]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/btrfs/disk-io.c
Btrfs: btree address space fixes
[linux-2.6-omap-h63xx.git] / fs / btrfs / disk-io.c
1 #include <linux/module.h>
2 #include <linux/fs.h>
3 #include <linux/blkdev.h>
4 #include <linux/crypto.h>
5 #include <linux/scatterlist.h>
6 #include "ctree.h"
7 #include "disk-io.h"
8 #include "transaction.h"
9
10
11 static int check_tree_block(struct btrfs_root *root, struct buffer_head *buf)
12 {
13         struct btrfs_node *node = btrfs_buffer_node(buf);
14         if (buf->b_blocknr != btrfs_header_blocknr(&node->header)) {
15                 BUG();
16         }
17         if (root->node && btrfs_header_parentid(&node->header) !=
18             btrfs_header_parentid(btrfs_buffer_header(root->node))) {
19                 BUG();
20         }
21         return 0;
22 }
23
24 struct buffer_head *btrfs_find_tree_block(struct btrfs_root *root, u64 blocknr)
25 {
26         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
27         int blockbits = root->fs_info->sb->s_blocksize_bits;
28         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
29         struct page *page;
30         struct buffer_head *bh;
31         struct buffer_head *head;
32         struct buffer_head *ret = NULL;
33
34         page = find_lock_page(mapping, index);
35         if (!page)
36                 return NULL;
37
38         if (!page_has_buffers(page))
39                 goto out_unlock;
40
41         head = page_buffers(page);
42         bh = head;
43         do {
44                 if (buffer_mapped(bh) && bh->b_blocknr == blocknr) {
45                         ret = bh;
46                         get_bh(bh);
47                         goto out_unlock;
48                 }
49                 bh = bh->b_this_page;
50         } while (bh != head);
51 out_unlock:
52         unlock_page(page);
53         page_cache_release(page);
54         return ret;
55 }
56
57 struct buffer_head *btrfs_find_create_tree_block(struct btrfs_root *root,
58                                                  u64 blocknr)
59 {
60         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
61         int blockbits = root->fs_info->sb->s_blocksize_bits;
62         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
63         struct page *page;
64         struct buffer_head *bh;
65         struct buffer_head *head;
66         struct buffer_head *ret = NULL;
67         u64 first_block = index << (PAGE_CACHE_SHIFT - blockbits);
68         page = grab_cache_page(mapping, index);
69         if (!page)
70                 return NULL;
71
72         if (!page_has_buffers(page))
73                 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 0);
74         head = page_buffers(page);
75         bh = head;
76         do {
77                 if (!buffer_mapped(bh)) {
78                         bh->b_bdev = root->fs_info->sb->s_bdev;
79                         bh->b_blocknr = first_block;
80                         set_buffer_mapped(bh);
81                 }
82                 if (bh->b_blocknr == blocknr) {
83                         ret = bh;
84                         get_bh(bh);
85                         goto out_unlock;
86                 }
87                 bh = bh->b_this_page;
88                 first_block++;
89         } while (bh != head);
90 out_unlock:
91         unlock_page(page);
92         page_cache_release(page);
93         return ret;
94 }
95
96 static sector_t max_block(struct block_device *bdev)
97 {
98         sector_t retval = ~((sector_t)0);
99         loff_t sz = i_size_read(bdev->bd_inode);
100
101         if (sz) {
102                 unsigned int size = block_size(bdev);
103                 unsigned int sizebits = blksize_bits(size);
104                 retval = (sz >> sizebits);
105         }
106         return retval;
107 }
108
109 static int btree_get_block(struct inode *inode, sector_t iblock,
110                            struct buffer_head *bh, int create)
111 {
112         if (iblock >= max_block(inode->i_sb->s_bdev)) {
113                 if (create)
114                         return -EIO;
115
116                 /*
117                  * for reads, we're just trying to fill a partial page.
118                  * return a hole, they will have to call get_block again
119                  * before they can fill it, and they will get -EIO at that
120                  * time
121                  */
122                 return 0;
123         }
124         bh->b_bdev = inode->i_sb->s_bdev;
125         bh->b_blocknr = iblock;
126         set_buffer_mapped(bh);
127         return 0;
128 }
129
130 static int csum_tree_block(struct btrfs_root * root, struct buffer_head *bh,
131                             int verify)
132 {
133         struct btrfs_node *node = btrfs_buffer_node(bh);
134         struct scatterlist sg;
135         struct crypto_hash *tfm = root->fs_info->hash_tfm;
136         struct hash_desc desc;
137         int ret;
138         char result[32];
139
140         desc.tfm = tfm;
141         desc.flags = 0;
142         sg_init_one(&sg, bh->b_data + 32, bh->b_size - 32);
143         spin_lock(&root->fs_info->hash_lock);
144         ret = crypto_hash_digest(&desc, &sg, bh->b_size - 32, result);
145         spin_unlock(&root->fs_info->hash_lock);
146         if (ret) {
147                 printk("sha256 digest failed\n");
148         }
149         if (verify) {
150                 if (memcmp(node->header.csum, result, sizeof(result)))
151                         printk("csum verify failed on %Lu\n", bh->b_blocknr);
152                 return -EINVAL;
153         } else
154                 memcpy(node->header.csum, result, sizeof(node->header.csum));
155         return 0;
156 }
157
158 static int btree_writepage(struct page *page, struct writeback_control *wbc)
159 {
160         struct buffer_head *bh;
161         struct btrfs_root *root = btrfs_sb(page->mapping->host->i_sb);
162         struct buffer_head *head;
163
164         if (!page_has_buffers(page)) {
165                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
166                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
167         }
168         head = page_buffers(page);
169         bh = head;
170         do {
171                 if (buffer_dirty(bh))
172                         csum_tree_block(root, bh, 0);
173                 bh = bh->b_this_page;
174         } while (bh != head);
175         return block_write_full_page(page, btree_get_block, wbc);
176 }
177
178 static int btree_readpage(struct file * file, struct page * page)
179 {
180         return block_read_full_page(page, btree_get_block);
181 }
182
183 static struct address_space_operations btree_aops = {
184         .readpage       = btree_readpage,
185         .writepage      = btree_writepage,
186         .sync_page      = block_sync_page,
187 };
188
189 struct buffer_head *read_tree_block(struct btrfs_root *root, u64 blocknr)
190 {
191         struct buffer_head *bh = NULL;
192
193         bh = btrfs_find_create_tree_block(root, blocknr);
194         if (!bh)
195                 return bh;
196         lock_buffer(bh);
197         if (!buffer_uptodate(bh)) {
198                 get_bh(bh);
199                 bh->b_end_io = end_buffer_read_sync;
200                 submit_bh(READ, bh);
201                 wait_on_buffer(bh);
202                 if (!buffer_uptodate(bh))
203                         goto fail;
204                 csum_tree_block(root, bh, 1);
205         } else {
206                 unlock_buffer(bh);
207         }
208         if (check_tree_block(root, bh))
209                 BUG();
210         return bh;
211 fail:
212         brelse(bh);
213         return NULL;
214
215 }
216
217 int dirty_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
218                      struct buffer_head *buf)
219 {
220         mark_buffer_dirty(buf);
221         return 0;
222 }
223
224 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
225                      struct buffer_head *buf)
226 {
227         clear_buffer_dirty(buf);
228         return 0;
229 }
230
231 static int __setup_root(struct btrfs_super_block *super,
232                         struct btrfs_root *root,
233                         struct btrfs_fs_info *fs_info,
234                         u64 objectid)
235 {
236         root->node = NULL;
237         root->commit_root = NULL;
238         root->blocksize = btrfs_super_blocksize(super);
239         root->ref_cows = 0;
240         root->fs_info = fs_info;
241         memset(&root->root_key, 0, sizeof(root->root_key));
242         memset(&root->root_item, 0, sizeof(root->root_item));
243         return 0;
244 }
245
246 static int find_and_setup_root(struct btrfs_super_block *super,
247                                struct btrfs_root *tree_root,
248                                struct btrfs_fs_info *fs_info,
249                                u64 objectid,
250                                struct btrfs_root *root)
251 {
252         int ret;
253
254         __setup_root(super, root, fs_info, objectid);
255         ret = btrfs_find_last_root(tree_root, objectid,
256                                    &root->root_item, &root->root_key);
257         BUG_ON(ret);
258
259         root->node = read_tree_block(root,
260                                      btrfs_root_blocknr(&root->root_item));
261         BUG_ON(!root->node);
262         return 0;
263 }
264
265 struct btrfs_root *open_ctree(struct super_block *sb,
266                               struct buffer_head *sb_buffer,
267                               struct btrfs_super_block *disk_super)
268 {
269         struct btrfs_root *root = kmalloc(sizeof(struct btrfs_root),
270                                           GFP_NOFS);
271         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
272                                                  GFP_NOFS);
273         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
274                                                GFP_NOFS);
275         struct btrfs_root *inode_root = kmalloc(sizeof(struct btrfs_root),
276                                                 GFP_NOFS);
277         struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
278                                                 GFP_NOFS);
279         int ret;
280
281         if (!btrfs_super_root(disk_super)) {
282                 return NULL;
283         }
284         init_bit_radix(&fs_info->pinned_radix);
285         init_bit_radix(&fs_info->pending_del_radix);
286         sb_set_blocksize(sb, sb_buffer->b_size);
287         fs_info->running_transaction = NULL;
288         fs_info->fs_root = root;
289         fs_info->tree_root = tree_root;
290         fs_info->extent_root = extent_root;
291         fs_info->inode_root = inode_root;
292         fs_info->last_inode_alloc = 0;
293         fs_info->last_inode_alloc_dirid = 0;
294         fs_info->disk_super = disk_super;
295         fs_info->sb = sb;
296         fs_info->btree_inode = new_inode(sb);
297         fs_info->btree_inode->i_ino = 1;
298         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
299         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
300         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
301         fs_info->hash_tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
302         spin_lock_init(&fs_info->hash_lock);
303
304         if (!fs_info->hash_tfm || IS_ERR(fs_info->hash_tfm)) {
305                 printk("failed to allocate sha256 hash\n");
306                 return NULL;
307         }
308
309         mutex_init(&fs_info->trans_mutex);
310         mutex_init(&fs_info->fs_mutex);
311         memset(&fs_info->current_insert, 0, sizeof(fs_info->current_insert));
312         memset(&fs_info->last_insert, 0, sizeof(fs_info->last_insert));
313
314         __setup_root(disk_super, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
315
316         fs_info->sb_buffer = read_tree_block(tree_root, sb_buffer->b_blocknr);
317
318         if (!fs_info->sb_buffer) {
319 printk("failed2\n");
320                 return NULL;
321         }
322         brelse(sb_buffer);
323         sb_buffer = NULL;
324         disk_super = (struct btrfs_super_block *)fs_info->sb_buffer->b_data;
325         fs_info->disk_super = disk_super;
326
327         tree_root->node = read_tree_block(tree_root,
328                                           btrfs_super_root(disk_super));
329         BUG_ON(!tree_root->node);
330
331         ret = find_and_setup_root(disk_super, tree_root, fs_info,
332                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
333         BUG_ON(ret);
334
335         ret = find_and_setup_root(disk_super, tree_root, fs_info,
336                                   BTRFS_INODE_MAP_OBJECTID, inode_root);
337         BUG_ON(ret);
338
339         ret = find_and_setup_root(disk_super, tree_root, fs_info,
340                                   BTRFS_FS_TREE_OBJECTID, root);
341         BUG_ON(ret);
342         root->commit_root = root->node;
343         get_bh(root->node);
344         root->ref_cows = 1;
345         root->fs_info->generation = root->root_key.offset + 1;
346         return root;
347 }
348
349 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
350                       *root)
351 {
352         struct buffer_head *bh = root->fs_info->sb_buffer;
353         btrfs_set_super_root(root->fs_info->disk_super,
354                              root->fs_info->tree_root->node->b_blocknr);
355         lock_buffer(bh);
356         clear_buffer_dirty(bh);
357         csum_tree_block(root, bh, 0);
358         bh->b_end_io = end_buffer_write_sync;
359         get_bh(bh);
360         submit_bh(WRITE, bh);
361         wait_on_buffer(bh);
362         if (!buffer_uptodate(bh)) {
363                 WARN_ON(1);
364                 return -EIO;
365         }
366         return 0;
367 }
368
369 int close_ctree(struct btrfs_root *root)
370 {
371         int ret;
372         struct btrfs_trans_handle *trans;
373
374         trans = btrfs_start_transaction(root, 1);
375         btrfs_commit_transaction(trans, root);
376         /* run commit again to  drop the original snapshot */
377         trans = btrfs_start_transaction(root, 1);
378         btrfs_commit_transaction(trans, root);
379         ret = btrfs_write_and_wait_transaction(NULL, root);
380         BUG_ON(ret);
381         write_ctree_super(NULL, root);
382
383         if (root->node)
384                 btrfs_block_release(root, root->node);
385         if (root->fs_info->extent_root->node)
386                 btrfs_block_release(root->fs_info->extent_root,
387                                     root->fs_info->extent_root->node);
388         if (root->fs_info->inode_root->node)
389                 btrfs_block_release(root->fs_info->inode_root,
390                                     root->fs_info->inode_root->node);
391         if (root->fs_info->tree_root->node)
392                 btrfs_block_release(root->fs_info->tree_root,
393                                     root->fs_info->tree_root->node);
394         btrfs_block_release(root, root->commit_root);
395         btrfs_block_release(root, root->fs_info->sb_buffer);
396         crypto_free_hash(root->fs_info->hash_tfm);
397         truncate_inode_pages(root->fs_info->btree_inode->i_mapping, 0);
398         iput(root->fs_info->btree_inode);
399         kfree(root->fs_info->extent_root);
400         kfree(root->fs_info->inode_root);
401         kfree(root->fs_info->tree_root);
402         kfree(root->fs_info);
403         kfree(root);
404         return 0;
405 }
406
407 void btrfs_block_release(struct btrfs_root *root, struct buffer_head *buf)
408 {
409         brelse(buf);
410 }
411