2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
8 * bit 0 is the LSB of an "unsigned long" quantity.
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
22 #include <linux/compiler.h>
23 #include <asm/system.h>
25 #define smp_mb__before_clear_bit() mb()
26 #define smp_mb__after_clear_bit() mb()
29 * These functions are the basis of our bit ops.
31 * First, the atomic bitops. These use native endian.
33 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
36 unsigned long mask = 1UL << (bit & 31);
40 local_irq_save(flags);
42 local_irq_restore(flags);
45 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
48 unsigned long mask = 1UL << (bit & 31);
52 local_irq_save(flags);
54 local_irq_restore(flags);
57 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
60 unsigned long mask = 1UL << (bit & 31);
64 local_irq_save(flags);
66 local_irq_restore(flags);
70 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
74 unsigned long mask = 1UL << (bit & 31);
78 local_irq_save(flags);
81 local_irq_restore(flags);
87 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
91 unsigned long mask = 1UL << (bit & 31);
95 local_irq_save(flags);
98 local_irq_restore(flags);
104 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
108 unsigned long mask = 1UL << (bit & 31);
112 local_irq_save(flags);
115 local_irq_restore(flags);
121 * Now the non-atomic variants. We let the compiler handle all
122 * optimisations for these. These are all _native_ endian.
124 static inline void __set_bit(int nr, volatile unsigned long *p)
126 p[nr >> 5] |= (1UL << (nr & 31));
129 static inline void __clear_bit(int nr, volatile unsigned long *p)
131 p[nr >> 5] &= ~(1UL << (nr & 31));
134 static inline void __change_bit(int nr, volatile unsigned long *p)
136 p[nr >> 5] ^= (1UL << (nr & 31));
139 static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
141 unsigned long oldval, mask = 1UL << (nr & 31);
147 return oldval & mask;
150 static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
152 unsigned long oldval, mask = 1UL << (nr & 31);
158 return oldval & mask;
161 static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
163 unsigned long oldval, mask = 1UL << (nr & 31);
169 return oldval & mask;
173 * This routine doesn't need to be atomic.
175 static inline int __test_bit(int nr, const volatile unsigned long * p)
177 return (p[nr >> 5] >> (nr & 31)) & 1UL;
181 * A note about Endian-ness.
182 * -------------------------
184 * When the ARM is put into big endian mode via CR15, the processor
185 * merely swaps the order of bytes within words, thus:
187 * ------------ physical data bus bits -----------
188 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
189 * little byte 3 byte 2 byte 1 byte 0
190 * big byte 0 byte 1 byte 2 byte 3
192 * This means that reading a 32-bit word at address 0 returns the same
193 * value irrespective of the endian mode bit.
195 * Peripheral devices should be connected with the data bus reversed in
196 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
197 * available from http://www.arm.com/.
199 * The following assumes that the data bus connectivity for big endian
200 * mode has been followed.
202 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
206 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
208 extern void _set_bit_le(int nr, volatile unsigned long * p);
209 extern void _clear_bit_le(int nr, volatile unsigned long * p);
210 extern void _change_bit_le(int nr, volatile unsigned long * p);
211 extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
212 extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
213 extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
214 extern int _find_first_zero_bit_le(const void * p, unsigned size);
215 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
216 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
217 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
220 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
222 extern void _set_bit_be(int nr, volatile unsigned long * p);
223 extern void _clear_bit_be(int nr, volatile unsigned long * p);
224 extern void _change_bit_be(int nr, volatile unsigned long * p);
225 extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
226 extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
227 extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
228 extern int _find_first_zero_bit_be(const void * p, unsigned size);
229 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
230 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
231 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
235 * The __* form of bitops are non-atomic and may be reordered.
237 #define ATOMIC_BITOP_LE(name,nr,p) \
238 (__builtin_constant_p(nr) ? \
239 ____atomic_##name(nr, p) : \
242 #define ATOMIC_BITOP_BE(name,nr,p) \
243 (__builtin_constant_p(nr) ? \
244 ____atomic_##name(nr, p) : \
247 #define ATOMIC_BITOP_LE(name,nr,p) _##name##_le(nr,p)
248 #define ATOMIC_BITOP_BE(name,nr,p) _##name##_be(nr,p)
251 #define NONATOMIC_BITOP(name,nr,p) \
252 (____nonatomic_##name(nr, p))
256 * These are the little endian, atomic definitions.
258 #define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p)
259 #define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p)
260 #define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p)
261 #define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
262 #define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
263 #define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
264 #define test_bit(nr,p) __test_bit(nr,p)
265 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
266 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
267 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
268 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
270 #define WORD_BITOFF_TO_LE(x) ((x))
275 * These are the big endian, atomic definitions.
277 #define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p)
278 #define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p)
279 #define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p)
280 #define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
281 #define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
282 #define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
283 #define test_bit(nr,p) __test_bit(nr,p)
284 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
285 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
286 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
287 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
289 #define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18)
293 #if __LINUX_ARM_ARCH__ < 5
296 * ffz = Find First Zero in word. Undefined if no zero exists,
297 * so code should check against ~0UL first..
299 static inline unsigned long ffz(unsigned long word)
305 if (word & 0x0000ffff) { k -= 16; word <<= 16; }
306 if (word & 0x00ff0000) { k -= 8; word <<= 8; }
307 if (word & 0x0f000000) { k -= 4; word <<= 4; }
308 if (word & 0x30000000) { k -= 2; word <<= 2; }
309 if (word & 0x40000000) { k -= 1; }
314 * ffz = Find First Zero in word. Undefined if no zero exists,
315 * so code should check against ~0UL first..
317 static inline unsigned long __ffs(unsigned long word)
322 if (word & 0x0000ffff) { k -= 16; word <<= 16; }
323 if (word & 0x00ff0000) { k -= 8; word <<= 8; }
324 if (word & 0x0f000000) { k -= 4; word <<= 4; }
325 if (word & 0x30000000) { k -= 2; word <<= 2; }
326 if (word & 0x40000000) { k -= 1; }
331 * fls: find last bit set.
334 #define fls(x) generic_fls(x)
337 * ffs: find first bit set. This is defined the same way as
338 * the libc and compiler builtin ffs routines, therefore
339 * differs in spirit from the above ffz (man ffs).
342 #define ffs(x) generic_ffs(x)
347 * On ARMv5 and above those functions can be implemented around
348 * the clz instruction for much better code efficiency.
352 ( __builtin_constant_p(x) ? generic_fls(x) : \
353 ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
354 #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
355 #define __ffs(x) (ffs(x) - 1)
356 #define ffz(x) __ffs( ~(x) )
361 * Find first bit set in a 168-bit bitmap, where the first
362 * 128 bits are unlikely to be set.
364 static inline int sched_find_first_bit(const unsigned long *b)
369 for (off = 0; v = b[off], off < 4; off++) {
373 return __ffs(v) + off * 32;
377 * hweightN: returns the hamming weight (i.e. the number
378 * of bits set) of a N-bit word
381 #define hweight32(x) generic_hweight32(x)
382 #define hweight16(x) generic_hweight16(x)
383 #define hweight8(x) generic_hweight8(x)
386 * Ext2 is defined to use little-endian byte ordering.
387 * These do not need to be atomic.
389 #define ext2_set_bit(nr,p) \
390 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
391 #define ext2_set_bit_atomic(lock,nr,p) \
392 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
393 #define ext2_clear_bit(nr,p) \
394 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
395 #define ext2_clear_bit_atomic(lock,nr,p) \
396 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
397 #define ext2_test_bit(nr,p) \
398 __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
399 #define ext2_find_first_zero_bit(p,sz) \
400 _find_first_zero_bit_le(p,sz)
401 #define ext2_find_next_zero_bit(p,sz,off) \
402 _find_next_zero_bit_le(p,sz,off)
405 * Minix is defined to use little-endian byte ordering.
406 * These do not need to be atomic.
408 #define minix_set_bit(nr,p) \
409 __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
410 #define minix_test_bit(nr,p) \
411 __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
412 #define minix_test_and_set_bit(nr,p) \
413 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
414 #define minix_test_and_clear_bit(nr,p) \
415 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
416 #define minix_find_first_zero_bit(p,sz) \
417 _find_first_zero_bit_le(p,sz)
419 #endif /* __KERNEL__ */
421 #endif /* _ARM_BITOPS_H */