));
768         printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF        : 0x%08x\n",
769                (unsigned)VML_READ32(par, VML_PIPEACONF));
770         printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR         : 0x%08x\n",
771                (unsigned)VML_READ32(par, VML_DSPCCNTR));
772         printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT        : 0x%08x\n",
773                (unsigned)VML_READ32(par, VML_RCOMPSTAT));
774         printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
775 }
776 #endif
777
778 static int vmlfb_set_par_locked(struct vml_info *vinfo)
779 {
780         struct vml_par *par = vinfo->par;
781         struct fb_info *info = &vinfo->info;
782         struct fb_var_screeninfo *var = &info->var;
783         u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
784         u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
785         u32 dspcntr;
786         int clock;
787
788         vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
789         vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
790         info->fix.line_length = vinfo->stride;
791
792         if (!subsys)
793                 return 0;
794
795         htotal =
796             var->xres + var->right_margin + var->hsync_len + var->left_margin;
797         hactive = var->xres;
798         hblank_start = var->xres;
799         hblank_end = htotal;
800         hsync_start = hactive + var->right_margin;
801         hsync_end = hsync_start + var->hsync_len;
802
803         vtotal =
804             var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
805         vactive = var->yres;
806         vblank_start = var->yres;
807         vblank_end = vtotal;
808         vsync_start = vactive + var->lower_margin;
809         vsync_end = vsync_start + var->vsync_len;
810
811         dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
812         clock = PICOS2KHZ(var->pixclock);
813
814         if (subsys->nearest_clock) {
815                 clock = subsys->nearest_clock(subsys, clock);
816         } else {
817                 clock = vml_nearest_clock(clock);
818         }
819         printk(KERN_DEBUG MODULE_NAME
820                ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
821                ((clock / htotal) * 1000) / vtotal);
822
823         switch (var->bits_per_pixel) {
824         case 16:
825                 dspcntr |= VML_GFX_ARGB1555;
826                 break;
827         case 32:
828                 if (var->transp.length == 8)
829                         dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
830                 else
831                         dspcntr |= VML_GFX_RGB0888;
832                 break;
833         default:
834                 return -EINVAL;
835         }
836
837         vmlfb_disable_pipe(vinfo);
838         mb();
839
840         if (subsys->set_clock)
841                 subsys->set_clock(subsys, clock);
842         else
843                 return -EINVAL;
844
845         VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
846         VML_WRITE32(par, VML_HBLANK_A,
847                     ((hblank_end - 1) << 16) | (hblank_start - 1));
848         VML_WRITE32(par, VML_HSYNC_A,
849                     ((hsync_end - 1) << 16) | (hsync_start - 1));
850         VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
851         VML_WRITE32(par, VML_VBLANK_A,
852                     ((vblank_end - 1) << 16) | (vblank_start - 1));
853         VML_WRITE32(par, VML_VSYNC_A,
854                     ((vsync_end - 1) << 16) | (vsync_start - 1));
855         VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
856         VML_WRITE32(par, VML_DSPCSIZE,
857                     ((var->yres - 1) << 16) | (var->xres - 1));
858         VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
859         VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
860         VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
861         VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
862         VML_WRITE32(par, VML_PIPEASRC,
863                     ((var->xres - 1) << 16) | (var->yres - 1));
864
865         wmb();
866         VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
867         wmb();
868         VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
869         wmb();
870         VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
871                     var->yoffset * vinfo->stride +
872                     var->xoffset * vinfo->bytes_per_pixel);
873
874         VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
875
876         while (!(VML_READ32(par, VML_RCOMPSTAT) &
877                  (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
878
879         vinfo->pipe_disabled = 0;
880 #ifdef VERMILION_DEBUG
881         vml_dump_regs(vinfo);
882 #endif
883
884         return 0;
885 }
886
887 static int vmlfb_set_par(struct fb_info *info)
888 {
889         struct vml_info *vinfo = container_of(info, struct vml_info, info);
890         int ret;
891
892         mutex_lock(&vml_mutex);
893         list_del(&vinfo->head);
894         list_add(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
895         ret = vmlfb_set_par_locked(vinfo);
896
897         mutex_unlock(&vml_mutex);
898         return ret;
899 }
900
901 static int vmlfb_blank_locked(struct vml_info *vinfo)
902 {
903         struct vml_par *par = vinfo->par;
904         u32 cur = VML_READ32(par, VML_PIPEACONF);
905
906         switch (vinfo->cur_blank_mode) {
907         case FB_BLANK_UNBLANK:
908                 if (vinfo->pipe_disabled) {
909                         vmlfb_set_par_locked(vinfo);
910                 }
911                 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
912                 (void)VML_READ32(par, VML_PIPEACONF);
913                 break;
914         case FB_BLANK_NORMAL:
915                 if (vinfo->pipe_disabled) {
916                         vmlfb_set_par_locked(vinfo);
917                 }
918                 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
919                 (void)VML_READ32(par, VML_PIPEACONF);
920                 break;
921         case FB_BLANK_VSYNC_SUSPEND:
922         case FB_BLANK_HSYNC_SUSPEND:
923                 if (!vinfo->pipe_disabled) {
924                         vmlfb_disable_pipe(vinfo);
925                 }
926                 break;
927         case FB_BLANK_POWERDOWN:
928                 if (!vinfo->pipe_disabled) {
929                         vmlfb_disable_pipe(vinfo);
930                 }
931                 break;
932         default:
933                 return -EINVAL;
934         }
935
936         return 0;
937 }
938
939 static int vmlfb_blank(int blank_mode, struct fb_info *info)
940 {
941         struct vml_info *vinfo = container_of(info, struct vml_info, info);
942         int ret;
943
944         mutex_lock(&vml_mutex);
945         vinfo->cur_blank_mode = blank_mode;
946         ret = vmlfb_blank_locked(vinfo);
947         mutex_unlock(&vml_mutex);
948         return ret;
949 }
950
951 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
952                              struct fb_info *info)
953 {
954         struct vml_info *vinfo = container_of(info, struct vml_info, info);
955         struct vml_par *par = vinfo->par;
956
957         mutex_lock(&vml_mutex);
958         VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
959                     var->yoffset * vinfo->stride +
960                     var->xoffset * vinfo->bytes_per_pixel);
961         (void)VML_READ32(par, VML_DSPCADDR);
962         mutex_unlock(&vml_mutex);
963
964         return 0;
965 }
966
967 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
968                            u_int transp, struct fb_info *info)
969 {
970         u32 v;
971
972         if (regno >= 16)
973                 return -EINVAL;
974
975         if (info->var.grayscale) {
976                 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
977         }
978
979         if (info->fix.visual != FB_VISUAL_TRUECOLOR)
980                 return -EINVAL;
981
982         red = VML_TOHW(red, info->var.red.length);
983         blue = VML_TOHW(blue, info->var.blue.length);
984         green = VML_TOHW(green, info->var.green.length);
985         transp = VML_TOHW(transp, info->var.transp.length);
986
987         v = (red << info->var.red.offset) |
988             (green << info->var.green.offset) |
989             (blue << info->var.blue.offset) |
990             (transp << info->var.transp.offset);
991
992         switch (info->var.bits_per_pixel) {
993         case 16:
994                 ((u32 *) info->pseudo_palette)[regno] = v;
995                 break;
996         case 24:
997         case 32:
998                 ((u32 *) info->pseudo_palette)[regno] = v;
999                 break;
1000         }
1001         return 0;
1002 }
1003
1004 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
1005 {
1006         struct vml_info *vinfo = container_of(info, struct vml_info, info);
1007         unsigned long size = vma->vm_end - vma->vm_start;
1008         unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1009         int ret;
1010
1011         if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
1012                 return -EINVAL;
1013         if (offset + size > vinfo->vram_contig_size)
1014                 return -EINVAL;
1015         ret = vmlfb_vram_offset(vinfo, offset);
1016         if (ret)
1017                 return -EINVAL;
1018         offset += vinfo->vram_start;
1019         pgprot_val(vma->vm_page_prot) |= _PAGE_PCD;
1020         pgprot_val(vma->vm_page_prot) &= ~_PAGE_PWT;
1021         vma->vm_flags |= VM_RESERVED | VM_IO;
1022         if (remap_pfn_range(vma, vma->vm_start, offset >> PAGE_SHIFT,
1023                                                 size, vma->vm_page_prot))
1024                 return -EAGAIN;
1025         return 0;
1026 }
1027
1028 static int vmlfb_sync(struct fb_info *info)
1029 {
1030         return 0;
1031 }
1032
1033 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1034 {
1035         return -EINVAL; /* just to force soft_cursor() call */
1036 }
1037
1038 static struct fb_ops vmlfb_ops = {
1039         .owner = THIS_MODULE,
1040         .fb_open = vmlfb_open,
1041         .fb_release = vmlfb_release,
1042         .fb_check_var = vmlfb_check_var,
1043         .fb_set_par = vmlfb_set_par,
1044         .fb_blank = vmlfb_blank,
1045         .fb_pan_display = vmlfb_pan_display,
1046         .fb_fillrect = cfb_fillrect,
1047         .fb_copyarea = cfb_copyarea,
1048         .fb_imageblit = cfb_imageblit,
1049         .fb_cursor = vmlfb_cursor,
1050         .fb_sync = vmlfb_sync,
1051         .fb_mmap = vmlfb_mmap,
1052         .fb_setcolreg = vmlfb_setcolreg
1053 };
1054
1055 static struct pci_device_id vml_ids[] = {
1056         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1057         {0}
1058 };
1059
1060 static struct pci_driver vmlfb_pci_driver = {
1061         .name = "vmlfb",
1062         .id_table = vml_ids,
1063         .probe = vml_pci_probe,
1064         .remove = __devexit_p(vml_pci_remove)
1065 };
1066
1067 static void __exit vmlfb_cleanup(void)
1068 {
1069         pci_unregister_driver(&vmlfb_pci_driver);
1070 }
1071
1072 static int __init vmlfb_init(void)
1073 {
1074
1075 #ifndef MODULE
1076         char *option = NULL;
1077
1078         if (fb_get_options(MODULE_NAME, &option))
1079                 return -ENODEV;
1080 #endif
1081
1082         printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1083         mutex_init(&vml_mutex);
1084         INIT_LIST_HEAD(&global_no_mode);
1085         INIT_LIST_HEAD(&global_has_mode);
1086
1087         return pci_register_driver(&vmlfb_pci_driver);
1088 }
1089
1090 int vmlfb_register_subsys(struct vml_sys *sys)
1091 {
1092         struct vml_info *entry;
1093         struct list_head *list;
1094         u32 save_activate;
1095
1096         mutex_lock(&vml_mutex);
1097         if (subsys != NULL) {
1098                 subsys->restore(subsys);
1099         }
1100         subsys = sys;
1101         subsys->save(subsys);
1102
1103         /*
1104          * We need to restart list traversal for each item, since we
1105          * release the list mutex in the loop.
1106          */
1107
1108         list = global_no_mode.next;
1109         while (list != &global_no_mode) {
1110                 list_del_init(list);
1111                 entry = list_entry(list, struct vml_info, head);
1112
1113                 /*
1114                  * First, try the current mode which might not be
1115                  * completely validated with respect to the pixel clock.
1116                  */
1117
1118                 if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1119                         vmlfb_set_par_locked(entry);
1120                         list_add_tail(list, &global_has_mode);
1121                 } else {
1122
1123                         /*
1124                          * Didn't work. Try to find another mode,
1125                          * that matches this subsys.
1126                          */
1127
1128                         mutex_unlock(&vml_mutex);
1129                         save_activate = entry->info.var.activate;
1130                         entry->info.var.bits_per_pixel = 16;
1131                         vmlfb_set_pref_pixel_format(&entry->info.var);
1132                         if (fb_find_mode(&entry->info.var,
1133                                          &entry->info,
1134                                          vml_default_mode, NULL, 0, NULL, 16)) {
1135                                 entry->info.var.activate |=
1136                                     FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1137                                 fb_set_var(&entry->info, &entry->info.var);
1138                         } else {
1139                                 printk(KERN_ERR MODULE_NAME
1140                                        ": Sorry. no mode found for this subsys.\n");
1141                         }
1142                         entry->info.var.activate = save_activate;
1143                         mutex_lock(&vml_mutex);
1144                 }
1145                 vmlfb_blank_locked(entry);
1146                 list = global_no_mode.next;
1147         }
1148         mutex_unlock(&vml_mutex);
1149
1150         printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1151                                 subsys->name ? subsys->name : "unknown");
1152         return 0;
1153 }
1154
1155 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1156
1157 void vmlfb_unregister_subsys(struct vml_sys *sys)
1158 {
1159         struct vml_info *entry, *next;
1160
1161         mutex_lock(&vml_mutex);
1162         if (subsys != sys) {
1163                 mutex_unlock(&vml_mutex);
1164                 return;
1165         }
1166         subsys->restore(subsys);
1167         subsys = NULL;
1168         list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1169                 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1170                 vmlfb_disable_pipe(entry);
1171                 list_del(&entry->head);
1172                 list_add_tail(&entry->head, &global_no_mode);
1173         }
1174         mutex_unlock(&vml_mutex);
1175 }
1176
1177 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1178
1179 module_init(vmlfb_init);
1180 module_exit(vmlfb_cleanup);
1181
1182 MODULE_AUTHOR("Tungsten Graphics");
1183 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1184 MODULE_VERSION("1.0.0");
1185 MODULE_LICENSE("GPL");