]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/btrfs/async-thread.c
Btrfs: fix race in worker_loop
[linux-2.6-omap-h63xx.git] / fs / btrfs / async-thread.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kthread.h>
20 #include <linux/list.h>
21 #include <linux/spinlock.h>
22 #include <linux/freezer.h>
23 #include <linux/ftrace.h>
24 #include "async-thread.h"
25
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29
30 /*
31  * container for the kthread task pointer and the list of pending work
32  * One of these is allocated per thread.
33  */
34 struct btrfs_worker_thread {
35         /* pool we belong to */
36         struct btrfs_workers *workers;
37
38         /* list of struct btrfs_work that are waiting for service */
39         struct list_head pending;
40
41         /* list of worker threads from struct btrfs_workers */
42         struct list_head worker_list;
43
44         /* kthread */
45         struct task_struct *task;
46
47         /* number of things on the pending list */
48         atomic_t num_pending;
49
50         unsigned long sequence;
51
52         /* protects the pending list. */
53         spinlock_t lock;
54
55         /* set to non-zero when this thread is already awake and kicking */
56         int working;
57
58         /* are we currently idle */
59         int idle;
60 };
61
62 /*
63  * helper function to move a thread onto the idle list after it
64  * has finished some requests.
65  */
66 static void check_idle_worker(struct btrfs_worker_thread *worker)
67 {
68         if (!worker->idle && atomic_read(&worker->num_pending) <
69             worker->workers->idle_thresh / 2) {
70                 unsigned long flags;
71                 spin_lock_irqsave(&worker->workers->lock, flags);
72                 worker->idle = 1;
73                 list_move(&worker->worker_list, &worker->workers->idle_list);
74                 spin_unlock_irqrestore(&worker->workers->lock, flags);
75         }
76 }
77
78 /*
79  * helper function to move a thread off the idle list after new
80  * pending work is added.
81  */
82 static void check_busy_worker(struct btrfs_worker_thread *worker)
83 {
84         if (worker->idle && atomic_read(&worker->num_pending) >=
85             worker->workers->idle_thresh) {
86                 unsigned long flags;
87                 spin_lock_irqsave(&worker->workers->lock, flags);
88                 worker->idle = 0;
89                 list_move_tail(&worker->worker_list,
90                                &worker->workers->worker_list);
91                 spin_unlock_irqrestore(&worker->workers->lock, flags);
92         }
93 }
94
95 static noinline int run_ordered_completions(struct btrfs_workers *workers,
96                                             struct btrfs_work *work)
97 {
98         unsigned long flags;
99
100         if (!workers->ordered)
101                 return 0;
102
103         set_bit(WORK_DONE_BIT, &work->flags);
104
105         spin_lock_irqsave(&workers->lock, flags);
106
107         while (!list_empty(&workers->order_list)) {
108                 work = list_entry(workers->order_list.next,
109                                   struct btrfs_work, order_list);
110
111                 if (!test_bit(WORK_DONE_BIT, &work->flags))
112                         break;
113
114                 /* we are going to call the ordered done function, but
115                  * we leave the work item on the list as a barrier so
116                  * that later work items that are done don't have their
117                  * functions called before this one returns
118                  */
119                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
120                         break;
121
122                 spin_unlock_irqrestore(&workers->lock, flags);
123
124                 work->ordered_func(work);
125
126                 /* now take the lock again and call the freeing code */
127                 spin_lock_irqsave(&workers->lock, flags);
128                 list_del(&work->order_list);
129                 work->ordered_free(work);
130         }
131
132         spin_unlock_irqrestore(&workers->lock, flags);
133         return 0;
134 }
135
136 /*
137  * main loop for servicing work items
138  */
139 static int worker_loop(void *arg)
140 {
141         struct btrfs_worker_thread *worker = arg;
142         struct list_head *cur;
143         struct btrfs_work *work;
144         do {
145                 spin_lock_irq(&worker->lock);
146 again_locked:
147                 while (!list_empty(&worker->pending)) {
148                         cur = worker->pending.next;
149                         work = list_entry(cur, struct btrfs_work, list);
150                         list_del(&work->list);
151                         clear_bit(WORK_QUEUED_BIT, &work->flags);
152
153                         work->worker = worker;
154                         spin_unlock_irq(&worker->lock);
155
156                         work->func(work);
157
158                         atomic_dec(&worker->num_pending);
159                         /*
160                          * unless this is an ordered work queue,
161                          * 'work' was probably freed by func above.
162                          */
163                         run_ordered_completions(worker->workers, work);
164
165                         spin_lock_irq(&worker->lock);
166                         check_idle_worker(worker);
167
168                 }
169                 if (freezing(current)) {
170                         worker->working = 0;
171                         spin_unlock_irq(&worker->lock);
172                         refrigerator();
173                 } else {
174                         spin_unlock_irq(&worker->lock);
175                         if (!kthread_should_stop()) {
176                                 cpu_relax();
177                                 /*
178                                  * we've dropped the lock, did someone else
179                                  * jump_in?
180                                  */
181                                 smp_mb();
182                                 if (!list_empty(&worker->pending))
183                                         continue;
184
185                                 /*
186                                  * this short schedule allows more work to
187                                  * come in without the queue functions
188                                  * needing to go through wake_up_process()
189                                  *
190                                  * worker->working is still 1, so nobody
191                                  * is going to try and wake us up
192                                  */
193                                 schedule_timeout(1);
194                                 smp_mb();
195                                 if (!list_empty(&worker->pending))
196                                         continue;
197
198                                 if (kthread_should_stop())
199                                         break;
200
201                                 /* still no more work?, sleep for real */
202                                 spin_lock_irq(&worker->lock);
203                                 set_current_state(TASK_INTERRUPTIBLE);
204                                 if (!list_empty(&worker->pending))
205                                         goto again_locked;
206
207                                 /*
208                                  * this makes sure we get a wakeup when someone
209                                  * adds something new to the queue
210                                  */
211                                 worker->working = 0;
212                                 spin_unlock_irq(&worker->lock);
213
214                                 if (!kthread_should_stop())
215                                         schedule();
216                         }
217                         __set_current_state(TASK_RUNNING);
218                 }
219         } while (!kthread_should_stop());
220         return 0;
221 }
222
223 /*
224  * this will wait for all the worker threads to shutdown
225  */
226 int btrfs_stop_workers(struct btrfs_workers *workers)
227 {
228         struct list_head *cur;
229         struct btrfs_worker_thread *worker;
230
231         list_splice_init(&workers->idle_list, &workers->worker_list);
232         while (!list_empty(&workers->worker_list)) {
233                 cur = workers->worker_list.next;
234                 worker = list_entry(cur, struct btrfs_worker_thread,
235                                     worker_list);
236                 kthread_stop(worker->task);
237                 list_del(&worker->worker_list);
238                 kfree(worker);
239         }
240         return 0;
241 }
242
243 /*
244  * simple init on struct btrfs_workers
245  */
246 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max)
247 {
248         workers->num_workers = 0;
249         INIT_LIST_HEAD(&workers->worker_list);
250         INIT_LIST_HEAD(&workers->idle_list);
251         INIT_LIST_HEAD(&workers->order_list);
252         spin_lock_init(&workers->lock);
253         workers->max_workers = max;
254         workers->idle_thresh = 32;
255         workers->name = name;
256         workers->ordered = 0;
257 }
258
259 /*
260  * starts new worker threads.  This does not enforce the max worker
261  * count in case you need to temporarily go past it.
262  */
263 int btrfs_start_workers(struct btrfs_workers *workers, int num_workers)
264 {
265         struct btrfs_worker_thread *worker;
266         int ret = 0;
267         int i;
268
269         for (i = 0; i < num_workers; i++) {
270                 worker = kzalloc(sizeof(*worker), GFP_NOFS);
271                 if (!worker) {
272                         ret = -ENOMEM;
273                         goto fail;
274                 }
275
276                 INIT_LIST_HEAD(&worker->pending);
277                 INIT_LIST_HEAD(&worker->worker_list);
278                 spin_lock_init(&worker->lock);
279                 atomic_set(&worker->num_pending, 0);
280                 worker->task = kthread_run(worker_loop, worker,
281                                            "btrfs-%s-%d", workers->name,
282                                            workers->num_workers + i);
283                 worker->workers = workers;
284                 if (IS_ERR(worker->task)) {
285                         kfree(worker);
286                         ret = PTR_ERR(worker->task);
287                         goto fail;
288                 }
289
290                 spin_lock_irq(&workers->lock);
291                 list_add_tail(&worker->worker_list, &workers->idle_list);
292                 worker->idle = 1;
293                 workers->num_workers++;
294                 spin_unlock_irq(&workers->lock);
295         }
296         return 0;
297 fail:
298         btrfs_stop_workers(workers);
299         return ret;
300 }
301
302 /*
303  * run through the list and find a worker thread that doesn't have a lot
304  * to do right now.  This can return null if we aren't yet at the thread
305  * count limit and all of the threads are busy.
306  */
307 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
308 {
309         struct btrfs_worker_thread *worker;
310         struct list_head *next;
311         int enforce_min = workers->num_workers < workers->max_workers;
312
313         /*
314          * if we find an idle thread, don't move it to the end of the
315          * idle list.  This improves the chance that the next submission
316          * will reuse the same thread, and maybe catch it while it is still
317          * working
318          */
319         if (!list_empty(&workers->idle_list)) {
320                 next = workers->idle_list.next;
321                 worker = list_entry(next, struct btrfs_worker_thread,
322                                     worker_list);
323                 return worker;
324         }
325         if (enforce_min || list_empty(&workers->worker_list))
326                 return NULL;
327
328         /*
329          * if we pick a busy task, move the task to the end of the list.
330          * hopefully this will keep things somewhat evenly balanced.
331          * Do the move in batches based on the sequence number.  This groups
332          * requests submitted at roughly the same time onto the same worker.
333          */
334         next = workers->worker_list.next;
335         worker = list_entry(next, struct btrfs_worker_thread, worker_list);
336         atomic_inc(&worker->num_pending);
337         worker->sequence++;
338
339         if (worker->sequence % workers->idle_thresh == 0)
340                 list_move_tail(next, &workers->worker_list);
341         return worker;
342 }
343
344 /*
345  * selects a worker thread to take the next job.  This will either find
346  * an idle worker, start a new worker up to the max count, or just return
347  * one of the existing busy workers.
348  */
349 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
350 {
351         struct btrfs_worker_thread *worker;
352         unsigned long flags;
353
354 again:
355         spin_lock_irqsave(&workers->lock, flags);
356         worker = next_worker(workers);
357         spin_unlock_irqrestore(&workers->lock, flags);
358
359         if (!worker) {
360                 spin_lock_irqsave(&workers->lock, flags);
361                 if (workers->num_workers >= workers->max_workers) {
362                         struct list_head *fallback = NULL;
363                         /*
364                          * we have failed to find any workers, just
365                          * return the force one
366                          */
367                         if (!list_empty(&workers->worker_list))
368                                 fallback = workers->worker_list.next;
369                         if (!list_empty(&workers->idle_list))
370                                 fallback = workers->idle_list.next;
371                         BUG_ON(!fallback);
372                         worker = list_entry(fallback,
373                                   struct btrfs_worker_thread, worker_list);
374                         spin_unlock_irqrestore(&workers->lock, flags);
375                 } else {
376                         spin_unlock_irqrestore(&workers->lock, flags);
377                         /* we're below the limit, start another worker */
378                         btrfs_start_workers(workers, 1);
379                         goto again;
380                 }
381         }
382         return worker;
383 }
384
385 /*
386  * btrfs_requeue_work just puts the work item back on the tail of the list
387  * it was taken from.  It is intended for use with long running work functions
388  * that make some progress and want to give the cpu up for others.
389  */
390 int btrfs_requeue_work(struct btrfs_work *work)
391 {
392         struct btrfs_worker_thread *worker = work->worker;
393         unsigned long flags;
394         int wake = 0;
395
396         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
397                 goto out;
398
399         spin_lock_irqsave(&worker->lock, flags);
400         list_add_tail(&work->list, &worker->pending);
401         atomic_inc(&worker->num_pending);
402
403         /* by definition we're busy, take ourselves off the idle
404          * list
405          */
406         if (worker->idle) {
407                 spin_lock_irqsave(&worker->workers->lock, flags);
408                 worker->idle = 0;
409                 list_move_tail(&worker->worker_list,
410                                &worker->workers->worker_list);
411                 spin_unlock_irqrestore(&worker->workers->lock, flags);
412         }
413         if (!worker->working) {
414                 wake = 1;
415                 worker->working = 1;
416         }
417
418         spin_unlock_irqrestore(&worker->lock, flags);
419         if (wake)
420                 wake_up_process(worker->task);
421 out:
422
423         return 0;
424 }
425
426 /*
427  * places a struct btrfs_work into the pending queue of one of the kthreads
428  */
429 int btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
430 {
431         struct btrfs_worker_thread *worker;
432         unsigned long flags;
433         int wake = 0;
434
435         /* don't requeue something already on a list */
436         if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
437                 goto out;
438
439         worker = find_worker(workers);
440         if (workers->ordered) {
441                 spin_lock_irqsave(&workers->lock, flags);
442                 list_add_tail(&work->order_list, &workers->order_list);
443                 spin_unlock_irqrestore(&workers->lock, flags);
444         } else {
445                 INIT_LIST_HEAD(&work->order_list);
446         }
447
448         spin_lock_irqsave(&worker->lock, flags);
449
450         list_add_tail(&work->list, &worker->pending);
451         atomic_inc(&worker->num_pending);
452         check_busy_worker(worker);
453
454         /*
455          * avoid calling into wake_up_process if this thread has already
456          * been kicked
457          */
458         if (!worker->working)
459                 wake = 1;
460         worker->working = 1;
461
462         spin_unlock_irqrestore(&worker->lock, flags);
463
464         if (wake)
465                 wake_up_process(worker->task);
466 out:
467         return 0;
468 }