]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/hugetlb.c
[PATCH] mm: kill kmem_cache_t usage
[linux-2.6-omap-h63xx.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16
17 #include <asm/page.h>
18 #include <asm/pgtable.h>
19
20 #include <linux/hugetlb.h>
21
22 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
23 static unsigned long nr_huge_pages, free_huge_pages;
24 unsigned long max_huge_pages;
25 static struct list_head hugepage_freelists[MAX_NUMNODES];
26 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
27 static unsigned int free_huge_pages_node[MAX_NUMNODES];
28
29 /*
30  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
31  */
32 static DEFINE_SPINLOCK(hugetlb_lock);
33
34 static void enqueue_huge_page(struct page *page)
35 {
36         int nid = page_to_nid(page);
37         list_add(&page->lru, &hugepage_freelists[nid]);
38         free_huge_pages++;
39         free_huge_pages_node[nid]++;
40 }
41
42 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
43                                 unsigned long address)
44 {
45         int nid = numa_node_id();
46         struct page *page = NULL;
47         struct zonelist *zonelist = huge_zonelist(vma, address);
48         struct zone **z;
49
50         for (z = zonelist->zones; *z; z++) {
51                 nid = (*z)->zone_pgdat->node_id;
52                 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
53                     !list_empty(&hugepage_freelists[nid]))
54                         break;
55         }
56
57         if (*z) {
58                 page = list_entry(hugepage_freelists[nid].next,
59                                   struct page, lru);
60                 list_del(&page->lru);
61                 free_huge_pages--;
62                 free_huge_pages_node[nid]--;
63         }
64         return page;
65 }
66
67 static int alloc_fresh_huge_page(void)
68 {
69         static int nid = 0;
70         struct page *page;
71         page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
72                                         HUGETLB_PAGE_ORDER);
73         nid = (nid + 1) % num_online_nodes();
74         if (page) {
75                 page[1].lru.next = (void *)free_huge_page;      /* dtor */
76                 spin_lock(&hugetlb_lock);
77                 nr_huge_pages++;
78                 nr_huge_pages_node[page_to_nid(page)]++;
79                 spin_unlock(&hugetlb_lock);
80                 put_page(page); /* free it into the hugepage allocator */
81                 return 1;
82         }
83         return 0;
84 }
85
86 void free_huge_page(struct page *page)
87 {
88         BUG_ON(page_count(page));
89
90         INIT_LIST_HEAD(&page->lru);
91
92         spin_lock(&hugetlb_lock);
93         enqueue_huge_page(page);
94         spin_unlock(&hugetlb_lock);
95 }
96
97 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
98 {
99         struct page *page;
100         int i;
101
102         spin_lock(&hugetlb_lock);
103         page = dequeue_huge_page(vma, addr);
104         if (!page) {
105                 spin_unlock(&hugetlb_lock);
106                 return NULL;
107         }
108         spin_unlock(&hugetlb_lock);
109         set_page_count(page, 1);
110         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
111                 clear_user_highpage(&page[i], addr);
112         return page;
113 }
114
115 static int __init hugetlb_init(void)
116 {
117         unsigned long i;
118
119         if (HPAGE_SHIFT == 0)
120                 return 0;
121
122         for (i = 0; i < MAX_NUMNODES; ++i)
123                 INIT_LIST_HEAD(&hugepage_freelists[i]);
124
125         for (i = 0; i < max_huge_pages; ++i) {
126                 if (!alloc_fresh_huge_page())
127                         break;
128         }
129         max_huge_pages = free_huge_pages = nr_huge_pages = i;
130         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
131         return 0;
132 }
133 module_init(hugetlb_init);
134
135 static int __init hugetlb_setup(char *s)
136 {
137         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
138                 max_huge_pages = 0;
139         return 1;
140 }
141 __setup("hugepages=", hugetlb_setup);
142
143 #ifdef CONFIG_SYSCTL
144 static void update_and_free_page(struct page *page)
145 {
146         int i;
147         nr_huge_pages--;
148         nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
149         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
150                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
151                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
152                                 1 << PG_private | 1<< PG_writeback);
153         }
154         page[1].lru.next = NULL;
155         set_page_count(page, 1);
156         __free_pages(page, HUGETLB_PAGE_ORDER);
157 }
158
159 #ifdef CONFIG_HIGHMEM
160 static void try_to_free_low(unsigned long count)
161 {
162         int i, nid;
163         for (i = 0; i < MAX_NUMNODES; ++i) {
164                 struct page *page, *next;
165                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
166                         if (PageHighMem(page))
167                                 continue;
168                         list_del(&page->lru);
169                         update_and_free_page(page);
170                         nid = page_zone(page)->zone_pgdat->node_id;
171                         free_huge_pages--;
172                         free_huge_pages_node[nid]--;
173                         if (count >= nr_huge_pages)
174                                 return;
175                 }
176         }
177 }
178 #else
179 static inline void try_to_free_low(unsigned long count)
180 {
181 }
182 #endif
183
184 static unsigned long set_max_huge_pages(unsigned long count)
185 {
186         while (count > nr_huge_pages) {
187                 if (!alloc_fresh_huge_page())
188                         return nr_huge_pages;
189         }
190         if (count >= nr_huge_pages)
191                 return nr_huge_pages;
192
193         spin_lock(&hugetlb_lock);
194         try_to_free_low(count);
195         while (count < nr_huge_pages) {
196                 struct page *page = dequeue_huge_page(NULL, 0);
197                 if (!page)
198                         break;
199                 update_and_free_page(page);
200         }
201         spin_unlock(&hugetlb_lock);
202         return nr_huge_pages;
203 }
204
205 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
206                            struct file *file, void __user *buffer,
207                            size_t *length, loff_t *ppos)
208 {
209         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
210         max_huge_pages = set_max_huge_pages(max_huge_pages);
211         return 0;
212 }
213 #endif /* CONFIG_SYSCTL */
214
215 int hugetlb_report_meminfo(char *buf)
216 {
217         return sprintf(buf,
218                         "HugePages_Total: %5lu\n"
219                         "HugePages_Free:  %5lu\n"
220                         "Hugepagesize:    %5lu kB\n",
221                         nr_huge_pages,
222                         free_huge_pages,
223                         HPAGE_SIZE/1024);
224 }
225
226 int hugetlb_report_node_meminfo(int nid, char *buf)
227 {
228         return sprintf(buf,
229                 "Node %d HugePages_Total: %5u\n"
230                 "Node %d HugePages_Free:  %5u\n",
231                 nid, nr_huge_pages_node[nid],
232                 nid, free_huge_pages_node[nid]);
233 }
234
235 int is_hugepage_mem_enough(size_t size)
236 {
237         return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
238 }
239
240 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
241 unsigned long hugetlb_total_pages(void)
242 {
243         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
244 }
245
246 /*
247  * We cannot handle pagefaults against hugetlb pages at all.  They cause
248  * handle_mm_fault() to try to instantiate regular-sized pages in the
249  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
250  * this far.
251  */
252 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
253                                 unsigned long address, int *unused)
254 {
255         BUG();
256         return NULL;
257 }
258
259 struct vm_operations_struct hugetlb_vm_ops = {
260         .nopage = hugetlb_nopage,
261 };
262
263 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
264                                 int writable)
265 {
266         pte_t entry;
267
268         if (writable) {
269                 entry =
270                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
271         } else {
272                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
273         }
274         entry = pte_mkyoung(entry);
275         entry = pte_mkhuge(entry);
276
277         return entry;
278 }
279
280 static void set_huge_ptep_writable(struct vm_area_struct *vma,
281                                    unsigned long address, pte_t *ptep)
282 {
283         pte_t entry;
284
285         entry = pte_mkwrite(pte_mkdirty(*ptep));
286         ptep_set_access_flags(vma, address, ptep, entry, 1);
287         update_mmu_cache(vma, address, entry);
288         lazy_mmu_prot_update(entry);
289 }
290
291
292 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
293                             struct vm_area_struct *vma)
294 {
295         pte_t *src_pte, *dst_pte, entry;
296         struct page *ptepage;
297         unsigned long addr;
298         int cow;
299
300         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
301
302         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
303                 src_pte = huge_pte_offset(src, addr);
304                 if (!src_pte)
305                         continue;
306                 dst_pte = huge_pte_alloc(dst, addr);
307                 if (!dst_pte)
308                         goto nomem;
309                 spin_lock(&dst->page_table_lock);
310                 spin_lock(&src->page_table_lock);
311                 if (!pte_none(*src_pte)) {
312                         if (cow)
313                                 ptep_set_wrprotect(src, addr, src_pte);
314                         entry = *src_pte;
315                         ptepage = pte_page(entry);
316                         get_page(ptepage);
317                         add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
318                         set_huge_pte_at(dst, addr, dst_pte, entry);
319                 }
320                 spin_unlock(&src->page_table_lock);
321                 spin_unlock(&dst->page_table_lock);
322         }
323         return 0;
324
325 nomem:
326         return -ENOMEM;
327 }
328
329 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
330                           unsigned long end)
331 {
332         struct mm_struct *mm = vma->vm_mm;
333         unsigned long address;
334         pte_t *ptep;
335         pte_t pte;
336         struct page *page;
337
338         WARN_ON(!is_vm_hugetlb_page(vma));
339         BUG_ON(start & ~HPAGE_MASK);
340         BUG_ON(end & ~HPAGE_MASK);
341
342         spin_lock(&mm->page_table_lock);
343
344         /* Update high watermark before we lower rss */
345         update_hiwater_rss(mm);
346
347         for (address = start; address < end; address += HPAGE_SIZE) {
348                 ptep = huge_pte_offset(mm, address);
349                 if (!ptep)
350                         continue;
351
352                 pte = huge_ptep_get_and_clear(mm, address, ptep);
353                 if (pte_none(pte))
354                         continue;
355
356                 page = pte_page(pte);
357                 put_page(page);
358                 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
359         }
360
361         spin_unlock(&mm->page_table_lock);
362         flush_tlb_range(vma, start, end);
363 }
364
365 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
366                         unsigned long address, pte_t *ptep, pte_t pte)
367 {
368         struct page *old_page, *new_page;
369         int i, avoidcopy;
370
371         old_page = pte_page(pte);
372
373         /* If no-one else is actually using this page, avoid the copy
374          * and just make the page writable */
375         avoidcopy = (page_count(old_page) == 1);
376         if (avoidcopy) {
377                 set_huge_ptep_writable(vma, address, ptep);
378                 return VM_FAULT_MINOR;
379         }
380
381         page_cache_get(old_page);
382         new_page = alloc_huge_page(vma, address);
383
384         if (!new_page) {
385                 page_cache_release(old_page);
386                 return VM_FAULT_OOM;
387         }
388
389         spin_unlock(&mm->page_table_lock);
390         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
391                 copy_user_highpage(new_page + i, old_page + i,
392                                    address + i*PAGE_SIZE);
393         spin_lock(&mm->page_table_lock);
394
395         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
396         if (likely(pte_same(*ptep, pte))) {
397                 /* Break COW */
398                 set_huge_pte_at(mm, address, ptep,
399                                 make_huge_pte(vma, new_page, 1));
400                 /* Make the old page be freed below */
401                 new_page = old_page;
402         }
403         page_cache_release(new_page);
404         page_cache_release(old_page);
405         return VM_FAULT_MINOR;
406 }
407
408 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
409                         unsigned long address, pte_t *ptep, int write_access)
410 {
411         int ret = VM_FAULT_SIGBUS;
412         unsigned long idx;
413         unsigned long size;
414         struct page *page;
415         struct address_space *mapping;
416         pte_t new_pte;
417
418         mapping = vma->vm_file->f_mapping;
419         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
420                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
421
422         /*
423          * Use page lock to guard against racing truncation
424          * before we get page_table_lock.
425          */
426 retry:
427         page = find_lock_page(mapping, idx);
428         if (!page) {
429                 if (hugetlb_get_quota(mapping))
430                         goto out;
431                 page = alloc_huge_page(vma, address);
432                 if (!page) {
433                         hugetlb_put_quota(mapping);
434                         ret = VM_FAULT_OOM;
435                         goto out;
436                 }
437
438                 if (vma->vm_flags & VM_SHARED) {
439                         int err;
440
441                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
442                         if (err) {
443                                 put_page(page);
444                                 hugetlb_put_quota(mapping);
445                                 if (err == -EEXIST)
446                                         goto retry;
447                                 goto out;
448                         }
449                 } else
450                         lock_page(page);
451         }
452
453         spin_lock(&mm->page_table_lock);
454         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
455         if (idx >= size)
456                 goto backout;
457
458         ret = VM_FAULT_MINOR;
459         if (!pte_none(*ptep))
460                 goto backout;
461
462         add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
463         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
464                                 && (vma->vm_flags & VM_SHARED)));
465         set_huge_pte_at(mm, address, ptep, new_pte);
466
467         if (write_access && !(vma->vm_flags & VM_SHARED)) {
468                 /* Optimization, do the COW without a second fault */
469                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
470         }
471
472         spin_unlock(&mm->page_table_lock);
473         unlock_page(page);
474 out:
475         return ret;
476
477 backout:
478         spin_unlock(&mm->page_table_lock);
479         hugetlb_put_quota(mapping);
480         unlock_page(page);
481         put_page(page);
482         goto out;
483 }
484
485 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
486                         unsigned long address, int write_access)
487 {
488         pte_t *ptep;
489         pte_t entry;
490         int ret;
491
492         ptep = huge_pte_alloc(mm, address);
493         if (!ptep)
494                 return VM_FAULT_OOM;
495
496         entry = *ptep;
497         if (pte_none(entry))
498                 return hugetlb_no_page(mm, vma, address, ptep, write_access);
499
500         ret = VM_FAULT_MINOR;
501
502         spin_lock(&mm->page_table_lock);
503         /* Check for a racing update before calling hugetlb_cow */
504         if (likely(pte_same(entry, *ptep)))
505                 if (write_access && !pte_write(entry))
506                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
507         spin_unlock(&mm->page_table_lock);
508
509         return ret;
510 }
511
512 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
513                         struct page **pages, struct vm_area_struct **vmas,
514                         unsigned long *position, int *length, int i)
515 {
516         unsigned long vpfn, vaddr = *position;
517         int remainder = *length;
518
519         vpfn = vaddr/PAGE_SIZE;
520         spin_lock(&mm->page_table_lock);
521         while (vaddr < vma->vm_end && remainder) {
522                 pte_t *pte;
523                 struct page *page;
524
525                 /*
526                  * Some archs (sparc64, sh*) have multiple pte_ts to
527                  * each hugepage.  We have to make * sure we get the
528                  * first, for the page indexing below to work.
529                  */
530                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
531
532                 if (!pte || pte_none(*pte)) {
533                         int ret;
534
535                         spin_unlock(&mm->page_table_lock);
536                         ret = hugetlb_fault(mm, vma, vaddr, 0);
537                         spin_lock(&mm->page_table_lock);
538                         if (ret == VM_FAULT_MINOR)
539                                 continue;
540
541                         remainder = 0;
542                         if (!i)
543                                 i = -EFAULT;
544                         break;
545                 }
546
547                 if (pages) {
548                         page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
549                         get_page(page);
550                         pages[i] = page;
551                 }
552
553                 if (vmas)
554                         vmas[i] = vma;
555
556                 vaddr += PAGE_SIZE;
557                 ++vpfn;
558                 --remainder;
559                 ++i;
560         }
561         spin_unlock(&mm->page_table_lock);
562         *length = remainder;
563         *position = vaddr;
564
565         return i;
566 }