]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - mm/memory.c
x86: PAT: remove follow_pfnmap_pte in favor of follow_phys
[linux-2.6-omap-h63xx.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97                                         1;
98 #else
99                                         2;
100 #endif
101
102 #ifndef track_pfn_vma_new
103 /*
104  * Interface that can be used by architecture code to keep track of
105  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
106  *
107  * track_pfn_vma_new is called when a _new_ pfn mapping is being established
108  * for physical range indicated by pfn and size.
109  */
110 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t prot,
111                         unsigned long pfn, unsigned long size)
112 {
113         return 0;
114 }
115 #endif
116
117 #ifndef track_pfn_vma_copy
118 /*
119  * Interface that can be used by architecture code to keep track of
120  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
121  *
122  * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
123  * copied through copy_page_range().
124  */
125 int track_pfn_vma_copy(struct vm_area_struct *vma)
126 {
127         return 0;
128 }
129 #endif
130
131 #ifndef untrack_pfn_vma
132 /*
133  * Interface that can be used by architecture code to keep track of
134  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
135  *
136  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
137  * untrack can be called for a specific region indicated by pfn and size or
138  * can be for the entire vma (in which case size can be zero).
139  */
140 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
141                         unsigned long size)
142 {
143 }
144 #endif
145
146 static int __init disable_randmaps(char *s)
147 {
148         randomize_va_space = 0;
149         return 1;
150 }
151 __setup("norandmaps", disable_randmaps);
152
153
154 /*
155  * If a p?d_bad entry is found while walking page tables, report
156  * the error, before resetting entry to p?d_none.  Usually (but
157  * very seldom) called out from the p?d_none_or_clear_bad macros.
158  */
159
160 void pgd_clear_bad(pgd_t *pgd)
161 {
162         pgd_ERROR(*pgd);
163         pgd_clear(pgd);
164 }
165
166 void pud_clear_bad(pud_t *pud)
167 {
168         pud_ERROR(*pud);
169         pud_clear(pud);
170 }
171
172 void pmd_clear_bad(pmd_t *pmd)
173 {
174         pmd_ERROR(*pmd);
175         pmd_clear(pmd);
176 }
177
178 /*
179  * Note: this doesn't free the actual pages themselves. That
180  * has been handled earlier when unmapping all the memory regions.
181  */
182 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
183 {
184         pgtable_t token = pmd_pgtable(*pmd);
185         pmd_clear(pmd);
186         pte_free_tlb(tlb, token);
187         tlb->mm->nr_ptes--;
188 }
189
190 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
191                                 unsigned long addr, unsigned long end,
192                                 unsigned long floor, unsigned long ceiling)
193 {
194         pmd_t *pmd;
195         unsigned long next;
196         unsigned long start;
197
198         start = addr;
199         pmd = pmd_offset(pud, addr);
200         do {
201                 next = pmd_addr_end(addr, end);
202                 if (pmd_none_or_clear_bad(pmd))
203                         continue;
204                 free_pte_range(tlb, pmd);
205         } while (pmd++, addr = next, addr != end);
206
207         start &= PUD_MASK;
208         if (start < floor)
209                 return;
210         if (ceiling) {
211                 ceiling &= PUD_MASK;
212                 if (!ceiling)
213                         return;
214         }
215         if (end - 1 > ceiling - 1)
216                 return;
217
218         pmd = pmd_offset(pud, start);
219         pud_clear(pud);
220         pmd_free_tlb(tlb, pmd);
221 }
222
223 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
224                                 unsigned long addr, unsigned long end,
225                                 unsigned long floor, unsigned long ceiling)
226 {
227         pud_t *pud;
228         unsigned long next;
229         unsigned long start;
230
231         start = addr;
232         pud = pud_offset(pgd, addr);
233         do {
234                 next = pud_addr_end(addr, end);
235                 if (pud_none_or_clear_bad(pud))
236                         continue;
237                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
238         } while (pud++, addr = next, addr != end);
239
240         start &= PGDIR_MASK;
241         if (start < floor)
242                 return;
243         if (ceiling) {
244                 ceiling &= PGDIR_MASK;
245                 if (!ceiling)
246                         return;
247         }
248         if (end - 1 > ceiling - 1)
249                 return;
250
251         pud = pud_offset(pgd, start);
252         pgd_clear(pgd);
253         pud_free_tlb(tlb, pud);
254 }
255
256 /*
257  * This function frees user-level page tables of a process.
258  *
259  * Must be called with pagetable lock held.
260  */
261 void free_pgd_range(struct mmu_gather *tlb,
262                         unsigned long addr, unsigned long end,
263                         unsigned long floor, unsigned long ceiling)
264 {
265         pgd_t *pgd;
266         unsigned long next;
267         unsigned long start;
268
269         /*
270          * The next few lines have given us lots of grief...
271          *
272          * Why are we testing PMD* at this top level?  Because often
273          * there will be no work to do at all, and we'd prefer not to
274          * go all the way down to the bottom just to discover that.
275          *
276          * Why all these "- 1"s?  Because 0 represents both the bottom
277          * of the address space and the top of it (using -1 for the
278          * top wouldn't help much: the masks would do the wrong thing).
279          * The rule is that addr 0 and floor 0 refer to the bottom of
280          * the address space, but end 0 and ceiling 0 refer to the top
281          * Comparisons need to use "end - 1" and "ceiling - 1" (though
282          * that end 0 case should be mythical).
283          *
284          * Wherever addr is brought up or ceiling brought down, we must
285          * be careful to reject "the opposite 0" before it confuses the
286          * subsequent tests.  But what about where end is brought down
287          * by PMD_SIZE below? no, end can't go down to 0 there.
288          *
289          * Whereas we round start (addr) and ceiling down, by different
290          * masks at different levels, in order to test whether a table
291          * now has no other vmas using it, so can be freed, we don't
292          * bother to round floor or end up - the tests don't need that.
293          */
294
295         addr &= PMD_MASK;
296         if (addr < floor) {
297                 addr += PMD_SIZE;
298                 if (!addr)
299                         return;
300         }
301         if (ceiling) {
302                 ceiling &= PMD_MASK;
303                 if (!ceiling)
304                         return;
305         }
306         if (end - 1 > ceiling - 1)
307                 end -= PMD_SIZE;
308         if (addr > end - 1)
309                 return;
310
311         start = addr;
312         pgd = pgd_offset(tlb->mm, addr);
313         do {
314                 next = pgd_addr_end(addr, end);
315                 if (pgd_none_or_clear_bad(pgd))
316                         continue;
317                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
318         } while (pgd++, addr = next, addr != end);
319 }
320
321 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
322                 unsigned long floor, unsigned long ceiling)
323 {
324         while (vma) {
325                 struct vm_area_struct *next = vma->vm_next;
326                 unsigned long addr = vma->vm_start;
327
328                 /*
329                  * Hide vma from rmap and vmtruncate before freeing pgtables
330                  */
331                 anon_vma_unlink(vma);
332                 unlink_file_vma(vma);
333
334                 if (is_vm_hugetlb_page(vma)) {
335                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
336                                 floor, next? next->vm_start: ceiling);
337                 } else {
338                         /*
339                          * Optimization: gather nearby vmas into one call down
340                          */
341                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
342                                && !is_vm_hugetlb_page(next)) {
343                                 vma = next;
344                                 next = vma->vm_next;
345                                 anon_vma_unlink(vma);
346                                 unlink_file_vma(vma);
347                         }
348                         free_pgd_range(tlb, addr, vma->vm_end,
349                                 floor, next? next->vm_start: ceiling);
350                 }
351                 vma = next;
352         }
353 }
354
355 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
356 {
357         pgtable_t new = pte_alloc_one(mm, address);
358         if (!new)
359                 return -ENOMEM;
360
361         /*
362          * Ensure all pte setup (eg. pte page lock and page clearing) are
363          * visible before the pte is made visible to other CPUs by being
364          * put into page tables.
365          *
366          * The other side of the story is the pointer chasing in the page
367          * table walking code (when walking the page table without locking;
368          * ie. most of the time). Fortunately, these data accesses consist
369          * of a chain of data-dependent loads, meaning most CPUs (alpha
370          * being the notable exception) will already guarantee loads are
371          * seen in-order. See the alpha page table accessors for the
372          * smp_read_barrier_depends() barriers in page table walking code.
373          */
374         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
375
376         spin_lock(&mm->page_table_lock);
377         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
378                 mm->nr_ptes++;
379                 pmd_populate(mm, pmd, new);
380                 new = NULL;
381         }
382         spin_unlock(&mm->page_table_lock);
383         if (new)
384                 pte_free(mm, new);
385         return 0;
386 }
387
388 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
389 {
390         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
391         if (!new)
392                 return -ENOMEM;
393
394         smp_wmb(); /* See comment in __pte_alloc */
395
396         spin_lock(&init_mm.page_table_lock);
397         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
398                 pmd_populate_kernel(&init_mm, pmd, new);
399                 new = NULL;
400         }
401         spin_unlock(&init_mm.page_table_lock);
402         if (new)
403                 pte_free_kernel(&init_mm, new);
404         return 0;
405 }
406
407 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
408 {
409         if (file_rss)
410                 add_mm_counter(mm, file_rss, file_rss);
411         if (anon_rss)
412                 add_mm_counter(mm, anon_rss, anon_rss);
413 }
414
415 /*
416  * This function is called to print an error when a bad pte
417  * is found. For example, we might have a PFN-mapped pte in
418  * a region that doesn't allow it.
419  *
420  * The calling function must still handle the error.
421  */
422 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
423                           unsigned long vaddr)
424 {
425         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
426                         "vm_flags = %lx, vaddr = %lx\n",
427                 (long long)pte_val(pte),
428                 (vma->vm_mm == current->mm ? current->comm : "???"),
429                 vma->vm_flags, vaddr);
430         dump_stack();
431 }
432
433 static inline int is_cow_mapping(unsigned int flags)
434 {
435         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
436 }
437
438 /*
439  * vm_normal_page -- This function gets the "struct page" associated with a pte.
440  *
441  * "Special" mappings do not wish to be associated with a "struct page" (either
442  * it doesn't exist, or it exists but they don't want to touch it). In this
443  * case, NULL is returned here. "Normal" mappings do have a struct page.
444  *
445  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
446  * pte bit, in which case this function is trivial. Secondly, an architecture
447  * may not have a spare pte bit, which requires a more complicated scheme,
448  * described below.
449  *
450  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
451  * special mapping (even if there are underlying and valid "struct pages").
452  * COWed pages of a VM_PFNMAP are always normal.
453  *
454  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
455  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
456  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
457  * mapping will always honor the rule
458  *
459  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
460  *
461  * And for normal mappings this is false.
462  *
463  * This restricts such mappings to be a linear translation from virtual address
464  * to pfn. To get around this restriction, we allow arbitrary mappings so long
465  * as the vma is not a COW mapping; in that case, we know that all ptes are
466  * special (because none can have been COWed).
467  *
468  *
469  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
470  *
471  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
472  * page" backing, however the difference is that _all_ pages with a struct
473  * page (that is, those where pfn_valid is true) are refcounted and considered
474  * normal pages by the VM. The disadvantage is that pages are refcounted
475  * (which can be slower and simply not an option for some PFNMAP users). The
476  * advantage is that we don't have to follow the strict linearity rule of
477  * PFNMAP mappings in order to support COWable mappings.
478  *
479  */
480 #ifdef __HAVE_ARCH_PTE_SPECIAL
481 # define HAVE_PTE_SPECIAL 1
482 #else
483 # define HAVE_PTE_SPECIAL 0
484 #endif
485 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
486                                 pte_t pte)
487 {
488         unsigned long pfn;
489
490         if (HAVE_PTE_SPECIAL) {
491                 if (likely(!pte_special(pte))) {
492                         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
493                         return pte_page(pte);
494                 }
495                 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
496                 return NULL;
497         }
498
499         /* !HAVE_PTE_SPECIAL case follows: */
500
501         pfn = pte_pfn(pte);
502
503         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
504                 if (vma->vm_flags & VM_MIXEDMAP) {
505                         if (!pfn_valid(pfn))
506                                 return NULL;
507                         goto out;
508                 } else {
509                         unsigned long off;
510                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
511                         if (pfn == vma->vm_pgoff + off)
512                                 return NULL;
513                         if (!is_cow_mapping(vma->vm_flags))
514                                 return NULL;
515                 }
516         }
517
518         VM_BUG_ON(!pfn_valid(pfn));
519
520         /*
521          * NOTE! We still have PageReserved() pages in the page tables.
522          *
523          * eg. VDSO mappings can cause them to exist.
524          */
525 out:
526         return pfn_to_page(pfn);
527 }
528
529 /*
530  * copy one vm_area from one task to the other. Assumes the page tables
531  * already present in the new task to be cleared in the whole range
532  * covered by this vma.
533  */
534
535 static inline void
536 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
537                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
538                 unsigned long addr, int *rss)
539 {
540         unsigned long vm_flags = vma->vm_flags;
541         pte_t pte = *src_pte;
542         struct page *page;
543
544         /* pte contains position in swap or file, so copy. */
545         if (unlikely(!pte_present(pte))) {
546                 if (!pte_file(pte)) {
547                         swp_entry_t entry = pte_to_swp_entry(pte);
548
549                         swap_duplicate(entry);
550                         /* make sure dst_mm is on swapoff's mmlist. */
551                         if (unlikely(list_empty(&dst_mm->mmlist))) {
552                                 spin_lock(&mmlist_lock);
553                                 if (list_empty(&dst_mm->mmlist))
554                                         list_add(&dst_mm->mmlist,
555                                                  &src_mm->mmlist);
556                                 spin_unlock(&mmlist_lock);
557                         }
558                         if (is_write_migration_entry(entry) &&
559                                         is_cow_mapping(vm_flags)) {
560                                 /*
561                                  * COW mappings require pages in both parent
562                                  * and child to be set to read.
563                                  */
564                                 make_migration_entry_read(&entry);
565                                 pte = swp_entry_to_pte(entry);
566                                 set_pte_at(src_mm, addr, src_pte, pte);
567                         }
568                 }
569                 goto out_set_pte;
570         }
571
572         /*
573          * If it's a COW mapping, write protect it both
574          * in the parent and the child
575          */
576         if (is_cow_mapping(vm_flags)) {
577                 ptep_set_wrprotect(src_mm, addr, src_pte);
578                 pte = pte_wrprotect(pte);
579         }
580
581         /*
582          * If it's a shared mapping, mark it clean in
583          * the child
584          */
585         if (vm_flags & VM_SHARED)
586                 pte = pte_mkclean(pte);
587         pte = pte_mkold(pte);
588
589         page = vm_normal_page(vma, addr, pte);
590         if (page) {
591                 get_page(page);
592                 page_dup_rmap(page, vma, addr);
593                 rss[!!PageAnon(page)]++;
594         }
595
596 out_set_pte:
597         set_pte_at(dst_mm, addr, dst_pte, pte);
598 }
599
600 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
601                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
602                 unsigned long addr, unsigned long end)
603 {
604         pte_t *src_pte, *dst_pte;
605         spinlock_t *src_ptl, *dst_ptl;
606         int progress = 0;
607         int rss[2];
608
609 again:
610         rss[1] = rss[0] = 0;
611         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
612         if (!dst_pte)
613                 return -ENOMEM;
614         src_pte = pte_offset_map_nested(src_pmd, addr);
615         src_ptl = pte_lockptr(src_mm, src_pmd);
616         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
617         arch_enter_lazy_mmu_mode();
618
619         do {
620                 /*
621                  * We are holding two locks at this point - either of them
622                  * could generate latencies in another task on another CPU.
623                  */
624                 if (progress >= 32) {
625                         progress = 0;
626                         if (need_resched() ||
627                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
628                                 break;
629                 }
630                 if (pte_none(*src_pte)) {
631                         progress++;
632                         continue;
633                 }
634                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
635                 progress += 8;
636         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
637
638         arch_leave_lazy_mmu_mode();
639         spin_unlock(src_ptl);
640         pte_unmap_nested(src_pte - 1);
641         add_mm_rss(dst_mm, rss[0], rss[1]);
642         pte_unmap_unlock(dst_pte - 1, dst_ptl);
643         cond_resched();
644         if (addr != end)
645                 goto again;
646         return 0;
647 }
648
649 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
651                 unsigned long addr, unsigned long end)
652 {
653         pmd_t *src_pmd, *dst_pmd;
654         unsigned long next;
655
656         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
657         if (!dst_pmd)
658                 return -ENOMEM;
659         src_pmd = pmd_offset(src_pud, addr);
660         do {
661                 next = pmd_addr_end(addr, end);
662                 if (pmd_none_or_clear_bad(src_pmd))
663                         continue;
664                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
665                                                 vma, addr, next))
666                         return -ENOMEM;
667         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
668         return 0;
669 }
670
671 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
672                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
673                 unsigned long addr, unsigned long end)
674 {
675         pud_t *src_pud, *dst_pud;
676         unsigned long next;
677
678         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
679         if (!dst_pud)
680                 return -ENOMEM;
681         src_pud = pud_offset(src_pgd, addr);
682         do {
683                 next = pud_addr_end(addr, end);
684                 if (pud_none_or_clear_bad(src_pud))
685                         continue;
686                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
687                                                 vma, addr, next))
688                         return -ENOMEM;
689         } while (dst_pud++, src_pud++, addr = next, addr != end);
690         return 0;
691 }
692
693 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
694                 struct vm_area_struct *vma)
695 {
696         pgd_t *src_pgd, *dst_pgd;
697         unsigned long next;
698         unsigned long addr = vma->vm_start;
699         unsigned long end = vma->vm_end;
700         int ret;
701
702         /*
703          * Don't copy ptes where a page fault will fill them correctly.
704          * Fork becomes much lighter when there are big shared or private
705          * readonly mappings. The tradeoff is that copy_page_range is more
706          * efficient than faulting.
707          */
708         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
709                 if (!vma->anon_vma)
710                         return 0;
711         }
712
713         if (is_vm_hugetlb_page(vma))
714                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
715
716         if (is_pfn_mapping(vma)) {
717                 /*
718                  * We do not free on error cases below as remove_vma
719                  * gets called on error from higher level routine
720                  */
721                 ret = track_pfn_vma_copy(vma);
722                 if (ret)
723                         return ret;
724         }
725
726         /*
727          * We need to invalidate the secondary MMU mappings only when
728          * there could be a permission downgrade on the ptes of the
729          * parent mm. And a permission downgrade will only happen if
730          * is_cow_mapping() returns true.
731          */
732         if (is_cow_mapping(vma->vm_flags))
733                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
734
735         ret = 0;
736         dst_pgd = pgd_offset(dst_mm, addr);
737         src_pgd = pgd_offset(src_mm, addr);
738         do {
739                 next = pgd_addr_end(addr, end);
740                 if (pgd_none_or_clear_bad(src_pgd))
741                         continue;
742                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
743                                             vma, addr, next))) {
744                         ret = -ENOMEM;
745                         break;
746                 }
747         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
748
749         if (is_cow_mapping(vma->vm_flags))
750                 mmu_notifier_invalidate_range_end(src_mm,
751                                                   vma->vm_start, end);
752         return ret;
753 }
754
755 static unsigned long zap_pte_range(struct mmu_gather *tlb,
756                                 struct vm_area_struct *vma, pmd_t *pmd,
757                                 unsigned long addr, unsigned long end,
758                                 long *zap_work, struct zap_details *details)
759 {
760         struct mm_struct *mm = tlb->mm;
761         pte_t *pte;
762         spinlock_t *ptl;
763         int file_rss = 0;
764         int anon_rss = 0;
765
766         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
767         arch_enter_lazy_mmu_mode();
768         do {
769                 pte_t ptent = *pte;
770                 if (pte_none(ptent)) {
771                         (*zap_work)--;
772                         continue;
773                 }
774
775                 (*zap_work) -= PAGE_SIZE;
776
777                 if (pte_present(ptent)) {
778                         struct page *page;
779
780                         page = vm_normal_page(vma, addr, ptent);
781                         if (unlikely(details) && page) {
782                                 /*
783                                  * unmap_shared_mapping_pages() wants to
784                                  * invalidate cache without truncating:
785                                  * unmap shared but keep private pages.
786                                  */
787                                 if (details->check_mapping &&
788                                     details->check_mapping != page->mapping)
789                                         continue;
790                                 /*
791                                  * Each page->index must be checked when
792                                  * invalidating or truncating nonlinear.
793                                  */
794                                 if (details->nonlinear_vma &&
795                                     (page->index < details->first_index ||
796                                      page->index > details->last_index))
797                                         continue;
798                         }
799                         ptent = ptep_get_and_clear_full(mm, addr, pte,
800                                                         tlb->fullmm);
801                         tlb_remove_tlb_entry(tlb, pte, addr);
802                         if (unlikely(!page))
803                                 continue;
804                         if (unlikely(details) && details->nonlinear_vma
805                             && linear_page_index(details->nonlinear_vma,
806                                                 addr) != page->index)
807                                 set_pte_at(mm, addr, pte,
808                                            pgoff_to_pte(page->index));
809                         if (PageAnon(page))
810                                 anon_rss--;
811                         else {
812                                 if (pte_dirty(ptent))
813                                         set_page_dirty(page);
814                                 if (pte_young(ptent))
815                                         SetPageReferenced(page);
816                                 file_rss--;
817                         }
818                         page_remove_rmap(page, vma);
819                         tlb_remove_page(tlb, page);
820                         continue;
821                 }
822                 /*
823                  * If details->check_mapping, we leave swap entries;
824                  * if details->nonlinear_vma, we leave file entries.
825                  */
826                 if (unlikely(details))
827                         continue;
828                 if (!pte_file(ptent))
829                         free_swap_and_cache(pte_to_swp_entry(ptent));
830                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
831         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
832
833         add_mm_rss(mm, file_rss, anon_rss);
834         arch_leave_lazy_mmu_mode();
835         pte_unmap_unlock(pte - 1, ptl);
836
837         return addr;
838 }
839
840 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
841                                 struct vm_area_struct *vma, pud_t *pud,
842                                 unsigned long addr, unsigned long end,
843                                 long *zap_work, struct zap_details *details)
844 {
845         pmd_t *pmd;
846         unsigned long next;
847
848         pmd = pmd_offset(pud, addr);
849         do {
850                 next = pmd_addr_end(addr, end);
851                 if (pmd_none_or_clear_bad(pmd)) {
852                         (*zap_work)--;
853                         continue;
854                 }
855                 next = zap_pte_range(tlb, vma, pmd, addr, next,
856                                                 zap_work, details);
857         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
858
859         return addr;
860 }
861
862 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
863                                 struct vm_area_struct *vma, pgd_t *pgd,
864                                 unsigned long addr, unsigned long end,
865                                 long *zap_work, struct zap_details *details)
866 {
867         pud_t *pud;
868         unsigned long next;
869
870         pud = pud_offset(pgd, addr);
871         do {
872                 next = pud_addr_end(addr, end);
873                 if (pud_none_or_clear_bad(pud)) {
874                         (*zap_work)--;
875                         continue;
876                 }
877                 next = zap_pmd_range(tlb, vma, pud, addr, next,
878                                                 zap_work, details);
879         } while (pud++, addr = next, (addr != end && *zap_work > 0));
880
881         return addr;
882 }
883
884 static unsigned long unmap_page_range(struct mmu_gather *tlb,
885                                 struct vm_area_struct *vma,
886                                 unsigned long addr, unsigned long end,
887                                 long *zap_work, struct zap_details *details)
888 {
889         pgd_t *pgd;
890         unsigned long next;
891
892         if (details && !details->check_mapping && !details->nonlinear_vma)
893                 details = NULL;
894
895         BUG_ON(addr >= end);
896         tlb_start_vma(tlb, vma);
897         pgd = pgd_offset(vma->vm_mm, addr);
898         do {
899                 next = pgd_addr_end(addr, end);
900                 if (pgd_none_or_clear_bad(pgd)) {
901                         (*zap_work)--;
902                         continue;
903                 }
904                 next = zap_pud_range(tlb, vma, pgd, addr, next,
905                                                 zap_work, details);
906         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
907         tlb_end_vma(tlb, vma);
908
909         return addr;
910 }
911
912 #ifdef CONFIG_PREEMPT
913 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
914 #else
915 /* No preempt: go for improved straight-line efficiency */
916 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
917 #endif
918
919 /**
920  * unmap_vmas - unmap a range of memory covered by a list of vma's
921  * @tlbp: address of the caller's struct mmu_gather
922  * @vma: the starting vma
923  * @start_addr: virtual address at which to start unmapping
924  * @end_addr: virtual address at which to end unmapping
925  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
926  * @details: details of nonlinear truncation or shared cache invalidation
927  *
928  * Returns the end address of the unmapping (restart addr if interrupted).
929  *
930  * Unmap all pages in the vma list.
931  *
932  * We aim to not hold locks for too long (for scheduling latency reasons).
933  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
934  * return the ending mmu_gather to the caller.
935  *
936  * Only addresses between `start' and `end' will be unmapped.
937  *
938  * The VMA list must be sorted in ascending virtual address order.
939  *
940  * unmap_vmas() assumes that the caller will flush the whole unmapped address
941  * range after unmap_vmas() returns.  So the only responsibility here is to
942  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
943  * drops the lock and schedules.
944  */
945 unsigned long unmap_vmas(struct mmu_gather **tlbp,
946                 struct vm_area_struct *vma, unsigned long start_addr,
947                 unsigned long end_addr, unsigned long *nr_accounted,
948                 struct zap_details *details)
949 {
950         long zap_work = ZAP_BLOCK_SIZE;
951         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
952         int tlb_start_valid = 0;
953         unsigned long start = start_addr;
954         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
955         int fullmm = (*tlbp)->fullmm;
956         struct mm_struct *mm = vma->vm_mm;
957
958         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
959         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
960                 unsigned long end;
961
962                 start = max(vma->vm_start, start_addr);
963                 if (start >= vma->vm_end)
964                         continue;
965                 end = min(vma->vm_end, end_addr);
966                 if (end <= vma->vm_start)
967                         continue;
968
969                 if (vma->vm_flags & VM_ACCOUNT)
970                         *nr_accounted += (end - start) >> PAGE_SHIFT;
971
972                 if (is_pfn_mapping(vma))
973                         untrack_pfn_vma(vma, 0, 0);
974
975                 while (start != end) {
976                         if (!tlb_start_valid) {
977                                 tlb_start = start;
978                                 tlb_start_valid = 1;
979                         }
980
981                         if (unlikely(is_vm_hugetlb_page(vma))) {
982                                 /*
983                                  * It is undesirable to test vma->vm_file as it
984                                  * should be non-null for valid hugetlb area.
985                                  * However, vm_file will be NULL in the error
986                                  * cleanup path of do_mmap_pgoff. When
987                                  * hugetlbfs ->mmap method fails,
988                                  * do_mmap_pgoff() nullifies vma->vm_file
989                                  * before calling this function to clean up.
990                                  * Since no pte has actually been setup, it is
991                                  * safe to do nothing in this case.
992                                  */
993                                 if (vma->vm_file) {
994                                         unmap_hugepage_range(vma, start, end, NULL);
995                                         zap_work -= (end - start) /
996                                         pages_per_huge_page(hstate_vma(vma));
997                                 }
998
999                                 start = end;
1000                         } else
1001                                 start = unmap_page_range(*tlbp, vma,
1002                                                 start, end, &zap_work, details);
1003
1004                         if (zap_work > 0) {
1005                                 BUG_ON(start != end);
1006                                 break;
1007                         }
1008
1009                         tlb_finish_mmu(*tlbp, tlb_start, start);
1010
1011                         if (need_resched() ||
1012                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1013                                 if (i_mmap_lock) {
1014                                         *tlbp = NULL;
1015                                         goto out;
1016                                 }
1017                                 cond_resched();
1018                         }
1019
1020                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1021                         tlb_start_valid = 0;
1022                         zap_work = ZAP_BLOCK_SIZE;
1023                 }
1024         }
1025 out:
1026         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1027         return start;   /* which is now the end (or restart) address */
1028 }
1029
1030 /**
1031  * zap_page_range - remove user pages in a given range
1032  * @vma: vm_area_struct holding the applicable pages
1033  * @address: starting address of pages to zap
1034  * @size: number of bytes to zap
1035  * @details: details of nonlinear truncation or shared cache invalidation
1036  */
1037 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1038                 unsigned long size, struct zap_details *details)
1039 {
1040         struct mm_struct *mm = vma->vm_mm;
1041         struct mmu_gather *tlb;
1042         unsigned long end = address + size;
1043         unsigned long nr_accounted = 0;
1044
1045         lru_add_drain();
1046         tlb = tlb_gather_mmu(mm, 0);
1047         update_hiwater_rss(mm);
1048         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1049         if (tlb)
1050                 tlb_finish_mmu(tlb, address, end);
1051         return end;
1052 }
1053
1054 /**
1055  * zap_vma_ptes - remove ptes mapping the vma
1056  * @vma: vm_area_struct holding ptes to be zapped
1057  * @address: starting address of pages to zap
1058  * @size: number of bytes to zap
1059  *
1060  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1061  *
1062  * The entire address range must be fully contained within the vma.
1063  *
1064  * Returns 0 if successful.
1065  */
1066 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1067                 unsigned long size)
1068 {
1069         if (address < vma->vm_start || address + size > vma->vm_end ||
1070                         !(vma->vm_flags & VM_PFNMAP))
1071                 return -1;
1072         zap_page_range(vma, address, size, NULL);
1073         return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1076
1077 /*
1078  * Do a quick page-table lookup for a single page.
1079  */
1080 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1081                         unsigned int flags)
1082 {
1083         pgd_t *pgd;
1084         pud_t *pud;
1085         pmd_t *pmd;
1086         pte_t *ptep, pte;
1087         spinlock_t *ptl;
1088         struct page *page;
1089         struct mm_struct *mm = vma->vm_mm;
1090
1091         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1092         if (!IS_ERR(page)) {
1093                 BUG_ON(flags & FOLL_GET);
1094                 goto out;
1095         }
1096
1097         page = NULL;
1098         pgd = pgd_offset(mm, address);
1099         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1100                 goto no_page_table;
1101
1102         pud = pud_offset(pgd, address);
1103         if (pud_none(*pud))
1104                 goto no_page_table;
1105         if (pud_huge(*pud)) {
1106                 BUG_ON(flags & FOLL_GET);
1107                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1108                 goto out;
1109         }
1110         if (unlikely(pud_bad(*pud)))
1111                 goto no_page_table;
1112
1113         pmd = pmd_offset(pud, address);
1114         if (pmd_none(*pmd))
1115                 goto no_page_table;
1116         if (pmd_huge(*pmd)) {
1117                 BUG_ON(flags & FOLL_GET);
1118                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1119                 goto out;
1120         }
1121         if (unlikely(pmd_bad(*pmd)))
1122                 goto no_page_table;
1123
1124         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1125
1126         pte = *ptep;
1127         if (!pte_present(pte))
1128                 goto no_page;
1129         if ((flags & FOLL_WRITE) && !pte_write(pte))
1130                 goto unlock;
1131         page = vm_normal_page(vma, address, pte);
1132         if (unlikely(!page))
1133                 goto bad_page;
1134
1135         if (flags & FOLL_GET)
1136                 get_page(page);
1137         if (flags & FOLL_TOUCH) {
1138                 if ((flags & FOLL_WRITE) &&
1139                     !pte_dirty(pte) && !PageDirty(page))
1140                         set_page_dirty(page);
1141                 mark_page_accessed(page);
1142         }
1143 unlock:
1144         pte_unmap_unlock(ptep, ptl);
1145 out:
1146         return page;
1147
1148 bad_page:
1149         pte_unmap_unlock(ptep, ptl);
1150         return ERR_PTR(-EFAULT);
1151
1152 no_page:
1153         pte_unmap_unlock(ptep, ptl);
1154         if (!pte_none(pte))
1155                 return page;
1156         /* Fall through to ZERO_PAGE handling */
1157 no_page_table:
1158         /*
1159          * When core dumping an enormous anonymous area that nobody
1160          * has touched so far, we don't want to allocate page tables.
1161          */
1162         if (flags & FOLL_ANON) {
1163                 page = ZERO_PAGE(0);
1164                 if (flags & FOLL_GET)
1165                         get_page(page);
1166                 BUG_ON(flags & FOLL_WRITE);
1167         }
1168         return page;
1169 }
1170
1171 /* Can we do the FOLL_ANON optimization? */
1172 static inline int use_zero_page(struct vm_area_struct *vma)
1173 {
1174         /*
1175          * We don't want to optimize FOLL_ANON for make_pages_present()
1176          * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1177          * we want to get the page from the page tables to make sure
1178          * that we serialize and update with any other user of that
1179          * mapping.
1180          */
1181         if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1182                 return 0;
1183         /*
1184          * And if we have a fault routine, it's not an anonymous region.
1185          */
1186         return !vma->vm_ops || !vma->vm_ops->fault;
1187 }
1188
1189
1190
1191 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1192                      unsigned long start, int len, int flags,
1193                 struct page **pages, struct vm_area_struct **vmas)
1194 {
1195         int i;
1196         unsigned int vm_flags = 0;
1197         int write = !!(flags & GUP_FLAGS_WRITE);
1198         int force = !!(flags & GUP_FLAGS_FORCE);
1199         int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1200
1201         if (len <= 0)
1202                 return 0;
1203         /* 
1204          * Require read or write permissions.
1205          * If 'force' is set, we only require the "MAY" flags.
1206          */
1207         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1208         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1209         i = 0;
1210
1211         do {
1212                 struct vm_area_struct *vma;
1213                 unsigned int foll_flags;
1214
1215                 vma = find_extend_vma(mm, start);
1216                 if (!vma && in_gate_area(tsk, start)) {
1217                         unsigned long pg = start & PAGE_MASK;
1218                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1219                         pgd_t *pgd;
1220                         pud_t *pud;
1221                         pmd_t *pmd;
1222                         pte_t *pte;
1223
1224                         /* user gate pages are read-only */
1225                         if (!ignore && write)
1226                                 return i ? : -EFAULT;
1227                         if (pg > TASK_SIZE)
1228                                 pgd = pgd_offset_k(pg);
1229                         else
1230                                 pgd = pgd_offset_gate(mm, pg);
1231                         BUG_ON(pgd_none(*pgd));
1232                         pud = pud_offset(pgd, pg);
1233                         BUG_ON(pud_none(*pud));
1234                         pmd = pmd_offset(pud, pg);
1235                         if (pmd_none(*pmd))
1236                                 return i ? : -EFAULT;
1237                         pte = pte_offset_map(pmd, pg);
1238                         if (pte_none(*pte)) {
1239                                 pte_unmap(pte);
1240                                 return i ? : -EFAULT;
1241                         }
1242                         if (pages) {
1243                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1244                                 pages[i] = page;
1245                                 if (page)
1246                                         get_page(page);
1247                         }
1248                         pte_unmap(pte);
1249                         if (vmas)
1250                                 vmas[i] = gate_vma;
1251                         i++;
1252                         start += PAGE_SIZE;
1253                         len--;
1254                         continue;
1255                 }
1256
1257                 if (!vma ||
1258                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1259                     (!ignore && !(vm_flags & vma->vm_flags)))
1260                         return i ? : -EFAULT;
1261
1262                 if (is_vm_hugetlb_page(vma)) {
1263                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1264                                                 &start, &len, i, write);
1265                         continue;
1266                 }
1267
1268                 foll_flags = FOLL_TOUCH;
1269                 if (pages)
1270                         foll_flags |= FOLL_GET;
1271                 if (!write && use_zero_page(vma))
1272                         foll_flags |= FOLL_ANON;
1273
1274                 do {
1275                         struct page *page;
1276
1277                         /*
1278                          * If tsk is ooming, cut off its access to large memory
1279                          * allocations. It has a pending SIGKILL, but it can't
1280                          * be processed until returning to user space.
1281                          */
1282                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1283                                 return i ? i : -ENOMEM;
1284
1285                         if (write)
1286                                 foll_flags |= FOLL_WRITE;
1287
1288                         cond_resched();
1289                         while (!(page = follow_page(vma, start, foll_flags))) {
1290                                 int ret;
1291                                 ret = handle_mm_fault(mm, vma, start,
1292                                                 foll_flags & FOLL_WRITE);
1293                                 if (ret & VM_FAULT_ERROR) {
1294                                         if (ret & VM_FAULT_OOM)
1295                                                 return i ? i : -ENOMEM;
1296                                         else if (ret & VM_FAULT_SIGBUS)
1297                                                 return i ? i : -EFAULT;
1298                                         BUG();
1299                                 }
1300                                 if (ret & VM_FAULT_MAJOR)
1301                                         tsk->maj_flt++;
1302                                 else
1303                                         tsk->min_flt++;
1304
1305                                 /*
1306                                  * The VM_FAULT_WRITE bit tells us that
1307                                  * do_wp_page has broken COW when necessary,
1308                                  * even if maybe_mkwrite decided not to set
1309                                  * pte_write. We can thus safely do subsequent
1310                                  * page lookups as if they were reads.
1311                                  */
1312                                 if (ret & VM_FAULT_WRITE)
1313                                         foll_flags &= ~FOLL_WRITE;
1314
1315                                 cond_resched();
1316                         }
1317                         if (IS_ERR(page))
1318                                 return i ? i : PTR_ERR(page);
1319                         if (pages) {
1320                                 pages[i] = page;
1321
1322                                 flush_anon_page(vma, page, start);
1323                                 flush_dcache_page(page);
1324                         }
1325                         if (vmas)
1326                                 vmas[i] = vma;
1327                         i++;
1328                         start += PAGE_SIZE;
1329                         len--;
1330                 } while (len && start < vma->vm_end);
1331         } while (len);
1332         return i;
1333 }
1334
1335 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1336                 unsigned long start, int len, int write, int force,
1337                 struct page **pages, struct vm_area_struct **vmas)
1338 {
1339         int flags = 0;
1340
1341         if (write)
1342                 flags |= GUP_FLAGS_WRITE;
1343         if (force)
1344                 flags |= GUP_FLAGS_FORCE;
1345
1346         return __get_user_pages(tsk, mm,
1347                                 start, len, flags,
1348                                 pages, vmas);
1349 }
1350
1351 EXPORT_SYMBOL(get_user_pages);
1352
1353 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1354                         spinlock_t **ptl)
1355 {
1356         pgd_t * pgd = pgd_offset(mm, addr);
1357         pud_t * pud = pud_alloc(mm, pgd, addr);
1358         if (pud) {
1359                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1360                 if (pmd)
1361                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1362         }
1363         return NULL;
1364 }
1365
1366 /*
1367  * This is the old fallback for page remapping.
1368  *
1369  * For historical reasons, it only allows reserved pages. Only
1370  * old drivers should use this, and they needed to mark their
1371  * pages reserved for the old functions anyway.
1372  */
1373 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1374                         struct page *page, pgprot_t prot)
1375 {
1376         struct mm_struct *mm = vma->vm_mm;
1377         int retval;
1378         pte_t *pte;
1379         spinlock_t *ptl;
1380
1381         retval = -EINVAL;
1382         if (PageAnon(page))
1383                 goto out;
1384         retval = -ENOMEM;
1385         flush_dcache_page(page);
1386         pte = get_locked_pte(mm, addr, &ptl);
1387         if (!pte)
1388                 goto out;
1389         retval = -EBUSY;
1390         if (!pte_none(*pte))
1391                 goto out_unlock;
1392
1393         /* Ok, finally just insert the thing.. */
1394         get_page(page);
1395         inc_mm_counter(mm, file_rss);
1396         page_add_file_rmap(page);
1397         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1398
1399         retval = 0;
1400         pte_unmap_unlock(pte, ptl);
1401         return retval;
1402 out_unlock:
1403         pte_unmap_unlock(pte, ptl);
1404 out:
1405         return retval;
1406 }
1407
1408 /**
1409  * vm_insert_page - insert single page into user vma
1410  * @vma: user vma to map to
1411  * @addr: target user address of this page
1412  * @page: source kernel page
1413  *
1414  * This allows drivers to insert individual pages they've allocated
1415  * into a user vma.
1416  *
1417  * The page has to be a nice clean _individual_ kernel allocation.
1418  * If you allocate a compound page, you need to have marked it as
1419  * such (__GFP_COMP), or manually just split the page up yourself
1420  * (see split_page()).
1421  *
1422  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1423  * took an arbitrary page protection parameter. This doesn't allow
1424  * that. Your vma protection will have to be set up correctly, which
1425  * means that if you want a shared writable mapping, you'd better
1426  * ask for a shared writable mapping!
1427  *
1428  * The page does not need to be reserved.
1429  */
1430 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1431                         struct page *page)
1432 {
1433         if (addr < vma->vm_start || addr >= vma->vm_end)
1434                 return -EFAULT;
1435         if (!page_count(page))
1436                 return -EINVAL;
1437         vma->vm_flags |= VM_INSERTPAGE;
1438         return insert_page(vma, addr, page, vma->vm_page_prot);
1439 }
1440 EXPORT_SYMBOL(vm_insert_page);
1441
1442 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1443                         unsigned long pfn, pgprot_t prot)
1444 {
1445         struct mm_struct *mm = vma->vm_mm;
1446         int retval;
1447         pte_t *pte, entry;
1448         spinlock_t *ptl;
1449
1450         retval = -ENOMEM;
1451         pte = get_locked_pte(mm, addr, &ptl);
1452         if (!pte)
1453                 goto out;
1454         retval = -EBUSY;
1455         if (!pte_none(*pte))
1456                 goto out_unlock;
1457
1458         /* Ok, finally just insert the thing.. */
1459         entry = pte_mkspecial(pfn_pte(pfn, prot));
1460         set_pte_at(mm, addr, pte, entry);
1461         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1462
1463         retval = 0;
1464 out_unlock:
1465         pte_unmap_unlock(pte, ptl);
1466 out:
1467         return retval;
1468 }
1469
1470 /**
1471  * vm_insert_pfn - insert single pfn into user vma
1472  * @vma: user vma to map to
1473  * @addr: target user address of this page
1474  * @pfn: source kernel pfn
1475  *
1476  * Similar to vm_inert_page, this allows drivers to insert individual pages
1477  * they've allocated into a user vma. Same comments apply.
1478  *
1479  * This function should only be called from a vm_ops->fault handler, and
1480  * in that case the handler should return NULL.
1481  *
1482  * vma cannot be a COW mapping.
1483  *
1484  * As this is called only for pages that do not currently exist, we
1485  * do not need to flush old virtual caches or the TLB.
1486  */
1487 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1488                         unsigned long pfn)
1489 {
1490         int ret;
1491         /*
1492          * Technically, architectures with pte_special can avoid all these
1493          * restrictions (same for remap_pfn_range).  However we would like
1494          * consistency in testing and feature parity among all, so we should
1495          * try to keep these invariants in place for everybody.
1496          */
1497         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1498         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1499                                                 (VM_PFNMAP|VM_MIXEDMAP));
1500         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1501         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1502
1503         if (addr < vma->vm_start || addr >= vma->vm_end)
1504                 return -EFAULT;
1505         if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1506                 return -EINVAL;
1507
1508         ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1509
1510         if (ret)
1511                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1512
1513         return ret;
1514 }
1515 EXPORT_SYMBOL(vm_insert_pfn);
1516
1517 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1518                         unsigned long pfn)
1519 {
1520         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1521
1522         if (addr < vma->vm_start || addr >= vma->vm_end)
1523                 return -EFAULT;
1524
1525         /*
1526          * If we don't have pte special, then we have to use the pfn_valid()
1527          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1528          * refcount the page if pfn_valid is true (hence insert_page rather
1529          * than insert_pfn).
1530          */
1531         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1532                 struct page *page;
1533
1534                 page = pfn_to_page(pfn);
1535                 return insert_page(vma, addr, page, vma->vm_page_prot);
1536         }
1537         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1538 }
1539 EXPORT_SYMBOL(vm_insert_mixed);
1540
1541 /*
1542  * maps a range of physical memory into the requested pages. the old
1543  * mappings are removed. any references to nonexistent pages results
1544  * in null mappings (currently treated as "copy-on-access")
1545  */
1546 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1547                         unsigned long addr, unsigned long end,
1548                         unsigned long pfn, pgprot_t prot)
1549 {
1550         pte_t *pte;
1551         spinlock_t *ptl;
1552
1553         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1554         if (!pte)
1555                 return -ENOMEM;
1556         arch_enter_lazy_mmu_mode();
1557         do {
1558                 BUG_ON(!pte_none(*pte));
1559                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1560                 pfn++;
1561         } while (pte++, addr += PAGE_SIZE, addr != end);
1562         arch_leave_lazy_mmu_mode();
1563         pte_unmap_unlock(pte - 1, ptl);
1564         return 0;
1565 }
1566
1567 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1568                         unsigned long addr, unsigned long end,
1569                         unsigned long pfn, pgprot_t prot)
1570 {
1571         pmd_t *pmd;
1572         unsigned long next;
1573
1574         pfn -= addr >> PAGE_SHIFT;
1575         pmd = pmd_alloc(mm, pud, addr);
1576         if (!pmd)
1577                 return -ENOMEM;
1578         do {
1579                 next = pmd_addr_end(addr, end);
1580                 if (remap_pte_range(mm, pmd, addr, next,
1581                                 pfn + (addr >> PAGE_SHIFT), prot))
1582                         return -ENOMEM;
1583         } while (pmd++, addr = next, addr != end);
1584         return 0;
1585 }
1586
1587 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1588                         unsigned long addr, unsigned long end,
1589                         unsigned long pfn, pgprot_t prot)
1590 {
1591         pud_t *pud;
1592         unsigned long next;
1593
1594         pfn -= addr >> PAGE_SHIFT;
1595         pud = pud_alloc(mm, pgd, addr);
1596         if (!pud)
1597                 return -ENOMEM;
1598         do {
1599                 next = pud_addr_end(addr, end);
1600                 if (remap_pmd_range(mm, pud, addr, next,
1601                                 pfn + (addr >> PAGE_SHIFT), prot))
1602                         return -ENOMEM;
1603         } while (pud++, addr = next, addr != end);
1604         return 0;
1605 }
1606
1607 /**
1608  * remap_pfn_range - remap kernel memory to userspace
1609  * @vma: user vma to map to
1610  * @addr: target user address to start at
1611  * @pfn: physical address of kernel memory
1612  * @size: size of map area
1613  * @prot: page protection flags for this mapping
1614  *
1615  *  Note: this is only safe if the mm semaphore is held when called.
1616  */
1617 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1618                     unsigned long pfn, unsigned long size, pgprot_t prot)
1619 {
1620         pgd_t *pgd;
1621         unsigned long next;
1622         unsigned long end = addr + PAGE_ALIGN(size);
1623         struct mm_struct *mm = vma->vm_mm;
1624         int err;
1625
1626         /*
1627          * Physically remapped pages are special. Tell the
1628          * rest of the world about it:
1629          *   VM_IO tells people not to look at these pages
1630          *      (accesses can have side effects).
1631          *   VM_RESERVED is specified all over the place, because
1632          *      in 2.4 it kept swapout's vma scan off this vma; but
1633          *      in 2.6 the LRU scan won't even find its pages, so this
1634          *      flag means no more than count its pages in reserved_vm,
1635          *      and omit it from core dump, even when VM_IO turned off.
1636          *   VM_PFNMAP tells the core MM that the base pages are just
1637          *      raw PFN mappings, and do not have a "struct page" associated
1638          *      with them.
1639          *
1640          * There's a horrible special case to handle copy-on-write
1641          * behaviour that some programs depend on. We mark the "original"
1642          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1643          */
1644         if (addr == vma->vm_start && end == vma->vm_end)
1645                 vma->vm_pgoff = pfn;
1646         else if (is_cow_mapping(vma->vm_flags))
1647                 return -EINVAL;
1648
1649         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1650
1651         err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1652         if (err)
1653                 return -EINVAL;
1654
1655         BUG_ON(addr >= end);
1656         pfn -= addr >> PAGE_SHIFT;
1657         pgd = pgd_offset(mm, addr);
1658         flush_cache_range(vma, addr, end);
1659         do {
1660                 next = pgd_addr_end(addr, end);
1661                 err = remap_pud_range(mm, pgd, addr, next,
1662                                 pfn + (addr >> PAGE_SHIFT), prot);
1663                 if (err)
1664                         break;
1665         } while (pgd++, addr = next, addr != end);
1666
1667         if (err)
1668                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1669
1670         return err;
1671 }
1672 EXPORT_SYMBOL(remap_pfn_range);
1673
1674 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1675                                      unsigned long addr, unsigned long end,
1676                                      pte_fn_t fn, void *data)
1677 {
1678         pte_t *pte;
1679         int err;
1680         pgtable_t token;
1681         spinlock_t *uninitialized_var(ptl);
1682
1683         pte = (mm == &init_mm) ?
1684                 pte_alloc_kernel(pmd, addr) :
1685                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1686         if (!pte)
1687                 return -ENOMEM;
1688
1689         BUG_ON(pmd_huge(*pmd));
1690
1691         token = pmd_pgtable(*pmd);
1692
1693         do {
1694                 err = fn(pte, token, addr, data);
1695                 if (err)
1696                         break;
1697         } while (pte++, addr += PAGE_SIZE, addr != end);
1698
1699         if (mm != &init_mm)
1700                 pte_unmap_unlock(pte-1, ptl);
1701         return err;
1702 }
1703
1704 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1705                                      unsigned long addr, unsigned long end,
1706                                      pte_fn_t fn, void *data)
1707 {
1708         pmd_t *pmd;
1709         unsigned long next;
1710         int err;
1711
1712         BUG_ON(pud_huge(*pud));
1713
1714         pmd = pmd_alloc(mm, pud, addr);
1715         if (!pmd)
1716                 return -ENOMEM;
1717         do {
1718                 next = pmd_addr_end(addr, end);
1719                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1720                 if (err)
1721                         break;
1722         } while (pmd++, addr = next, addr != end);
1723         return err;
1724 }
1725
1726 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1727                                      unsigned long addr, unsigned long end,
1728                                      pte_fn_t fn, void *data)
1729 {
1730         pud_t *pud;
1731         unsigned long next;
1732         int err;
1733
1734         pud = pud_alloc(mm, pgd, addr);
1735         if (!pud)
1736                 return -ENOMEM;
1737         do {
1738                 next = pud_addr_end(addr, end);
1739                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1740                 if (err)
1741                         break;
1742         } while (pud++, addr = next, addr != end);
1743         return err;
1744 }
1745
1746 /*
1747  * Scan a region of virtual memory, filling in page tables as necessary
1748  * and calling a provided function on each leaf page table.
1749  */
1750 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1751                         unsigned long size, pte_fn_t fn, void *data)
1752 {
1753         pgd_t *pgd;
1754         unsigned long next;
1755         unsigned long start = addr, end = addr + size;
1756         int err;
1757
1758         BUG_ON(addr >= end);
1759         mmu_notifier_invalidate_range_start(mm, start, end);
1760         pgd = pgd_offset(mm, addr);
1761         do {
1762                 next = pgd_addr_end(addr, end);
1763                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1764                 if (err)
1765                         break;
1766         } while (pgd++, addr = next, addr != end);
1767         mmu_notifier_invalidate_range_end(mm, start, end);
1768         return err;
1769 }
1770 EXPORT_SYMBOL_GPL(apply_to_page_range);
1771
1772 /*
1773  * handle_pte_fault chooses page fault handler according to an entry
1774  * which was read non-atomically.  Before making any commitment, on
1775  * those architectures or configurations (e.g. i386 with PAE) which
1776  * might give a mix of unmatched parts, do_swap_page and do_file_page
1777  * must check under lock before unmapping the pte and proceeding
1778  * (but do_wp_page is only called after already making such a check;
1779  * and do_anonymous_page and do_no_page can safely check later on).
1780  */
1781 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1782                                 pte_t *page_table, pte_t orig_pte)
1783 {
1784         int same = 1;
1785 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1786         if (sizeof(pte_t) > sizeof(unsigned long)) {
1787                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1788                 spin_lock(ptl);
1789                 same = pte_same(*page_table, orig_pte);
1790                 spin_unlock(ptl);
1791         }
1792 #endif
1793         pte_unmap(page_table);
1794         return same;
1795 }
1796
1797 /*
1798  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1799  * servicing faults for write access.  In the normal case, do always want
1800  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1801  * that do not have writing enabled, when used by access_process_vm.
1802  */
1803 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1804 {
1805         if (likely(vma->vm_flags & VM_WRITE))
1806                 pte = pte_mkwrite(pte);
1807         return pte;
1808 }
1809
1810 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1811 {
1812         /*
1813          * If the source page was a PFN mapping, we don't have
1814          * a "struct page" for it. We do a best-effort copy by
1815          * just copying from the original user address. If that
1816          * fails, we just zero-fill it. Live with it.
1817          */
1818         if (unlikely(!src)) {
1819                 void *kaddr = kmap_atomic(dst, KM_USER0);
1820                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1821
1822                 /*
1823                  * This really shouldn't fail, because the page is there
1824                  * in the page tables. But it might just be unreadable,
1825                  * in which case we just give up and fill the result with
1826                  * zeroes.
1827                  */
1828                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1829                         memset(kaddr, 0, PAGE_SIZE);
1830                 kunmap_atomic(kaddr, KM_USER0);
1831                 flush_dcache_page(dst);
1832         } else
1833                 copy_user_highpage(dst, src, va, vma);
1834 }
1835
1836 /*
1837  * This routine handles present pages, when users try to write
1838  * to a shared page. It is done by copying the page to a new address
1839  * and decrementing the shared-page counter for the old page.
1840  *
1841  * Note that this routine assumes that the protection checks have been
1842  * done by the caller (the low-level page fault routine in most cases).
1843  * Thus we can safely just mark it writable once we've done any necessary
1844  * COW.
1845  *
1846  * We also mark the page dirty at this point even though the page will
1847  * change only once the write actually happens. This avoids a few races,
1848  * and potentially makes it more efficient.
1849  *
1850  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1851  * but allow concurrent faults), with pte both mapped and locked.
1852  * We return with mmap_sem still held, but pte unmapped and unlocked.
1853  */
1854 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1855                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1856                 spinlock_t *ptl, pte_t orig_pte)
1857 {
1858         struct page *old_page, *new_page;
1859         pte_t entry;
1860         int reuse = 0, ret = 0;
1861         int page_mkwrite = 0;
1862         struct page *dirty_page = NULL;
1863
1864         old_page = vm_normal_page(vma, address, orig_pte);
1865         if (!old_page) {
1866                 /*
1867                  * VM_MIXEDMAP !pfn_valid() case
1868                  *
1869                  * We should not cow pages in a shared writeable mapping.
1870                  * Just mark the pages writable as we can't do any dirty
1871                  * accounting on raw pfn maps.
1872                  */
1873                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1874                                      (VM_WRITE|VM_SHARED))
1875                         goto reuse;
1876                 goto gotten;
1877         }
1878
1879         /*
1880          * Take out anonymous pages first, anonymous shared vmas are
1881          * not dirty accountable.
1882          */
1883         if (PageAnon(old_page)) {
1884                 if (trylock_page(old_page)) {
1885                         reuse = can_share_swap_page(old_page);
1886                         unlock_page(old_page);
1887                 }
1888         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1889                                         (VM_WRITE|VM_SHARED))) {
1890                 /*
1891                  * Only catch write-faults on shared writable pages,
1892                  * read-only shared pages can get COWed by
1893                  * get_user_pages(.write=1, .force=1).
1894                  */
1895                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1896                         /*
1897                          * Notify the address space that the page is about to
1898                          * become writable so that it can prohibit this or wait
1899                          * for the page to get into an appropriate state.
1900                          *
1901                          * We do this without the lock held, so that it can
1902                          * sleep if it needs to.
1903                          */
1904                         page_cache_get(old_page);
1905                         pte_unmap_unlock(page_table, ptl);
1906
1907                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1908                                 goto unwritable_page;
1909
1910                         /*
1911                          * Since we dropped the lock we need to revalidate
1912                          * the PTE as someone else may have changed it.  If
1913                          * they did, we just return, as we can count on the
1914                          * MMU to tell us if they didn't also make it writable.
1915                          */
1916                         page_table = pte_offset_map_lock(mm, pmd, address,
1917                                                          &ptl);
1918                         page_cache_release(old_page);
1919                         if (!pte_same(*page_table, orig_pte))
1920                                 goto unlock;
1921
1922                         page_mkwrite = 1;
1923                 }
1924                 dirty_page = old_page;
1925                 get_page(dirty_page);
1926                 reuse = 1;
1927         }
1928
1929         if (reuse) {
1930 reuse:
1931                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1932                 entry = pte_mkyoung(orig_pte);
1933                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1934                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1935                         update_mmu_cache(vma, address, entry);
1936                 ret |= VM_FAULT_WRITE;
1937                 goto unlock;
1938         }
1939
1940         /*
1941          * Ok, we need to copy. Oh, well..
1942          */
1943         page_cache_get(old_page);
1944 gotten:
1945         pte_unmap_unlock(page_table, ptl);
1946
1947         if (unlikely(anon_vma_prepare(vma)))
1948                 goto oom;
1949         VM_BUG_ON(old_page == ZERO_PAGE(0));
1950         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1951         if (!new_page)
1952                 goto oom;
1953         /*
1954          * Don't let another task, with possibly unlocked vma,
1955          * keep the mlocked page.
1956          */
1957         if (vma->vm_flags & VM_LOCKED) {
1958                 lock_page(old_page);    /* for LRU manipulation */
1959                 clear_page_mlock(old_page);
1960                 unlock_page(old_page);
1961         }
1962         cow_user_page(new_page, old_page, address, vma);
1963         __SetPageUptodate(new_page);
1964
1965         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1966                 goto oom_free_new;
1967
1968         /*
1969          * Re-check the pte - we dropped the lock
1970          */
1971         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1972         if (likely(pte_same(*page_table, orig_pte))) {
1973                 if (old_page) {
1974                         if (!PageAnon(old_page)) {
1975                                 dec_mm_counter(mm, file_rss);
1976                                 inc_mm_counter(mm, anon_rss);
1977                         }
1978                 } else
1979                         inc_mm_counter(mm, anon_rss);
1980                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1981                 entry = mk_pte(new_page, vma->vm_page_prot);
1982                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1983                 /*
1984                  * Clear the pte entry and flush it first, before updating the
1985                  * pte with the new entry. This will avoid a race condition
1986                  * seen in the presence of one thread doing SMC and another
1987                  * thread doing COW.
1988                  */
1989                 ptep_clear_flush_notify(vma, address, page_table);
1990                 SetPageSwapBacked(new_page);
1991                 lru_cache_add_active_or_unevictable(new_page, vma);
1992                 page_add_new_anon_rmap(new_page, vma, address);
1993
1994 //TODO:  is this safe?  do_anonymous_page() does it this way.
1995                 set_pte_at(mm, address, page_table, entry);
1996                 update_mmu_cache(vma, address, entry);
1997                 if (old_page) {
1998                         /*
1999                          * Only after switching the pte to the new page may
2000                          * we remove the mapcount here. Otherwise another
2001                          * process may come and find the rmap count decremented
2002                          * before the pte is switched to the new page, and
2003                          * "reuse" the old page writing into it while our pte
2004                          * here still points into it and can be read by other
2005                          * threads.
2006                          *
2007                          * The critical issue is to order this
2008                          * page_remove_rmap with the ptp_clear_flush above.
2009                          * Those stores are ordered by (if nothing else,)
2010                          * the barrier present in the atomic_add_negative
2011                          * in page_remove_rmap.
2012                          *
2013                          * Then the TLB flush in ptep_clear_flush ensures that
2014                          * no process can access the old page before the
2015                          * decremented mapcount is visible. And the old page
2016                          * cannot be reused until after the decremented
2017                          * mapcount is visible. So transitively, TLBs to
2018                          * old page will be flushed before it can be reused.
2019                          */
2020                         page_remove_rmap(old_page, vma);
2021                 }
2022
2023                 /* Free the old page.. */
2024                 new_page = old_page;
2025                 ret |= VM_FAULT_WRITE;
2026         } else
2027                 mem_cgroup_uncharge_page(new_page);
2028
2029         if (new_page)
2030                 page_cache_release(new_page);
2031         if (old_page)
2032                 page_cache_release(old_page);
2033 unlock:
2034         pte_unmap_unlock(page_table, ptl);
2035         if (dirty_page) {
2036                 if (vma->vm_file)
2037                         file_update_time(vma->vm_file);
2038
2039                 /*
2040                  * Yes, Virginia, this is actually required to prevent a race
2041                  * with clear_page_dirty_for_io() from clearing the page dirty
2042                  * bit after it clear all dirty ptes, but before a racing
2043                  * do_wp_page installs a dirty pte.
2044                  *
2045                  * do_no_page is protected similarly.
2046                  */
2047                 wait_on_page_locked(dirty_page);
2048                 set_page_dirty_balance(dirty_page, page_mkwrite);
2049                 put_page(dirty_page);
2050         }
2051         return ret;
2052 oom_free_new:
2053         page_cache_release(new_page);
2054 oom:
2055         if (old_page)
2056                 page_cache_release(old_page);
2057         return VM_FAULT_OOM;
2058
2059 unwritable_page:
2060         page_cache_release(old_page);
2061         return VM_FAULT_SIGBUS;
2062 }
2063
2064 /*
2065  * Helper functions for unmap_mapping_range().
2066  *
2067  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2068  *
2069  * We have to restart searching the prio_tree whenever we drop the lock,
2070  * since the iterator is only valid while the lock is held, and anyway
2071  * a later vma might be split and reinserted earlier while lock dropped.
2072  *
2073  * The list of nonlinear vmas could be handled more efficiently, using
2074  * a placeholder, but handle it in the same way until a need is shown.
2075  * It is important to search the prio_tree before nonlinear list: a vma
2076  * may become nonlinear and be shifted from prio_tree to nonlinear list
2077  * while the lock is dropped; but never shifted from list to prio_tree.
2078  *
2079  * In order to make forward progress despite restarting the search,
2080  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2081  * quickly skip it next time around.  Since the prio_tree search only
2082  * shows us those vmas affected by unmapping the range in question, we
2083  * can't efficiently keep all vmas in step with mapping->truncate_count:
2084  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2085  * mapping->truncate_count and vma->vm_truncate_count are protected by
2086  * i_mmap_lock.
2087  *
2088  * In order to make forward progress despite repeatedly restarting some
2089  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2090  * and restart from that address when we reach that vma again.  It might
2091  * have been split or merged, shrunk or extended, but never shifted: so
2092  * restart_addr remains valid so long as it remains in the vma's range.
2093  * unmap_mapping_range forces truncate_count to leap over page-aligned
2094  * values so we can save vma's restart_addr in its truncate_count field.
2095  */
2096 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2097
2098 static void reset_vma_truncate_counts(struct address_space *mapping)
2099 {
2100         struct vm_area_struct *vma;
2101         struct prio_tree_iter iter;
2102
2103         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2104                 vma->vm_truncate_count = 0;
2105         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2106                 vma->vm_truncate_count = 0;
2107 }
2108
2109 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2110                 unsigned long start_addr, unsigned long end_addr,
2111                 struct zap_details *details)
2112 {
2113         unsigned long restart_addr;
2114         int need_break;
2115
2116         /*
2117          * files that support invalidating or truncating portions of the
2118          * file from under mmaped areas must have their ->fault function
2119          * return a locked page (and set VM_FAULT_LOCKED in the return).
2120          * This provides synchronisation against concurrent unmapping here.
2121          */
2122
2123 again:
2124         restart_addr = vma->vm_truncate_count;
2125         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2126                 start_addr = restart_addr;
2127                 if (start_addr >= end_addr) {
2128                         /* Top of vma has been split off since last time */
2129                         vma->vm_truncate_count = details->truncate_count;
2130                         return 0;
2131                 }
2132         }
2133
2134         restart_addr = zap_page_range(vma, start_addr,
2135                                         end_addr - start_addr, details);
2136         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2137
2138         if (restart_addr >= end_addr) {
2139                 /* We have now completed this vma: mark it so */
2140                 vma->vm_truncate_count = details->truncate_count;
2141                 if (!need_break)
2142                         return 0;
2143         } else {
2144                 /* Note restart_addr in vma's truncate_count field */
2145                 vma->vm_truncate_count = restart_addr;
2146                 if (!need_break)
2147                         goto again;
2148         }
2149
2150         spin_unlock(details->i_mmap_lock);
2151         cond_resched();
2152         spin_lock(details->i_mmap_lock);
2153         return -EINTR;
2154 }
2155
2156 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2157                                             struct zap_details *details)
2158 {
2159         struct vm_area_struct *vma;
2160         struct prio_tree_iter iter;
2161         pgoff_t vba, vea, zba, zea;
2162
2163 restart:
2164         vma_prio_tree_foreach(vma, &iter, root,
2165                         details->first_index, details->last_index) {
2166                 /* Skip quickly over those we have already dealt with */
2167                 if (vma->vm_truncate_count == details->truncate_count)
2168                         continue;
2169
2170                 vba = vma->vm_pgoff;
2171                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2172                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2173                 zba = details->first_index;
2174                 if (zba < vba)
2175                         zba = vba;
2176                 zea = details->last_index;
2177                 if (zea > vea)
2178                         zea = vea;
2179
2180                 if (unmap_mapping_range_vma(vma,
2181                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2182                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2183                                 details) < 0)
2184                         goto restart;
2185         }
2186 }
2187
2188 static inline void unmap_mapping_range_list(struct list_head *head,
2189                                             struct zap_details *details)
2190 {
2191         struct vm_area_struct *vma;
2192
2193         /*
2194          * In nonlinear VMAs there is no correspondence between virtual address
2195          * offset and file offset.  So we must perform an exhaustive search
2196          * across *all* the pages in each nonlinear VMA, not just the pages
2197          * whose virtual address lies outside the file truncation point.
2198          */
2199 restart:
2200         list_for_each_entry(vma, head, shared.vm_set.list) {
2201                 /* Skip quickly over those we have already dealt with */
2202                 if (vma->vm_truncate_count == details->truncate_count)
2203                         continue;
2204                 details->nonlinear_vma = vma;
2205                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2206                                         vma->vm_end, details) < 0)
2207                         goto restart;
2208         }
2209 }
2210
2211 /**
2212  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2213  * @mapping: the address space containing mmaps to be unmapped.
2214  * @holebegin: byte in first page to unmap, relative to the start of
2215  * the underlying file.  This will be rounded down to a PAGE_SIZE
2216  * boundary.  Note that this is different from vmtruncate(), which
2217  * must keep the partial page.  In contrast, we must get rid of
2218  * partial pages.
2219  * @holelen: size of prospective hole in bytes.  This will be rounded
2220  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2221  * end of the file.
2222  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2223  * but 0 when invalidating pagecache, don't throw away private data.
2224  */
2225 void unmap_mapping_range(struct address_space *mapping,
2226                 loff_t const holebegin, loff_t const holelen, int even_cows)
2227 {
2228         struct zap_details details;
2229         pgoff_t hba = holebegin >> PAGE_SHIFT;
2230         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2231
2232         /* Check for overflow. */
2233         if (sizeof(holelen) > sizeof(hlen)) {
2234                 long long holeend =
2235                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2236                 if (holeend & ~(long long)ULONG_MAX)
2237                         hlen = ULONG_MAX - hba + 1;
2238         }
2239
2240         details.check_mapping = even_cows? NULL: mapping;
2241         details.nonlinear_vma = NULL;
2242         details.first_index = hba;
2243         details.last_index = hba + hlen - 1;
2244         if (details.last_index < details.first_index)
2245                 details.last_index = ULONG_MAX;
2246         details.i_mmap_lock = &mapping->i_mmap_lock;
2247
2248         spin_lock(&mapping->i_mmap_lock);
2249
2250         /* Protect against endless unmapping loops */
2251         mapping->truncate_count++;
2252         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2253                 if (mapping->truncate_count == 0)
2254                         reset_vma_truncate_counts(mapping);
2255                 mapping->truncate_count++;
2256         }
2257         details.truncate_count = mapping->truncate_count;
2258
2259         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2260                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2261         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2262                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2263         spin_unlock(&mapping->i_mmap_lock);
2264 }
2265 EXPORT_SYMBOL(unmap_mapping_range);
2266
2267 /**
2268  * vmtruncate - unmap mappings "freed" by truncate() syscall
2269  * @inode: inode of the file used
2270  * @offset: file offset to start truncating
2271  *
2272  * NOTE! We have to be ready to update the memory sharing
2273  * between the file and the memory map for a potential last
2274  * incomplete page.  Ugly, but necessary.
2275  */
2276 int vmtruncate(struct inode * inode, loff_t offset)
2277 {
2278         if (inode->i_size < offset) {
2279                 unsigned long limit;
2280
2281                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2282                 if (limit != RLIM_INFINITY && offset > limit)
2283                         goto out_sig;
2284                 if (offset > inode->i_sb->s_maxbytes)
2285                         goto out_big;
2286                 i_size_write(inode, offset);
2287         } else {
2288                 struct address_space *mapping = inode->i_mapping;
2289
2290                 /*
2291                  * truncation of in-use swapfiles is disallowed - it would
2292                  * cause subsequent swapout to scribble on the now-freed
2293                  * blocks.
2294                  */
2295                 if (IS_SWAPFILE(inode))
2296                         return -ETXTBSY;
2297                 i_size_write(inode, offset);
2298
2299                 /*
2300                  * unmap_mapping_range is called twice, first simply for
2301                  * efficiency so that truncate_inode_pages does fewer
2302                  * single-page unmaps.  However after this first call, and
2303                  * before truncate_inode_pages finishes, it is possible for
2304                  * private pages to be COWed, which remain after
2305                  * truncate_inode_pages finishes, hence the second
2306                  * unmap_mapping_range call must be made for correctness.
2307                  */
2308                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2309                 truncate_inode_pages(mapping, offset);
2310                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2311         }
2312
2313         if (inode->i_op && inode->i_op->truncate)
2314                 inode->i_op->truncate(inode);
2315         return 0;
2316
2317 out_sig:
2318         send_sig(SIGXFSZ, current, 0);
2319 out_big:
2320         return -EFBIG;
2321 }
2322 EXPORT_SYMBOL(vmtruncate);
2323
2324 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2325 {
2326         struct address_space *mapping = inode->i_mapping;
2327
2328         /*
2329          * If the underlying filesystem is not going to provide
2330          * a way to truncate a range of blocks (punch a hole) -
2331          * we should return failure right now.
2332          */
2333         if (!inode->i_op || !inode->i_op->truncate_range)
2334                 return -ENOSYS;
2335
2336         mutex_lock(&inode->i_mutex);
2337         down_write(&inode->i_alloc_sem);
2338         unmap_mapping_range(mapping, offset, (end - offset), 1);
2339         truncate_inode_pages_range(mapping, offset, end);
2340         unmap_mapping_range(mapping, offset, (end - offset), 1);
2341         inode->i_op->truncate_range(inode, offset, end);
2342         up_write(&inode->i_alloc_sem);
2343         mutex_unlock(&inode->i_mutex);
2344
2345         return 0;
2346 }
2347
2348 /*
2349  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2350  * but allow concurrent faults), and pte mapped but not yet locked.
2351  * We return with mmap_sem still held, but pte unmapped and unlocked.
2352  */
2353 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2354                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2355                 int write_access, pte_t orig_pte)
2356 {
2357         spinlock_t *ptl;
2358         struct page *page;
2359         swp_entry_t entry;
2360         pte_t pte;
2361         int ret = 0;
2362
2363         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2364                 goto out;
2365
2366         entry = pte_to_swp_entry(orig_pte);
2367         if (is_migration_entry(entry)) {
2368                 migration_entry_wait(mm, pmd, address);
2369                 goto out;
2370         }
2371         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2372         page = lookup_swap_cache(entry);
2373         if (!page) {
2374                 grab_swap_token(); /* Contend for token _before_ read-in */
2375                 page = swapin_readahead(entry,
2376                                         GFP_HIGHUSER_MOVABLE, vma, address);
2377                 if (!page) {
2378                         /*
2379                          * Back out if somebody else faulted in this pte
2380                          * while we released the pte lock.
2381                          */
2382                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2383                         if (likely(pte_same(*page_table, orig_pte)))
2384                                 ret = VM_FAULT_OOM;
2385                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2386                         goto unlock;
2387                 }
2388
2389                 /* Had to read the page from swap area: Major fault */
2390                 ret = VM_FAULT_MAJOR;
2391                 count_vm_event(PGMAJFAULT);
2392         }
2393
2394         mark_page_accessed(page);
2395
2396         lock_page(page);
2397         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2398
2399         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2400                 ret = VM_FAULT_OOM;
2401                 unlock_page(page);
2402                 goto out;
2403         }
2404
2405         /*
2406          * Back out if somebody else already faulted in this pte.
2407          */
2408         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2409         if (unlikely(!pte_same(*page_table, orig_pte)))
2410                 goto out_nomap;
2411
2412         if (unlikely(!PageUptodate(page))) {
2413                 ret = VM_FAULT_SIGBUS;
2414                 goto out_nomap;
2415         }
2416
2417         /* The page isn't present yet, go ahead with the fault. */
2418
2419         inc_mm_counter(mm, anon_rss);
2420         pte = mk_pte(page, vma->vm_page_prot);
2421         if (write_access && can_share_swap_page(page)) {
2422                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2423                 write_access = 0;
2424         }
2425
2426         flush_icache_page(vma, page);
2427         set_pte_at(mm, address, page_table, pte);
2428         page_add_anon_rmap(page, vma, address);
2429
2430         swap_free(entry);
2431         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2432                 remove_exclusive_swap_page(page);
2433         unlock_page(page);
2434
2435         if (write_access) {
2436                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2437                 if (ret & VM_FAULT_ERROR)
2438                         ret &= VM_FAULT_ERROR;
2439                 goto out;
2440         }
2441
2442         /* No need to invalidate - it was non-present before */
2443         update_mmu_cache(vma, address, pte);
2444 unlock:
2445         pte_unmap_unlock(page_table, ptl);
2446 out:
2447         return ret;
2448 out_nomap:
2449         mem_cgroup_uncharge_page(page);
2450         pte_unmap_unlock(page_table, ptl);
2451         unlock_page(page);
2452         page_cache_release(page);
2453         return ret;
2454 }
2455
2456 /*
2457  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2458  * but allow concurrent faults), and pte mapped but not yet locked.
2459  * We return with mmap_sem still held, but pte unmapped and unlocked.
2460  */
2461 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2462                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2463                 int write_access)
2464 {
2465         struct page *page;
2466         spinlock_t *ptl;
2467         pte_t entry;
2468
2469         /* Allocate our own private page. */
2470         pte_unmap(page_table);
2471
2472         if (unlikely(anon_vma_prepare(vma)))
2473                 goto oom;
2474         page = alloc_zeroed_user_highpage_movable(vma, address);
2475         if (!page)
2476                 goto oom;
2477         __SetPageUptodate(page);
2478
2479         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2480                 goto oom_free_page;
2481
2482         entry = mk_pte(page, vma->vm_page_prot);
2483         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2484
2485         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2486         if (!pte_none(*page_table))
2487                 goto release;
2488         inc_mm_counter(mm, anon_rss);
2489         SetPageSwapBacked(page);
2490         lru_cache_add_active_or_unevictable(page, vma);
2491         page_add_new_anon_rmap(page, vma, address);
2492         set_pte_at(mm, address, page_table, entry);
2493
2494         /* No need to invalidate - it was non-present before */
2495         update_mmu_cache(vma, address, entry);
2496 unlock:
2497         pte_unmap_unlock(page_table, ptl);
2498         return 0;
2499 release:
2500         mem_cgroup_uncharge_page(page);
2501         page_cache_release(page);
2502         goto unlock;
2503 oom_free_page:
2504         page_cache_release(page);
2505 oom:
2506         return VM_FAULT_OOM;
2507 }
2508
2509 /*
2510  * __do_fault() tries to create a new page mapping. It aggressively
2511  * tries to share with existing pages, but makes a separate copy if
2512  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2513  * the next page fault.
2514  *
2515  * As this is called only for pages that do not currently exist, we
2516  * do not need to flush old virtual caches or the TLB.
2517  *
2518  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2519  * but allow concurrent faults), and pte neither mapped nor locked.
2520  * We return with mmap_sem still held, but pte unmapped and unlocked.
2521  */
2522 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2523                 unsigned long address, pmd_t *pmd,
2524                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2525 {
2526         pte_t *page_table;
2527         spinlock_t *ptl;
2528         struct page *page;
2529         pte_t entry;
2530         int anon = 0;
2531         int charged = 0;
2532         struct page *dirty_page = NULL;
2533         struct vm_fault vmf;
2534         int ret;
2535         int page_mkwrite = 0;
2536
2537         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2538         vmf.pgoff = pgoff;
2539         vmf.flags = flags;
2540         vmf.page = NULL;
2541
2542         ret = vma->vm_ops->fault(vma, &vmf);
2543         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2544                 return ret;
2545
2546         /*
2547          * For consistency in subsequent calls, make the faulted page always
2548          * locked.
2549          */
2550         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2551                 lock_page(vmf.page);
2552         else
2553                 VM_BUG_ON(!PageLocked(vmf.page));
2554
2555         /*
2556          * Should we do an early C-O-W break?
2557          */
2558         page = vmf.page;
2559         if (flags & FAULT_FLAG_WRITE) {
2560                 if (!(vma->vm_flags & VM_SHARED)) {
2561                         anon = 1;
2562                         if (unlikely(anon_vma_prepare(vma))) {
2563                                 ret = VM_FAULT_OOM;
2564                                 goto out;
2565                         }
2566                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2567                                                 vma, address);
2568                         if (!page) {
2569                                 ret = VM_FAULT_OOM;
2570                                 goto out;
2571                         }
2572                         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2573                                 ret = VM_FAULT_OOM;
2574                                 page_cache_release(page);
2575                                 goto out;
2576                         }
2577                         charged = 1;
2578                         /*
2579                          * Don't let another task, with possibly unlocked vma,
2580                          * keep the mlocked page.
2581                          */
2582                         if (vma->vm_flags & VM_LOCKED)
2583                                 clear_page_mlock(vmf.page);
2584                         copy_user_highpage(page, vmf.page, address, vma);
2585                         __SetPageUptodate(page);
2586                 } else {
2587                         /*
2588                          * If the page will be shareable, see if the backing
2589                          * address space wants to know that the page is about
2590                          * to become writable
2591                          */
2592                         if (vma->vm_ops->page_mkwrite) {
2593                                 unlock_page(page);
2594                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2595                                         ret = VM_FAULT_SIGBUS;
2596                                         anon = 1; /* no anon but release vmf.page */
2597                                         goto out_unlocked;
2598                                 }
2599                                 lock_page(page);
2600                                 /*
2601                                  * XXX: this is not quite right (racy vs
2602                                  * invalidate) to unlock and relock the page
2603                                  * like this, however a better fix requires
2604                                  * reworking page_mkwrite locking API, which
2605                                  * is better done later.
2606                                  */
2607                                 if (!page->mapping) {
2608                                         ret = 0;
2609                                         anon = 1; /* no anon but release vmf.page */
2610                                         goto out;
2611                                 }
2612                                 page_mkwrite = 1;
2613                         }
2614                 }
2615
2616         }
2617
2618         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2619
2620         /*
2621          * This silly early PAGE_DIRTY setting removes a race
2622          * due to the bad i386 page protection. But it's valid
2623          * for other architectures too.
2624          *
2625          * Note that if write_access is true, we either now have
2626          * an exclusive copy of the page, or this is a shared mapping,
2627          * so we can make it writable and dirty to avoid having to
2628          * handle that later.
2629          */
2630         /* Only go through if we didn't race with anybody else... */
2631         if (likely(pte_same(*page_table, orig_pte))) {
2632                 flush_icache_page(vma, page);
2633                 entry = mk_pte(page, vma->vm_page_prot);
2634                 if (flags & FAULT_FLAG_WRITE)
2635                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2636                 if (anon) {
2637                         inc_mm_counter(mm, anon_rss);
2638                         SetPageSwapBacked(page);
2639                         lru_cache_add_active_or_unevictable(page, vma);
2640                         page_add_new_anon_rmap(page, vma, address);
2641                 } else {
2642                         inc_mm_counter(mm, file_rss);
2643                         page_add_file_rmap(page);
2644                         if (flags & FAULT_FLAG_WRITE) {
2645                                 dirty_page = page;
2646                                 get_page(dirty_page);
2647                         }
2648                 }
2649 //TODO:  is this safe?  do_anonymous_page() does it this way.
2650                 set_pte_at(mm, address, page_table, entry);
2651
2652                 /* no need to invalidate: a not-present page won't be cached */
2653                 update_mmu_cache(vma, address, entry);
2654         } else {
2655                 if (charged)
2656                         mem_cgroup_uncharge_page(page);
2657                 if (anon)
2658                         page_cache_release(page);
2659                 else
2660                         anon = 1; /* no anon but release faulted_page */
2661         }
2662
2663         pte_unmap_unlock(page_table, ptl);
2664
2665 out:
2666         unlock_page(vmf.page);
2667 out_unlocked:
2668         if (anon)
2669                 page_cache_release(vmf.page);
2670         else if (dirty_page) {
2671                 if (vma->vm_file)
2672                         file_update_time(vma->vm_file);
2673
2674                 set_page_dirty_balance(dirty_page, page_mkwrite);
2675                 put_page(dirty_page);
2676         }
2677
2678         return ret;
2679 }
2680
2681 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2682                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2683                 int write_access, pte_t orig_pte)
2684 {
2685         pgoff_t pgoff = (((address & PAGE_MASK)
2686                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2687         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2688
2689         pte_unmap(page_table);
2690         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2691 }
2692
2693 /*
2694  * Fault of a previously existing named mapping. Repopulate the pte
2695  * from the encoded file_pte if possible. This enables swappable
2696  * nonlinear vmas.
2697  *
2698  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2699  * but allow concurrent faults), and pte mapped but not yet locked.
2700  * We return with mmap_sem still held, but pte unmapped and unlocked.
2701  */
2702 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2703                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2704                 int write_access, pte_t orig_pte)
2705 {
2706         unsigned int flags = FAULT_FLAG_NONLINEAR |
2707                                 (write_access ? FAULT_FLAG_WRITE : 0);
2708         pgoff_t pgoff;
2709
2710         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2711                 return 0;
2712
2713         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2714                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2715                 /*
2716                  * Page table corrupted: show pte and kill process.
2717                  */
2718                 print_bad_pte(vma, orig_pte, address);
2719                 return VM_FAULT_OOM;
2720         }
2721
2722         pgoff = pte_to_pgoff(orig_pte);
2723         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2724 }
2725
2726 /*
2727  * These routines also need to handle stuff like marking pages dirty
2728  * and/or accessed for architectures that don't do it in hardware (most
2729  * RISC architectures).  The early dirtying is also good on the i386.
2730  *
2731  * There is also a hook called "update_mmu_cache()" that architectures
2732  * with external mmu caches can use to update those (ie the Sparc or
2733  * PowerPC hashed page tables that act as extended TLBs).
2734  *
2735  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736  * but allow concurrent faults), and pte mapped but not yet locked.
2737  * We return with mmap_sem still held, but pte unmapped and unlocked.
2738  */
2739 static inline int handle_pte_fault(struct mm_struct *mm,
2740                 struct vm_area_struct *vma, unsigned long address,
2741                 pte_t *pte, pmd_t *pmd, int write_access)
2742 {
2743         pte_t entry;
2744         spinlock_t *ptl;
2745
2746         entry = *pte;
2747         if (!pte_present(entry)) {
2748                 if (pte_none(entry)) {
2749                         if (vma->vm_ops) {
2750                                 if (likely(vma->vm_ops->fault))
2751                                         return do_linear_fault(mm, vma, address,
2752                                                 pte, pmd, write_access, entry);
2753                         }
2754                         return do_anonymous_page(mm, vma, address,
2755                                                  pte, pmd, write_access);
2756                 }
2757                 if (pte_file(entry))
2758                         return do_nonlinear_fault(mm, vma, address,
2759                                         pte, pmd, write_access, entry);
2760                 return do_swap_page(mm, vma, address,
2761                                         pte, pmd, write_access, entry);
2762         }
2763
2764         ptl = pte_lockptr(mm, pmd);
2765         spin_lock(ptl);
2766         if (unlikely(!pte_same(*pte, entry)))
2767                 goto unlock;
2768         if (write_access) {
2769                 if (!pte_write(entry))
2770                         return do_wp_page(mm, vma, address,
2771                                         pte, pmd, ptl, entry);
2772                 entry = pte_mkdirty(entry);
2773         }
2774         entry = pte_mkyoung(entry);
2775         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2776                 update_mmu_cache(vma, address, entry);
2777         } else {
2778                 /*
2779                  * This is needed only for protection faults but the arch code
2780                  * is not yet telling us if this is a protection fault or not.
2781                  * This still avoids useless tlb flushes for .text page faults
2782                  * with threads.
2783                  */
2784                 if (write_access)
2785                         flush_tlb_page(vma, address);
2786         }
2787 unlock:
2788         pte_unmap_unlock(pte, ptl);
2789         return 0;
2790 }
2791
2792 /*
2793  * By the time we get here, we already hold the mm semaphore
2794  */
2795 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2796                 unsigned long address, int write_access)
2797 {
2798         pgd_t *pgd;
2799         pud_t *pud;
2800         pmd_t *pmd;
2801         pte_t *pte;
2802
2803         __set_current_state(TASK_RUNNING);
2804
2805         count_vm_event(PGFAULT);
2806
2807         if (unlikely(is_vm_hugetlb_page(vma)))
2808                 return hugetlb_fault(mm, vma, address, write_access);
2809
2810         pgd = pgd_offset(mm, address);
2811         pud = pud_alloc(mm, pgd, address);
2812         if (!pud)
2813                 return VM_FAULT_OOM;
2814         pmd = pmd_alloc(mm, pud, address);
2815         if (!pmd)
2816                 return VM_FAULT_OOM;
2817         pte = pte_alloc_map(mm, pmd, address);
2818         if (!pte)
2819                 return VM_FAULT_OOM;
2820
2821         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2822 }
2823
2824 #ifndef __PAGETABLE_PUD_FOLDED
2825 /*
2826  * Allocate page upper directory.
2827  * We've already handled the fast-path in-line.
2828  */
2829 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2830 {
2831         pud_t *new = pud_alloc_one(mm, address);
2832         if (!new)
2833                 return -ENOMEM;
2834
2835         smp_wmb(); /* See comment in __pte_alloc */
2836
2837         spin_lock(&mm->page_table_lock);
2838         if (pgd_present(*pgd))          /* Another has populated it */
2839                 pud_free(mm, new);
2840         else
2841                 pgd_populate(mm, pgd, new);
2842         spin_unlock(&mm->page_table_lock);
2843         return 0;
2844 }
2845 #endif /* __PAGETABLE_PUD_FOLDED */
2846
2847 #ifndef __PAGETABLE_PMD_FOLDED
2848 /*
2849  * Allocate page middle directory.
2850  * We've already handled the fast-path in-line.
2851  */
2852 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2853 {
2854         pmd_t *new = pmd_alloc_one(mm, address);
2855         if (!new)
2856                 return -ENOMEM;
2857
2858         smp_wmb(); /* See comment in __pte_alloc */
2859
2860         spin_lock(&mm->page_table_lock);
2861 #ifndef __ARCH_HAS_4LEVEL_HACK
2862         if (pud_present(*pud))          /* Another has populated it */
2863                 pmd_free(mm, new);
2864         else
2865                 pud_populate(mm, pud, new);
2866 #else
2867         if (pgd_present(*pud))          /* Another has populated it */
2868                 pmd_free(mm, new);
2869         else
2870                 pgd_populate(mm, pud, new);
2871 #endif /* __ARCH_HAS_4LEVEL_HACK */
2872         spin_unlock(&mm->page_table_lock);
2873         return 0;
2874 }
2875 #endif /* __PAGETABLE_PMD_FOLDED */
2876
2877 int make_pages_present(unsigned long addr, unsigned long end)
2878 {
2879         int ret, len, write;
2880         struct vm_area_struct * vma;
2881
2882         vma = find_vma(current->mm, addr);
2883         if (!vma)
2884                 return -ENOMEM;
2885         write = (vma->vm_flags & VM_WRITE) != 0;
2886         BUG_ON(addr >= end);
2887         BUG_ON(end > vma->vm_end);
2888         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2889         ret = get_user_pages(current, current->mm, addr,
2890                         len, write, 0, NULL, NULL);
2891         if (ret < 0)
2892                 return ret;
2893         return ret == len ? 0 : -EFAULT;
2894 }
2895
2896 #if !defined(__HAVE_ARCH_GATE_AREA)
2897
2898 #if defined(AT_SYSINFO_EHDR)
2899 static struct vm_area_struct gate_vma;
2900
2901 static int __init gate_vma_init(void)
2902 {
2903         gate_vma.vm_mm = NULL;
2904         gate_vma.vm_start = FIXADDR_USER_START;
2905         gate_vma.vm_end = FIXADDR_USER_END;
2906         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2907         gate_vma.vm_page_prot = __P101;
2908         /*
2909          * Make sure the vDSO gets into every core dump.
2910          * Dumping its contents makes post-mortem fully interpretable later
2911          * without matching up the same kernel and hardware config to see
2912          * what PC values meant.
2913          */
2914         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2915         return 0;
2916 }
2917 __initcall(gate_vma_init);
2918 #endif
2919
2920 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2921 {
2922 #ifdef AT_SYSINFO_EHDR
2923         return &gate_vma;
2924 #else
2925         return NULL;
2926 #endif
2927 }
2928
2929 int in_gate_area_no_task(unsigned long addr)
2930 {
2931 #ifdef AT_SYSINFO_EHDR
2932         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2933                 return 1;
2934 #endif
2935         return 0;
2936 }
2937
2938 #endif  /* __HAVE_ARCH_GATE_AREA */
2939
2940 #ifdef CONFIG_HAVE_IOREMAP_PROT
2941 int follow_phys(struct vm_area_struct *vma,
2942                 unsigned long address, unsigned int flags,
2943                 unsigned long *prot, resource_size_t *phys)
2944 {
2945         pgd_t *pgd;
2946         pud_t *pud;
2947         pmd_t *pmd;
2948         pte_t *ptep, pte;
2949         spinlock_t *ptl;
2950         resource_size_t phys_addr = 0;
2951         struct mm_struct *mm = vma->vm_mm;
2952         int ret = -EINVAL;
2953
2954         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2955                 goto out;
2956
2957         pgd = pgd_offset(mm, address);
2958         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2959                 goto out;
2960
2961         pud = pud_offset(pgd, address);
2962         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2963                 goto out;
2964
2965         pmd = pmd_offset(pud, address);
2966         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2967                 goto out;
2968
2969         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2970         if (pmd_huge(*pmd))
2971                 goto out;
2972
2973         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2974         if (!ptep)
2975                 goto out;
2976
2977         pte = *ptep;
2978         if (!pte_present(pte))
2979                 goto unlock;
2980         if ((flags & FOLL_WRITE) && !pte_write(pte))
2981                 goto unlock;
2982         phys_addr = pte_pfn(pte);
2983         phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2984
2985         *prot = pgprot_val(pte_pgprot(pte));
2986         *phys = phys_addr;
2987         ret = 0;
2988
2989 unlock:
2990         pte_unmap_unlock(ptep, ptl);
2991 out:
2992         return ret;
2993 }
2994
2995 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2996                         void *buf, int len, int write)
2997 {
2998         resource_size_t phys_addr;
2999         unsigned long prot = 0;
3000         void *maddr;
3001         int offset = addr & (PAGE_SIZE-1);
3002
3003         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3004                 return -EINVAL;
3005
3006         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3007         if (write)
3008                 memcpy_toio(maddr + offset, buf, len);
3009         else
3010                 memcpy_fromio(buf, maddr + offset, len);
3011         iounmap(maddr);
3012
3013         return len;
3014 }
3015 #endif
3016
3017 /*
3018  * Access another process' address space.
3019  * Source/target buffer must be kernel space,
3020  * Do not walk the page table directly, use get_user_pages
3021  */
3022 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3023 {
3024         struct mm_struct *mm;
3025         struct vm_area_struct *vma;
3026         void *old_buf = buf;
3027
3028         mm = get_task_mm(tsk);
3029         if (!mm)
3030                 return 0;
3031
3032         down_read(&mm->mmap_sem);
3033         /* ignore errors, just check how much was successfully transferred */
3034         while (len) {
3035                 int bytes, ret, offset;
3036                 void *maddr;
3037                 struct page *page = NULL;
3038
3039                 ret = get_user_pages(tsk, mm, addr, 1,
3040                                 write, 1, &page, &vma);
3041                 if (ret <= 0) {
3042                         /*
3043                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3044                          * we can access using slightly different code.
3045                          */
3046 #ifdef CONFIG_HAVE_IOREMAP_PROT
3047                         vma = find_vma(mm, addr);
3048                         if (!vma)
3049                                 break;
3050                         if (vma->vm_ops && vma->vm_ops->access)
3051                                 ret = vma->vm_ops->access(vma, addr, buf,
3052                                                           len, write);
3053                         if (ret <= 0)
3054 #endif
3055                                 break;
3056                         bytes = ret;
3057                 } else {
3058                         bytes = len;
3059                         offset = addr & (PAGE_SIZE-1);
3060                         if (bytes > PAGE_SIZE-offset)
3061                                 bytes = PAGE_SIZE-offset;
3062
3063                         maddr = kmap(page);
3064                         if (write) {
3065                                 copy_to_user_page(vma, page, addr,
3066                                                   maddr + offset, buf, bytes);
3067                                 set_page_dirty_lock(page);
3068                         } else {
3069                                 copy_from_user_page(vma, page, addr,
3070                                                     buf, maddr + offset, bytes);
3071                         }
3072                         kunmap(page);
3073                         page_cache_release(page);
3074                 }
3075                 len -= bytes;
3076                 buf += bytes;
3077                 addr += bytes;
3078         }
3079         up_read(&mm->mmap_sem);
3080         mmput(mm);
3081
3082         return buf - old_buf;
3083 }
3084
3085 /*
3086  * Print the name of a VMA.
3087  */
3088 void print_vma_addr(char *prefix, unsigned long ip)
3089 {
3090         struct mm_struct *mm = current->mm;
3091         struct vm_area_struct *vma;
3092
3093         /*
3094          * Do not print if we are in atomic
3095          * contexts (in exception stacks, etc.):
3096          */
3097         if (preempt_count())
3098                 return;
3099
3100         down_read(&mm->mmap_sem);
3101         vma = find_vma(mm, ip);
3102         if (vma && vma->vm_file) {
3103                 struct file *f = vma->vm_file;
3104                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3105                 if (buf) {
3106                         char *p, *s;
3107
3108                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3109                         if (IS_ERR(p))
3110                                 p = "?";
3111                         s = strrchr(p, '/');
3112                         if (s)
3113                                 p = s+1;
3114                         printk("%s%s[%lx+%lx]", prefix, p,
3115                                         vma->vm_start,
3116                                         vma->vm_end - vma->vm_start);
3117                         free_page((unsigned long)buf);
3118                 }
3119         }
3120         up_read(&current->mm->mmap_sem);
3121 }