]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/exit.c
[PATCH] check return value of cpu_callback
[linux-2.6-omap-h63xx.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/taskstats_kern.h>
29 #include <linux/delayacct.h>
30 #include <linux/cpuset.h>
31 #include <linux/syscalls.h>
32 #include <linux/signal.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cn_proc.h>
35 #include <linux/mutex.h>
36 #include <linux/futex.h>
37 #include <linux/compat.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/audit.h> /* for audit_free() */
40 #include <linux/resource.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/pgtable.h>
45 #include <asm/mmu_context.h>
46
47 extern void sem_exit (void);
48 extern struct task_struct *child_reaper;
49
50 static void exit_mm(struct task_struct * tsk);
51
52 static void __unhash_process(struct task_struct *p)
53 {
54         nr_threads--;
55         detach_pid(p, PIDTYPE_PID);
56         if (thread_group_leader(p)) {
57                 detach_pid(p, PIDTYPE_PGID);
58                 detach_pid(p, PIDTYPE_SID);
59
60                 list_del_rcu(&p->tasks);
61                 __get_cpu_var(process_counts)--;
62         }
63         list_del_rcu(&p->thread_group);
64         remove_parent(p);
65 }
66
67 /*
68  * This function expects the tasklist_lock write-locked.
69  */
70 static void __exit_signal(struct task_struct *tsk)
71 {
72         struct signal_struct *sig = tsk->signal;
73         struct sighand_struct *sighand;
74
75         BUG_ON(!sig);
76         BUG_ON(!atomic_read(&sig->count));
77
78         rcu_read_lock();
79         sighand = rcu_dereference(tsk->sighand);
80         spin_lock(&sighand->siglock);
81
82         posix_cpu_timers_exit(tsk);
83         if (atomic_dec_and_test(&sig->count))
84                 posix_cpu_timers_exit_group(tsk);
85         else {
86                 /*
87                  * If there is any task waiting for the group exit
88                  * then notify it:
89                  */
90                 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
91                         wake_up_process(sig->group_exit_task);
92                         sig->group_exit_task = NULL;
93                 }
94                 if (tsk == sig->curr_target)
95                         sig->curr_target = next_thread(tsk);
96                 /*
97                  * Accumulate here the counters for all threads but the
98                  * group leader as they die, so they can be added into
99                  * the process-wide totals when those are taken.
100                  * The group leader stays around as a zombie as long
101                  * as there are other threads.  When it gets reaped,
102                  * the exit.c code will add its counts into these totals.
103                  * We won't ever get here for the group leader, since it
104                  * will have been the last reference on the signal_struct.
105                  */
106                 sig->utime = cputime_add(sig->utime, tsk->utime);
107                 sig->stime = cputime_add(sig->stime, tsk->stime);
108                 sig->min_flt += tsk->min_flt;
109                 sig->maj_flt += tsk->maj_flt;
110                 sig->nvcsw += tsk->nvcsw;
111                 sig->nivcsw += tsk->nivcsw;
112                 sig->sched_time += tsk->sched_time;
113                 sig = NULL; /* Marker for below. */
114         }
115
116         __unhash_process(tsk);
117
118         tsk->signal = NULL;
119         tsk->sighand = NULL;
120         spin_unlock(&sighand->siglock);
121         rcu_read_unlock();
122
123         __cleanup_sighand(sighand);
124         clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
125         flush_sigqueue(&tsk->pending);
126         if (sig) {
127                 flush_sigqueue(&sig->shared_pending);
128                 __cleanup_signal(sig);
129         }
130 }
131
132 static void delayed_put_task_struct(struct rcu_head *rhp)
133 {
134         put_task_struct(container_of(rhp, struct task_struct, rcu));
135 }
136
137 void release_task(struct task_struct * p)
138 {
139         struct task_struct *leader;
140         int zap_leader;
141 repeat:
142         atomic_dec(&p->user->processes);
143         write_lock_irq(&tasklist_lock);
144         ptrace_unlink(p);
145         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
146         __exit_signal(p);
147
148         /*
149          * If we are the last non-leader member of the thread
150          * group, and the leader is zombie, then notify the
151          * group leader's parent process. (if it wants notification.)
152          */
153         zap_leader = 0;
154         leader = p->group_leader;
155         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
156                 BUG_ON(leader->exit_signal == -1);
157                 do_notify_parent(leader, leader->exit_signal);
158                 /*
159                  * If we were the last child thread and the leader has
160                  * exited already, and the leader's parent ignores SIGCHLD,
161                  * then we are the one who should release the leader.
162                  *
163                  * do_notify_parent() will have marked it self-reaping in
164                  * that case.
165                  */
166                 zap_leader = (leader->exit_signal == -1);
167         }
168
169         sched_exit(p);
170         write_unlock_irq(&tasklist_lock);
171         proc_flush_task(p);
172         release_thread(p);
173         call_rcu(&p->rcu, delayed_put_task_struct);
174
175         p = leader;
176         if (unlikely(zap_leader))
177                 goto repeat;
178 }
179
180 /*
181  * This checks not only the pgrp, but falls back on the pid if no
182  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
183  * without this...
184  */
185 int session_of_pgrp(int pgrp)
186 {
187         struct task_struct *p;
188         int sid = -1;
189
190         read_lock(&tasklist_lock);
191         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
192                 if (p->signal->session > 0) {
193                         sid = p->signal->session;
194                         goto out;
195                 }
196         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
197         p = find_task_by_pid(pgrp);
198         if (p)
199                 sid = p->signal->session;
200 out:
201         read_unlock(&tasklist_lock);
202         
203         return sid;
204 }
205
206 /*
207  * Determine if a process group is "orphaned", according to the POSIX
208  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
209  * by terminal-generated stop signals.  Newly orphaned process groups are
210  * to receive a SIGHUP and a SIGCONT.
211  *
212  * "I ask you, have you ever known what it is to be an orphan?"
213  */
214 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
215 {
216         struct task_struct *p;
217         int ret = 1;
218
219         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
220                 if (p == ignored_task
221                                 || p->exit_state
222                                 || is_init(p->real_parent))
223                         continue;
224                 if (process_group(p->real_parent) != pgrp
225                             && p->real_parent->signal->session == p->signal->session) {
226                         ret = 0;
227                         break;
228                 }
229         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
230         return ret;     /* (sighing) "Often!" */
231 }
232
233 int is_orphaned_pgrp(int pgrp)
234 {
235         int retval;
236
237         read_lock(&tasklist_lock);
238         retval = will_become_orphaned_pgrp(pgrp, NULL);
239         read_unlock(&tasklist_lock);
240
241         return retval;
242 }
243
244 static int has_stopped_jobs(int pgrp)
245 {
246         int retval = 0;
247         struct task_struct *p;
248
249         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
250                 if (p->state != TASK_STOPPED)
251                         continue;
252
253                 /* If p is stopped by a debugger on a signal that won't
254                    stop it, then don't count p as stopped.  This isn't
255                    perfect but it's a good approximation.  */
256                 if (unlikely (p->ptrace)
257                     && p->exit_code != SIGSTOP
258                     && p->exit_code != SIGTSTP
259                     && p->exit_code != SIGTTOU
260                     && p->exit_code != SIGTTIN)
261                         continue;
262
263                 retval = 1;
264                 break;
265         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
266         return retval;
267 }
268
269 /**
270  * reparent_to_init - Reparent the calling kernel thread to the init task.
271  *
272  * If a kernel thread is launched as a result of a system call, or if
273  * it ever exits, it should generally reparent itself to init so that
274  * it is correctly cleaned up on exit.
275  *
276  * The various task state such as scheduling policy and priority may have
277  * been inherited from a user process, so we reset them to sane values here.
278  *
279  * NOTE that reparent_to_init() gives the caller full capabilities.
280  */
281 static void reparent_to_init(void)
282 {
283         write_lock_irq(&tasklist_lock);
284
285         ptrace_unlink(current);
286         /* Reparent to init */
287         remove_parent(current);
288         current->parent = child_reaper;
289         current->real_parent = child_reaper;
290         add_parent(current);
291
292         /* Set the exit signal to SIGCHLD so we signal init on exit */
293         current->exit_signal = SIGCHLD;
294
295         if ((current->policy == SCHED_NORMAL ||
296                         current->policy == SCHED_BATCH)
297                                 && (task_nice(current) < 0))
298                 set_user_nice(current, 0);
299         /* cpus_allowed? */
300         /* rt_priority? */
301         /* signals? */
302         security_task_reparent_to_init(current);
303         memcpy(current->signal->rlim, init_task.signal->rlim,
304                sizeof(current->signal->rlim));
305         atomic_inc(&(INIT_USER->__count));
306         write_unlock_irq(&tasklist_lock);
307         switch_uid(INIT_USER);
308 }
309
310 void __set_special_pids(pid_t session, pid_t pgrp)
311 {
312         struct task_struct *curr = current->group_leader;
313
314         if (curr->signal->session != session) {
315                 detach_pid(curr, PIDTYPE_SID);
316                 curr->signal->session = session;
317                 attach_pid(curr, PIDTYPE_SID, session);
318         }
319         if (process_group(curr) != pgrp) {
320                 detach_pid(curr, PIDTYPE_PGID);
321                 curr->signal->pgrp = pgrp;
322                 attach_pid(curr, PIDTYPE_PGID, pgrp);
323         }
324 }
325
326 void set_special_pids(pid_t session, pid_t pgrp)
327 {
328         write_lock_irq(&tasklist_lock);
329         __set_special_pids(session, pgrp);
330         write_unlock_irq(&tasklist_lock);
331 }
332
333 /*
334  * Let kernel threads use this to say that they
335  * allow a certain signal (since daemonize() will
336  * have disabled all of them by default).
337  */
338 int allow_signal(int sig)
339 {
340         if (!valid_signal(sig) || sig < 1)
341                 return -EINVAL;
342
343         spin_lock_irq(&current->sighand->siglock);
344         sigdelset(&current->blocked, sig);
345         if (!current->mm) {
346                 /* Kernel threads handle their own signals.
347                    Let the signal code know it'll be handled, so
348                    that they don't get converted to SIGKILL or
349                    just silently dropped */
350                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
351         }
352         recalc_sigpending();
353         spin_unlock_irq(&current->sighand->siglock);
354         return 0;
355 }
356
357 EXPORT_SYMBOL(allow_signal);
358
359 int disallow_signal(int sig)
360 {
361         if (!valid_signal(sig) || sig < 1)
362                 return -EINVAL;
363
364         spin_lock_irq(&current->sighand->siglock);
365         sigaddset(&current->blocked, sig);
366         recalc_sigpending();
367         spin_unlock_irq(&current->sighand->siglock);
368         return 0;
369 }
370
371 EXPORT_SYMBOL(disallow_signal);
372
373 /*
374  *      Put all the gunge required to become a kernel thread without
375  *      attached user resources in one place where it belongs.
376  */
377
378 void daemonize(const char *name, ...)
379 {
380         va_list args;
381         struct fs_struct *fs;
382         sigset_t blocked;
383
384         va_start(args, name);
385         vsnprintf(current->comm, sizeof(current->comm), name, args);
386         va_end(args);
387
388         /*
389          * If we were started as result of loading a module, close all of the
390          * user space pages.  We don't need them, and if we didn't close them
391          * they would be locked into memory.
392          */
393         exit_mm(current);
394
395         set_special_pids(1, 1);
396         mutex_lock(&tty_mutex);
397         current->signal->tty = NULL;
398         mutex_unlock(&tty_mutex);
399
400         /* Block and flush all signals */
401         sigfillset(&blocked);
402         sigprocmask(SIG_BLOCK, &blocked, NULL);
403         flush_signals(current);
404
405         /* Become as one with the init task */
406
407         exit_fs(current);       /* current->fs->count--; */
408         fs = init_task.fs;
409         current->fs = fs;
410         atomic_inc(&fs->count);
411         exit_namespace(current);
412         current->namespace = init_task.namespace;
413         get_namespace(current->namespace);
414         exit_files(current);
415         current->files = init_task.files;
416         atomic_inc(&current->files->count);
417
418         reparent_to_init();
419 }
420
421 EXPORT_SYMBOL(daemonize);
422
423 static void close_files(struct files_struct * files)
424 {
425         int i, j;
426         struct fdtable *fdt;
427
428         j = 0;
429
430         /*
431          * It is safe to dereference the fd table without RCU or
432          * ->file_lock because this is the last reference to the
433          * files structure.
434          */
435         fdt = files_fdtable(files);
436         for (;;) {
437                 unsigned long set;
438                 i = j * __NFDBITS;
439                 if (i >= fdt->max_fdset || i >= fdt->max_fds)
440                         break;
441                 set = fdt->open_fds->fds_bits[j++];
442                 while (set) {
443                         if (set & 1) {
444                                 struct file * file = xchg(&fdt->fd[i], NULL);
445                                 if (file)
446                                         filp_close(file, files);
447                         }
448                         i++;
449                         set >>= 1;
450                 }
451         }
452 }
453
454 struct files_struct *get_files_struct(struct task_struct *task)
455 {
456         struct files_struct *files;
457
458         task_lock(task);
459         files = task->files;
460         if (files)
461                 atomic_inc(&files->count);
462         task_unlock(task);
463
464         return files;
465 }
466
467 void fastcall put_files_struct(struct files_struct *files)
468 {
469         struct fdtable *fdt;
470
471         if (atomic_dec_and_test(&files->count)) {
472                 close_files(files);
473                 /*
474                  * Free the fd and fdset arrays if we expanded them.
475                  * If the fdtable was embedded, pass files for freeing
476                  * at the end of the RCU grace period. Otherwise,
477                  * you can free files immediately.
478                  */
479                 fdt = files_fdtable(files);
480                 if (fdt == &files->fdtab)
481                         fdt->free_files = files;
482                 else
483                         kmem_cache_free(files_cachep, files);
484                 free_fdtable(fdt);
485         }
486 }
487
488 EXPORT_SYMBOL(put_files_struct);
489
490 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
491 {
492         struct files_struct *old;
493
494         old = tsk->files;
495         task_lock(tsk);
496         tsk->files = files;
497         task_unlock(tsk);
498         put_files_struct(old);
499 }
500 EXPORT_SYMBOL(reset_files_struct);
501
502 static inline void __exit_files(struct task_struct *tsk)
503 {
504         struct files_struct * files = tsk->files;
505
506         if (files) {
507                 task_lock(tsk);
508                 tsk->files = NULL;
509                 task_unlock(tsk);
510                 put_files_struct(files);
511         }
512 }
513
514 void exit_files(struct task_struct *tsk)
515 {
516         __exit_files(tsk);
517 }
518
519 static inline void __put_fs_struct(struct fs_struct *fs)
520 {
521         /* No need to hold fs->lock if we are killing it */
522         if (atomic_dec_and_test(&fs->count)) {
523                 dput(fs->root);
524                 mntput(fs->rootmnt);
525                 dput(fs->pwd);
526                 mntput(fs->pwdmnt);
527                 if (fs->altroot) {
528                         dput(fs->altroot);
529                         mntput(fs->altrootmnt);
530                 }
531                 kmem_cache_free(fs_cachep, fs);
532         }
533 }
534
535 void put_fs_struct(struct fs_struct *fs)
536 {
537         __put_fs_struct(fs);
538 }
539
540 static inline void __exit_fs(struct task_struct *tsk)
541 {
542         struct fs_struct * fs = tsk->fs;
543
544         if (fs) {
545                 task_lock(tsk);
546                 tsk->fs = NULL;
547                 task_unlock(tsk);
548                 __put_fs_struct(fs);
549         }
550 }
551
552 void exit_fs(struct task_struct *tsk)
553 {
554         __exit_fs(tsk);
555 }
556
557 EXPORT_SYMBOL_GPL(exit_fs);
558
559 /*
560  * Turn us into a lazy TLB process if we
561  * aren't already..
562  */
563 static void exit_mm(struct task_struct * tsk)
564 {
565         struct mm_struct *mm = tsk->mm;
566
567         mm_release(tsk, mm);
568         if (!mm)
569                 return;
570         /*
571          * Serialize with any possible pending coredump.
572          * We must hold mmap_sem around checking core_waiters
573          * and clearing tsk->mm.  The core-inducing thread
574          * will increment core_waiters for each thread in the
575          * group with ->mm != NULL.
576          */
577         down_read(&mm->mmap_sem);
578         if (mm->core_waiters) {
579                 up_read(&mm->mmap_sem);
580                 down_write(&mm->mmap_sem);
581                 if (!--mm->core_waiters)
582                         complete(mm->core_startup_done);
583                 up_write(&mm->mmap_sem);
584
585                 wait_for_completion(&mm->core_done);
586                 down_read(&mm->mmap_sem);
587         }
588         atomic_inc(&mm->mm_count);
589         BUG_ON(mm != tsk->active_mm);
590         /* more a memory barrier than a real lock */
591         task_lock(tsk);
592         tsk->mm = NULL;
593         up_read(&mm->mmap_sem);
594         enter_lazy_tlb(mm, current);
595         task_unlock(tsk);
596         mmput(mm);
597 }
598
599 static inline void
600 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
601 {
602         /*
603          * Make sure we're not reparenting to ourselves and that
604          * the parent is not a zombie.
605          */
606         BUG_ON(p == reaper || reaper->exit_state);
607         p->real_parent = reaper;
608 }
609
610 static void
611 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
612 {
613         /* We don't want people slaying init.  */
614         if (p->exit_signal != -1)
615                 p->exit_signal = SIGCHLD;
616
617         if (p->pdeath_signal)
618                 /* We already hold the tasklist_lock here.  */
619                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
620
621         /* Move the child from its dying parent to the new one.  */
622         if (unlikely(traced)) {
623                 /* Preserve ptrace links if someone else is tracing this child.  */
624                 list_del_init(&p->ptrace_list);
625                 if (p->parent != p->real_parent)
626                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
627         } else {
628                 /* If this child is being traced, then we're the one tracing it
629                  * anyway, so let go of it.
630                  */
631                 p->ptrace = 0;
632                 remove_parent(p);
633                 p->parent = p->real_parent;
634                 add_parent(p);
635
636                 /* If we'd notified the old parent about this child's death,
637                  * also notify the new parent.
638                  */
639                 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
640                     thread_group_empty(p))
641                         do_notify_parent(p, p->exit_signal);
642                 else if (p->state == TASK_TRACED) {
643                         /*
644                          * If it was at a trace stop, turn it into
645                          * a normal stop since it's no longer being
646                          * traced.
647                          */
648                         ptrace_untrace(p);
649                 }
650         }
651
652         /*
653          * process group orphan check
654          * Case ii: Our child is in a different pgrp
655          * than we are, and it was the only connection
656          * outside, so the child pgrp is now orphaned.
657          */
658         if ((process_group(p) != process_group(father)) &&
659             (p->signal->session == father->signal->session)) {
660                 int pgrp = process_group(p);
661
662                 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
663                         __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
664                         __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
665                 }
666         }
667 }
668
669 /*
670  * When we die, we re-parent all our children.
671  * Try to give them to another thread in our thread
672  * group, and if no such member exists, give it to
673  * the global child reaper process (ie "init")
674  */
675 static void
676 forget_original_parent(struct task_struct *father, struct list_head *to_release)
677 {
678         struct task_struct *p, *reaper = father;
679         struct list_head *_p, *_n;
680
681         do {
682                 reaper = next_thread(reaper);
683                 if (reaper == father) {
684                         reaper = child_reaper;
685                         break;
686                 }
687         } while (reaper->exit_state);
688
689         /*
690          * There are only two places where our children can be:
691          *
692          * - in our child list
693          * - in our ptraced child list
694          *
695          * Search them and reparent children.
696          */
697         list_for_each_safe(_p, _n, &father->children) {
698                 int ptrace;
699                 p = list_entry(_p, struct task_struct, sibling);
700
701                 ptrace = p->ptrace;
702
703                 /* if father isn't the real parent, then ptrace must be enabled */
704                 BUG_ON(father != p->real_parent && !ptrace);
705
706                 if (father == p->real_parent) {
707                         /* reparent with a reaper, real father it's us */
708                         choose_new_parent(p, reaper);
709                         reparent_thread(p, father, 0);
710                 } else {
711                         /* reparent ptraced task to its real parent */
712                         __ptrace_unlink (p);
713                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
714                             thread_group_empty(p))
715                                 do_notify_parent(p, p->exit_signal);
716                 }
717
718                 /*
719                  * if the ptraced child is a zombie with exit_signal == -1
720                  * we must collect it before we exit, or it will remain
721                  * zombie forever since we prevented it from self-reap itself
722                  * while it was being traced by us, to be able to see it in wait4.
723                  */
724                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
725                         list_add(&p->ptrace_list, to_release);
726         }
727         list_for_each_safe(_p, _n, &father->ptrace_children) {
728                 p = list_entry(_p, struct task_struct, ptrace_list);
729                 choose_new_parent(p, reaper);
730                 reparent_thread(p, father, 1);
731         }
732 }
733
734 /*
735  * Send signals to all our closest relatives so that they know
736  * to properly mourn us..
737  */
738 static void exit_notify(struct task_struct *tsk)
739 {
740         int state;
741         struct task_struct *t;
742         struct list_head ptrace_dead, *_p, *_n;
743
744         if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
745             && !thread_group_empty(tsk)) {
746                 /*
747                  * This occurs when there was a race between our exit
748                  * syscall and a group signal choosing us as the one to
749                  * wake up.  It could be that we are the only thread
750                  * alerted to check for pending signals, but another thread
751                  * should be woken now to take the signal since we will not.
752                  * Now we'll wake all the threads in the group just to make
753                  * sure someone gets all the pending signals.
754                  */
755                 read_lock(&tasklist_lock);
756                 spin_lock_irq(&tsk->sighand->siglock);
757                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
758                         if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
759                                 recalc_sigpending_tsk(t);
760                                 if (signal_pending(t))
761                                         signal_wake_up(t, 0);
762                         }
763                 spin_unlock_irq(&tsk->sighand->siglock);
764                 read_unlock(&tasklist_lock);
765         }
766
767         write_lock_irq(&tasklist_lock);
768
769         /*
770          * This does two things:
771          *
772          * A.  Make init inherit all the child processes
773          * B.  Check to see if any process groups have become orphaned
774          *      as a result of our exiting, and if they have any stopped
775          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
776          */
777
778         INIT_LIST_HEAD(&ptrace_dead);
779         forget_original_parent(tsk, &ptrace_dead);
780         BUG_ON(!list_empty(&tsk->children));
781         BUG_ON(!list_empty(&tsk->ptrace_children));
782
783         /*
784          * Check to see if any process groups have become orphaned
785          * as a result of our exiting, and if they have any stopped
786          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
787          *
788          * Case i: Our father is in a different pgrp than we are
789          * and we were the only connection outside, so our pgrp
790          * is about to become orphaned.
791          */
792          
793         t = tsk->real_parent;
794         
795         if ((process_group(t) != process_group(tsk)) &&
796             (t->signal->session == tsk->signal->session) &&
797             will_become_orphaned_pgrp(process_group(tsk), tsk) &&
798             has_stopped_jobs(process_group(tsk))) {
799                 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
800                 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
801         }
802
803         /* Let father know we died 
804          *
805          * Thread signals are configurable, but you aren't going to use
806          * that to send signals to arbitary processes. 
807          * That stops right now.
808          *
809          * If the parent exec id doesn't match the exec id we saved
810          * when we started then we know the parent has changed security
811          * domain.
812          *
813          * If our self_exec id doesn't match our parent_exec_id then
814          * we have changed execution domain as these two values started
815          * the same after a fork.
816          *      
817          */
818         
819         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
820             ( tsk->parent_exec_id != t->self_exec_id  ||
821               tsk->self_exec_id != tsk->parent_exec_id)
822             && !capable(CAP_KILL))
823                 tsk->exit_signal = SIGCHLD;
824
825
826         /* If something other than our normal parent is ptracing us, then
827          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
828          * only has special meaning to our real parent.
829          */
830         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
831                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
832                 do_notify_parent(tsk, signal);
833         } else if (tsk->ptrace) {
834                 do_notify_parent(tsk, SIGCHLD);
835         }
836
837         state = EXIT_ZOMBIE;
838         if (tsk->exit_signal == -1 &&
839             (likely(tsk->ptrace == 0) ||
840              unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
841                 state = EXIT_DEAD;
842         tsk->exit_state = state;
843
844         write_unlock_irq(&tasklist_lock);
845
846         list_for_each_safe(_p, _n, &ptrace_dead) {
847                 list_del_init(_p);
848                 t = list_entry(_p, struct task_struct, ptrace_list);
849                 release_task(t);
850         }
851
852         /* If the process is dead, release it - nobody will wait for it */
853         if (state == EXIT_DEAD)
854                 release_task(tsk);
855 }
856
857 fastcall NORET_TYPE void do_exit(long code)
858 {
859         struct task_struct *tsk = current;
860         struct taskstats *tidstats;
861         int group_dead;
862         unsigned int mycpu;
863
864         profile_task_exit(tsk);
865
866         WARN_ON(atomic_read(&tsk->fs_excl));
867
868         if (unlikely(in_interrupt()))
869                 panic("Aiee, killing interrupt handler!");
870         if (unlikely(!tsk->pid))
871                 panic("Attempted to kill the idle task!");
872         if (unlikely(tsk == child_reaper))
873                 panic("Attempted to kill init!");
874
875         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
876                 current->ptrace_message = code;
877                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
878         }
879
880         /*
881          * We're taking recursive faults here in do_exit. Safest is to just
882          * leave this task alone and wait for reboot.
883          */
884         if (unlikely(tsk->flags & PF_EXITING)) {
885                 printk(KERN_ALERT
886                         "Fixing recursive fault but reboot is needed!\n");
887                 if (tsk->io_context)
888                         exit_io_context();
889                 set_current_state(TASK_UNINTERRUPTIBLE);
890                 schedule();
891         }
892
893         tsk->flags |= PF_EXITING;
894
895         if (unlikely(in_atomic()))
896                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
897                                 current->comm, current->pid,
898                                 preempt_count());
899
900         taskstats_exit_alloc(&tidstats, &mycpu);
901
902         acct_update_integrals(tsk);
903         if (tsk->mm) {
904                 update_hiwater_rss(tsk->mm);
905                 update_hiwater_vm(tsk->mm);
906         }
907         group_dead = atomic_dec_and_test(&tsk->signal->live);
908         if (group_dead) {
909                 hrtimer_cancel(&tsk->signal->real_timer);
910                 exit_itimers(tsk->signal);
911         }
912         acct_collect(code, group_dead);
913         if (unlikely(tsk->robust_list))
914                 exit_robust_list(tsk);
915 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
916         if (unlikely(tsk->compat_robust_list))
917                 compat_exit_robust_list(tsk);
918 #endif
919         if (unlikely(tsk->audit_context))
920                 audit_free(tsk);
921         taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
922         taskstats_exit_free(tidstats);
923
924         exit_mm(tsk);
925
926         if (group_dead)
927                 acct_process();
928         exit_sem(tsk);
929         __exit_files(tsk);
930         __exit_fs(tsk);
931         exit_namespace(tsk);
932         exit_thread();
933         cpuset_exit(tsk);
934         exit_keys(tsk);
935
936         if (group_dead && tsk->signal->leader)
937                 disassociate_ctty(1);
938
939         module_put(task_thread_info(tsk)->exec_domain->module);
940         if (tsk->binfmt)
941                 module_put(tsk->binfmt->module);
942
943         tsk->exit_code = code;
944         proc_exit_connector(tsk);
945         exit_notify(tsk);
946 #ifdef CONFIG_NUMA
947         mpol_free(tsk->mempolicy);
948         tsk->mempolicy = NULL;
949 #endif
950         /*
951          * This must happen late, after the PID is not
952          * hashed anymore:
953          */
954         if (unlikely(!list_empty(&tsk->pi_state_list)))
955                 exit_pi_state_list(tsk);
956         if (unlikely(current->pi_state_cache))
957                 kfree(current->pi_state_cache);
958         /*
959          * Make sure we are holding no locks:
960          */
961         debug_check_no_locks_held(tsk);
962
963         if (tsk->io_context)
964                 exit_io_context();
965
966         if (tsk->splice_pipe)
967                 __free_pipe_info(tsk->splice_pipe);
968
969         /* PF_DEAD causes final put_task_struct after we schedule. */
970         preempt_disable();
971         BUG_ON(tsk->flags & PF_DEAD);
972         tsk->flags |= PF_DEAD;
973
974         schedule();
975         BUG();
976         /* Avoid "noreturn function does return".  */
977         for (;;) ;
978 }
979
980 EXPORT_SYMBOL_GPL(do_exit);
981
982 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
983 {
984         if (comp)
985                 complete(comp);
986         
987         do_exit(code);
988 }
989
990 EXPORT_SYMBOL(complete_and_exit);
991
992 asmlinkage long sys_exit(int error_code)
993 {
994         do_exit((error_code&0xff)<<8);
995 }
996
997 /*
998  * Take down every thread in the group.  This is called by fatal signals
999  * as well as by sys_exit_group (below).
1000  */
1001 NORET_TYPE void
1002 do_group_exit(int exit_code)
1003 {
1004         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1005
1006         if (current->signal->flags & SIGNAL_GROUP_EXIT)
1007                 exit_code = current->signal->group_exit_code;
1008         else if (!thread_group_empty(current)) {
1009                 struct signal_struct *const sig = current->signal;
1010                 struct sighand_struct *const sighand = current->sighand;
1011                 spin_lock_irq(&sighand->siglock);
1012                 if (sig->flags & SIGNAL_GROUP_EXIT)
1013                         /* Another thread got here before we took the lock.  */
1014                         exit_code = sig->group_exit_code;
1015                 else {
1016                         sig->group_exit_code = exit_code;
1017                         zap_other_threads(current);
1018                 }
1019                 spin_unlock_irq(&sighand->siglock);
1020         }
1021
1022         do_exit(exit_code);
1023         /* NOTREACHED */
1024 }
1025
1026 /*
1027  * this kills every thread in the thread group. Note that any externally
1028  * wait4()-ing process will get the correct exit code - even if this
1029  * thread is not the thread group leader.
1030  */
1031 asmlinkage void sys_exit_group(int error_code)
1032 {
1033         do_group_exit((error_code & 0xff) << 8);
1034 }
1035
1036 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1037 {
1038         if (pid > 0) {
1039                 if (p->pid != pid)
1040                         return 0;
1041         } else if (!pid) {
1042                 if (process_group(p) != process_group(current))
1043                         return 0;
1044         } else if (pid != -1) {
1045                 if (process_group(p) != -pid)
1046                         return 0;
1047         }
1048
1049         /*
1050          * Do not consider detached threads that are
1051          * not ptraced:
1052          */
1053         if (p->exit_signal == -1 && !p->ptrace)
1054                 return 0;
1055
1056         /* Wait for all children (clone and not) if __WALL is set;
1057          * otherwise, wait for clone children *only* if __WCLONE is
1058          * set; otherwise, wait for non-clone children *only*.  (Note:
1059          * A "clone" child here is one that reports to its parent
1060          * using a signal other than SIGCHLD.) */
1061         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1062             && !(options & __WALL))
1063                 return 0;
1064         /*
1065          * Do not consider thread group leaders that are
1066          * in a non-empty thread group:
1067          */
1068         if (delay_group_leader(p))
1069                 return 2;
1070
1071         if (security_task_wait(p))
1072                 return 0;
1073
1074         return 1;
1075 }
1076
1077 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1078                                int why, int status,
1079                                struct siginfo __user *infop,
1080                                struct rusage __user *rusagep)
1081 {
1082         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1083
1084         put_task_struct(p);
1085         if (!retval)
1086                 retval = put_user(SIGCHLD, &infop->si_signo);
1087         if (!retval)
1088                 retval = put_user(0, &infop->si_errno);
1089         if (!retval)
1090                 retval = put_user((short)why, &infop->si_code);
1091         if (!retval)
1092                 retval = put_user(pid, &infop->si_pid);
1093         if (!retval)
1094                 retval = put_user(uid, &infop->si_uid);
1095         if (!retval)
1096                 retval = put_user(status, &infop->si_status);
1097         if (!retval)
1098                 retval = pid;
1099         return retval;
1100 }
1101
1102 /*
1103  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1104  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1105  * the lock and this task is uninteresting.  If we return nonzero, we have
1106  * released the lock and the system call should return.
1107  */
1108 static int wait_task_zombie(struct task_struct *p, int noreap,
1109                             struct siginfo __user *infop,
1110                             int __user *stat_addr, struct rusage __user *ru)
1111 {
1112         unsigned long state;
1113         int retval;
1114         int status;
1115
1116         if (unlikely(noreap)) {
1117                 pid_t pid = p->pid;
1118                 uid_t uid = p->uid;
1119                 int exit_code = p->exit_code;
1120                 int why, status;
1121
1122                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1123                         return 0;
1124                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1125                         return 0;
1126                 get_task_struct(p);
1127                 read_unlock(&tasklist_lock);
1128                 if ((exit_code & 0x7f) == 0) {
1129                         why = CLD_EXITED;
1130                         status = exit_code >> 8;
1131                 } else {
1132                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1133                         status = exit_code & 0x7f;
1134                 }
1135                 return wait_noreap_copyout(p, pid, uid, why,
1136                                            status, infop, ru);
1137         }
1138
1139         /*
1140          * Try to move the task's state to DEAD
1141          * only one thread is allowed to do this:
1142          */
1143         state = xchg(&p->exit_state, EXIT_DEAD);
1144         if (state != EXIT_ZOMBIE) {
1145                 BUG_ON(state != EXIT_DEAD);
1146                 return 0;
1147         }
1148         if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1149                 /*
1150                  * This can only happen in a race with a ptraced thread
1151                  * dying on another processor.
1152                  */
1153                 return 0;
1154         }
1155
1156         if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1157                 struct signal_struct *psig;
1158                 struct signal_struct *sig;
1159
1160                 /*
1161                  * The resource counters for the group leader are in its
1162                  * own task_struct.  Those for dead threads in the group
1163                  * are in its signal_struct, as are those for the child
1164                  * processes it has previously reaped.  All these
1165                  * accumulate in the parent's signal_struct c* fields.
1166                  *
1167                  * We don't bother to take a lock here to protect these
1168                  * p->signal fields, because they are only touched by
1169                  * __exit_signal, which runs with tasklist_lock
1170                  * write-locked anyway, and so is excluded here.  We do
1171                  * need to protect the access to p->parent->signal fields,
1172                  * as other threads in the parent group can be right
1173                  * here reaping other children at the same time.
1174                  */
1175                 spin_lock_irq(&p->parent->sighand->siglock);
1176                 psig = p->parent->signal;
1177                 sig = p->signal;
1178                 psig->cutime =
1179                         cputime_add(psig->cutime,
1180                         cputime_add(p->utime,
1181                         cputime_add(sig->utime,
1182                                     sig->cutime)));
1183                 psig->cstime =
1184                         cputime_add(psig->cstime,
1185                         cputime_add(p->stime,
1186                         cputime_add(sig->stime,
1187                                     sig->cstime)));
1188                 psig->cmin_flt +=
1189                         p->min_flt + sig->min_flt + sig->cmin_flt;
1190                 psig->cmaj_flt +=
1191                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1192                 psig->cnvcsw +=
1193                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1194                 psig->cnivcsw +=
1195                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1196                 spin_unlock_irq(&p->parent->sighand->siglock);
1197         }
1198
1199         /*
1200          * Now we are sure this task is interesting, and no other
1201          * thread can reap it because we set its state to EXIT_DEAD.
1202          */
1203         read_unlock(&tasklist_lock);
1204
1205         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1206         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1207                 ? p->signal->group_exit_code : p->exit_code;
1208         if (!retval && stat_addr)
1209                 retval = put_user(status, stat_addr);
1210         if (!retval && infop)
1211                 retval = put_user(SIGCHLD, &infop->si_signo);
1212         if (!retval && infop)
1213                 retval = put_user(0, &infop->si_errno);
1214         if (!retval && infop) {
1215                 int why;
1216
1217                 if ((status & 0x7f) == 0) {
1218                         why = CLD_EXITED;
1219                         status >>= 8;
1220                 } else {
1221                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1222                         status &= 0x7f;
1223                 }
1224                 retval = put_user((short)why, &infop->si_code);
1225                 if (!retval)
1226                         retval = put_user(status, &infop->si_status);
1227         }
1228         if (!retval && infop)
1229                 retval = put_user(p->pid, &infop->si_pid);
1230         if (!retval && infop)
1231                 retval = put_user(p->uid, &infop->si_uid);
1232         if (retval) {
1233                 // TODO: is this safe?
1234                 p->exit_state = EXIT_ZOMBIE;
1235                 return retval;
1236         }
1237         retval = p->pid;
1238         if (p->real_parent != p->parent) {
1239                 write_lock_irq(&tasklist_lock);
1240                 /* Double-check with lock held.  */
1241                 if (p->real_parent != p->parent) {
1242                         __ptrace_unlink(p);
1243                         // TODO: is this safe?
1244                         p->exit_state = EXIT_ZOMBIE;
1245                         /*
1246                          * If this is not a detached task, notify the parent.
1247                          * If it's still not detached after that, don't release
1248                          * it now.
1249                          */
1250                         if (p->exit_signal != -1) {
1251                                 do_notify_parent(p, p->exit_signal);
1252                                 if (p->exit_signal != -1)
1253                                         p = NULL;
1254                         }
1255                 }
1256                 write_unlock_irq(&tasklist_lock);
1257         }
1258         if (p != NULL)
1259                 release_task(p);
1260         BUG_ON(!retval);
1261         return retval;
1262 }
1263
1264 /*
1265  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1266  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1267  * the lock and this task is uninteresting.  If we return nonzero, we have
1268  * released the lock and the system call should return.
1269  */
1270 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1271                              int noreap, struct siginfo __user *infop,
1272                              int __user *stat_addr, struct rusage __user *ru)
1273 {
1274         int retval, exit_code;
1275
1276         if (!p->exit_code)
1277                 return 0;
1278         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1279             p->signal && p->signal->group_stop_count > 0)
1280                 /*
1281                  * A group stop is in progress and this is the group leader.
1282                  * We won't report until all threads have stopped.
1283                  */
1284                 return 0;
1285
1286         /*
1287          * Now we are pretty sure this task is interesting.
1288          * Make sure it doesn't get reaped out from under us while we
1289          * give up the lock and then examine it below.  We don't want to
1290          * keep holding onto the tasklist_lock while we call getrusage and
1291          * possibly take page faults for user memory.
1292          */
1293         get_task_struct(p);
1294         read_unlock(&tasklist_lock);
1295
1296         if (unlikely(noreap)) {
1297                 pid_t pid = p->pid;
1298                 uid_t uid = p->uid;
1299                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1300
1301                 exit_code = p->exit_code;
1302                 if (unlikely(!exit_code) ||
1303                     unlikely(p->state & TASK_TRACED))
1304                         goto bail_ref;
1305                 return wait_noreap_copyout(p, pid, uid,
1306                                            why, (exit_code << 8) | 0x7f,
1307                                            infop, ru);
1308         }
1309
1310         write_lock_irq(&tasklist_lock);
1311
1312         /*
1313          * This uses xchg to be atomic with the thread resuming and setting
1314          * it.  It must also be done with the write lock held to prevent a
1315          * race with the EXIT_ZOMBIE case.
1316          */
1317         exit_code = xchg(&p->exit_code, 0);
1318         if (unlikely(p->exit_state)) {
1319                 /*
1320                  * The task resumed and then died.  Let the next iteration
1321                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1322                  * already be zero here if it resumed and did _exit(0).
1323                  * The task itself is dead and won't touch exit_code again;
1324                  * other processors in this function are locked out.
1325                  */
1326                 p->exit_code = exit_code;
1327                 exit_code = 0;
1328         }
1329         if (unlikely(exit_code == 0)) {
1330                 /*
1331                  * Another thread in this function got to it first, or it
1332                  * resumed, or it resumed and then died.
1333                  */
1334                 write_unlock_irq(&tasklist_lock);
1335 bail_ref:
1336                 put_task_struct(p);
1337                 /*
1338                  * We are returning to the wait loop without having successfully
1339                  * removed the process and having released the lock. We cannot
1340                  * continue, since the "p" task pointer is potentially stale.
1341                  *
1342                  * Return -EAGAIN, and do_wait() will restart the loop from the
1343                  * beginning. Do _not_ re-acquire the lock.
1344                  */
1345                 return -EAGAIN;
1346         }
1347
1348         /* move to end of parent's list to avoid starvation */
1349         remove_parent(p);
1350         add_parent(p);
1351
1352         write_unlock_irq(&tasklist_lock);
1353
1354         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1355         if (!retval && stat_addr)
1356                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1357         if (!retval && infop)
1358                 retval = put_user(SIGCHLD, &infop->si_signo);
1359         if (!retval && infop)
1360                 retval = put_user(0, &infop->si_errno);
1361         if (!retval && infop)
1362                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1363                                           ? CLD_TRAPPED : CLD_STOPPED),
1364                                   &infop->si_code);
1365         if (!retval && infop)
1366                 retval = put_user(exit_code, &infop->si_status);
1367         if (!retval && infop)
1368                 retval = put_user(p->pid, &infop->si_pid);
1369         if (!retval && infop)
1370                 retval = put_user(p->uid, &infop->si_uid);
1371         if (!retval)
1372                 retval = p->pid;
1373         put_task_struct(p);
1374
1375         BUG_ON(!retval);
1376         return retval;
1377 }
1378
1379 /*
1380  * Handle do_wait work for one task in a live, non-stopped state.
1381  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1382  * the lock and this task is uninteresting.  If we return nonzero, we have
1383  * released the lock and the system call should return.
1384  */
1385 static int wait_task_continued(struct task_struct *p, int noreap,
1386                                struct siginfo __user *infop,
1387                                int __user *stat_addr, struct rusage __user *ru)
1388 {
1389         int retval;
1390         pid_t pid;
1391         uid_t uid;
1392
1393         if (unlikely(!p->signal))
1394                 return 0;
1395
1396         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1397                 return 0;
1398
1399         spin_lock_irq(&p->sighand->siglock);
1400         /* Re-check with the lock held.  */
1401         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1402                 spin_unlock_irq(&p->sighand->siglock);
1403                 return 0;
1404         }
1405         if (!noreap)
1406                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1407         spin_unlock_irq(&p->sighand->siglock);
1408
1409         pid = p->pid;
1410         uid = p->uid;
1411         get_task_struct(p);
1412         read_unlock(&tasklist_lock);
1413
1414         if (!infop) {
1415                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1416                 put_task_struct(p);
1417                 if (!retval && stat_addr)
1418                         retval = put_user(0xffff, stat_addr);
1419                 if (!retval)
1420                         retval = p->pid;
1421         } else {
1422                 retval = wait_noreap_copyout(p, pid, uid,
1423                                              CLD_CONTINUED, SIGCONT,
1424                                              infop, ru);
1425                 BUG_ON(retval == 0);
1426         }
1427
1428         return retval;
1429 }
1430
1431
1432 static inline int my_ptrace_child(struct task_struct *p)
1433 {
1434         if (!(p->ptrace & PT_PTRACED))
1435                 return 0;
1436         if (!(p->ptrace & PT_ATTACHED))
1437                 return 1;
1438         /*
1439          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1440          * we are the attacher.  If we are the real parent, this is a race
1441          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1442          * which we have to switch the parent links, but has already set
1443          * the flags in p->ptrace.
1444          */
1445         return (p->parent != p->real_parent);
1446 }
1447
1448 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1449                     int __user *stat_addr, struct rusage __user *ru)
1450 {
1451         DECLARE_WAITQUEUE(wait, current);
1452         struct task_struct *tsk;
1453         int flag, retval;
1454
1455         add_wait_queue(&current->signal->wait_chldexit,&wait);
1456 repeat:
1457         /*
1458          * We will set this flag if we see any child that might later
1459          * match our criteria, even if we are not able to reap it yet.
1460          */
1461         flag = 0;
1462         current->state = TASK_INTERRUPTIBLE;
1463         read_lock(&tasklist_lock);
1464         tsk = current;
1465         do {
1466                 struct task_struct *p;
1467                 struct list_head *_p;
1468                 int ret;
1469
1470                 list_for_each(_p,&tsk->children) {
1471                         p = list_entry(_p, struct task_struct, sibling);
1472
1473                         ret = eligible_child(pid, options, p);
1474                         if (!ret)
1475                                 continue;
1476
1477                         switch (p->state) {
1478                         case TASK_TRACED:
1479                                 /*
1480                                  * When we hit the race with PTRACE_ATTACH,
1481                                  * we will not report this child.  But the
1482                                  * race means it has not yet been moved to
1483                                  * our ptrace_children list, so we need to
1484                                  * set the flag here to avoid a spurious ECHILD
1485                                  * when the race happens with the only child.
1486                                  */
1487                                 flag = 1;
1488                                 if (!my_ptrace_child(p))
1489                                         continue;
1490                                 /*FALLTHROUGH*/
1491                         case TASK_STOPPED:
1492                                 /*
1493                                  * It's stopped now, so it might later
1494                                  * continue, exit, or stop again.
1495                                  */
1496                                 flag = 1;
1497                                 if (!(options & WUNTRACED) &&
1498                                     !my_ptrace_child(p))
1499                                         continue;
1500                                 retval = wait_task_stopped(p, ret == 2,
1501                                                            (options & WNOWAIT),
1502                                                            infop,
1503                                                            stat_addr, ru);
1504                                 if (retval == -EAGAIN)
1505                                         goto repeat;
1506                                 if (retval != 0) /* He released the lock.  */
1507                                         goto end;
1508                                 break;
1509                         default:
1510                         // case EXIT_DEAD:
1511                                 if (p->exit_state == EXIT_DEAD)
1512                                         continue;
1513                         // case EXIT_ZOMBIE:
1514                                 if (p->exit_state == EXIT_ZOMBIE) {
1515                                         /*
1516                                          * Eligible but we cannot release
1517                                          * it yet:
1518                                          */
1519                                         if (ret == 2)
1520                                                 goto check_continued;
1521                                         if (!likely(options & WEXITED))
1522                                                 continue;
1523                                         retval = wait_task_zombie(
1524                                                 p, (options & WNOWAIT),
1525                                                 infop, stat_addr, ru);
1526                                         /* He released the lock.  */
1527                                         if (retval != 0)
1528                                                 goto end;
1529                                         break;
1530                                 }
1531 check_continued:
1532                                 /*
1533                                  * It's running now, so it might later
1534                                  * exit, stop, or stop and then continue.
1535                                  */
1536                                 flag = 1;
1537                                 if (!unlikely(options & WCONTINUED))
1538                                         continue;
1539                                 retval = wait_task_continued(
1540                                         p, (options & WNOWAIT),
1541                                         infop, stat_addr, ru);
1542                                 if (retval != 0) /* He released the lock.  */
1543                                         goto end;
1544                                 break;
1545                         }
1546                 }
1547                 if (!flag) {
1548                         list_for_each(_p, &tsk->ptrace_children) {
1549                                 p = list_entry(_p, struct task_struct,
1550                                                 ptrace_list);
1551                                 if (!eligible_child(pid, options, p))
1552                                         continue;
1553                                 flag = 1;
1554                                 break;
1555                         }
1556                 }
1557                 if (options & __WNOTHREAD)
1558                         break;
1559                 tsk = next_thread(tsk);
1560                 BUG_ON(tsk->signal != current->signal);
1561         } while (tsk != current);
1562
1563         read_unlock(&tasklist_lock);
1564         if (flag) {
1565                 retval = 0;
1566                 if (options & WNOHANG)
1567                         goto end;
1568                 retval = -ERESTARTSYS;
1569                 if (signal_pending(current))
1570                         goto end;
1571                 schedule();
1572                 goto repeat;
1573         }
1574         retval = -ECHILD;
1575 end:
1576         current->state = TASK_RUNNING;
1577         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1578         if (infop) {
1579                 if (retval > 0)
1580                 retval = 0;
1581                 else {
1582                         /*
1583                          * For a WNOHANG return, clear out all the fields
1584                          * we would set so the user can easily tell the
1585                          * difference.
1586                          */
1587                         if (!retval)
1588                                 retval = put_user(0, &infop->si_signo);
1589                         if (!retval)
1590                                 retval = put_user(0, &infop->si_errno);
1591                         if (!retval)
1592                                 retval = put_user(0, &infop->si_code);
1593                         if (!retval)
1594                                 retval = put_user(0, &infop->si_pid);
1595                         if (!retval)
1596                                 retval = put_user(0, &infop->si_uid);
1597                         if (!retval)
1598                                 retval = put_user(0, &infop->si_status);
1599                 }
1600         }
1601         return retval;
1602 }
1603
1604 asmlinkage long sys_waitid(int which, pid_t pid,
1605                            struct siginfo __user *infop, int options,
1606                            struct rusage __user *ru)
1607 {
1608         long ret;
1609
1610         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1611                 return -EINVAL;
1612         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1613                 return -EINVAL;
1614
1615         switch (which) {
1616         case P_ALL:
1617                 pid = -1;
1618                 break;
1619         case P_PID:
1620                 if (pid <= 0)
1621                         return -EINVAL;
1622                 break;
1623         case P_PGID:
1624                 if (pid <= 0)
1625                         return -EINVAL;
1626                 pid = -pid;
1627                 break;
1628         default:
1629                 return -EINVAL;
1630         }
1631
1632         ret = do_wait(pid, options, infop, NULL, ru);
1633
1634         /* avoid REGPARM breakage on x86: */
1635         prevent_tail_call(ret);
1636         return ret;
1637 }
1638
1639 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1640                           int options, struct rusage __user *ru)
1641 {
1642         long ret;
1643
1644         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1645                         __WNOTHREAD|__WCLONE|__WALL))
1646                 return -EINVAL;
1647         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1648
1649         /* avoid REGPARM breakage on x86: */
1650         prevent_tail_call(ret);
1651         return ret;
1652 }
1653
1654 #ifdef __ARCH_WANT_SYS_WAITPID
1655
1656 /*
1657  * sys_waitpid() remains for compatibility. waitpid() should be
1658  * implemented by calling sys_wait4() from libc.a.
1659  */
1660 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1661 {
1662         return sys_wait4(pid, stat_addr, options, NULL);
1663 }
1664
1665 #endif