]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv6/netfilter/nf_conntrack_reasm.c
Merge branch 'linux-2.6'
[linux-2.6-omap-h63xx.git] / net / ipv6 / netfilter / nf_conntrack_reasm.c
1 /*
2  * IPv6 fragment reassembly for connection tracking
3  *
4  * Copyright (C)2004 USAGI/WIDE Project
5  *
6  * Author:
7  *      Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
8  *
9  * Based on: net/ipv6/reassembly.c
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/socket.h>
21 #include <linux/sockios.h>
22 #include <linux/jiffies.h>
23 #include <linux/net.h>
24 #include <linux/list.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/ipv6.h>
28 #include <linux/icmpv6.h>
29 #include <linux/random.h>
30 #include <linux/jhash.h>
31
32 #include <net/sock.h>
33 #include <net/snmp.h>
34 #include <net/inet_frag.h>
35
36 #include <net/ipv6.h>
37 #include <net/protocol.h>
38 #include <net/transp_v6.h>
39 #include <net/rawv6.h>
40 #include <net/ndisc.h>
41 #include <net/addrconf.h>
42 #include <linux/sysctl.h>
43 #include <linux/netfilter.h>
44 #include <linux/netfilter_ipv6.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47
48 #define NF_CT_FRAG6_HIGH_THRESH 262144 /* == 256*1024 */
49 #define NF_CT_FRAG6_LOW_THRESH 196608  /* == 192*1024 */
50 #define NF_CT_FRAG6_TIMEOUT IPV6_FRAG_TIMEOUT
51
52 struct nf_ct_frag6_skb_cb
53 {
54         struct inet6_skb_parm   h;
55         int                     offset;
56         struct sk_buff          *orig;
57 };
58
59 #define NFCT_FRAG6_CB(skb)      ((struct nf_ct_frag6_skb_cb*)((skb)->cb))
60
61 struct nf_ct_frag6_queue
62 {
63         struct inet_frag_queue  q;
64
65         __be32                  id;             /* fragment id          */
66         struct in6_addr         saddr;
67         struct in6_addr         daddr;
68
69         unsigned int            csum;
70         __u16                   nhoffset;
71 };
72
73 static struct inet_frags nf_frags;
74 static struct netns_frags nf_init_frags;
75
76 #ifdef CONFIG_SYSCTL
77 struct ctl_table nf_ct_ipv6_sysctl_table[] = {
78         {
79                 .procname       = "nf_conntrack_frag6_timeout",
80                 .data           = &nf_init_frags.timeout,
81                 .maxlen         = sizeof(unsigned int),
82                 .mode           = 0644,
83                 .proc_handler   = &proc_dointvec_jiffies,
84         },
85         {
86                 .ctl_name       = NET_NF_CONNTRACK_FRAG6_LOW_THRESH,
87                 .procname       = "nf_conntrack_frag6_low_thresh",
88                 .data           = &nf_init_frags.low_thresh,
89                 .maxlen         = sizeof(unsigned int),
90                 .mode           = 0644,
91                 .proc_handler   = &proc_dointvec,
92         },
93         {
94                 .ctl_name       = NET_NF_CONNTRACK_FRAG6_HIGH_THRESH,
95                 .procname       = "nf_conntrack_frag6_high_thresh",
96                 .data           = &nf_init_frags.high_thresh,
97                 .maxlen         = sizeof(unsigned int),
98                 .mode           = 0644,
99                 .proc_handler   = &proc_dointvec,
100         },
101         { .ctl_name = 0 }
102 };
103 #endif
104
105 static unsigned int ip6qhashfn(__be32 id, struct in6_addr *saddr,
106                                struct in6_addr *daddr)
107 {
108         u32 a, b, c;
109
110         a = (__force u32)saddr->s6_addr32[0];
111         b = (__force u32)saddr->s6_addr32[1];
112         c = (__force u32)saddr->s6_addr32[2];
113
114         a += JHASH_GOLDEN_RATIO;
115         b += JHASH_GOLDEN_RATIO;
116         c += nf_frags.rnd;
117         __jhash_mix(a, b, c);
118
119         a += (__force u32)saddr->s6_addr32[3];
120         b += (__force u32)daddr->s6_addr32[0];
121         c += (__force u32)daddr->s6_addr32[1];
122         __jhash_mix(a, b, c);
123
124         a += (__force u32)daddr->s6_addr32[2];
125         b += (__force u32)daddr->s6_addr32[3];
126         c += (__force u32)id;
127         __jhash_mix(a, b, c);
128
129         return c & (INETFRAGS_HASHSZ - 1);
130 }
131
132 static unsigned int nf_hashfn(struct inet_frag_queue *q)
133 {
134         struct nf_ct_frag6_queue *nq;
135
136         nq = container_of(q, struct nf_ct_frag6_queue, q);
137         return ip6qhashfn(nq->id, &nq->saddr, &nq->daddr);
138 }
139
140 static void nf_skb_free(struct sk_buff *skb)
141 {
142         if (NFCT_FRAG6_CB(skb)->orig)
143                 kfree_skb(NFCT_FRAG6_CB(skb)->orig);
144 }
145
146 /* Memory Tracking Functions. */
147 static inline void frag_kfree_skb(struct sk_buff *skb, unsigned int *work)
148 {
149         if (work)
150                 *work -= skb->truesize;
151         atomic_sub(skb->truesize, &nf_init_frags.mem);
152         nf_skb_free(skb);
153         kfree_skb(skb);
154 }
155
156 /* Destruction primitives. */
157
158 static __inline__ void fq_put(struct nf_ct_frag6_queue *fq)
159 {
160         inet_frag_put(&fq->q, &nf_frags);
161 }
162
163 /* Kill fq entry. It is not destroyed immediately,
164  * because caller (and someone more) holds reference count.
165  */
166 static __inline__ void fq_kill(struct nf_ct_frag6_queue *fq)
167 {
168         inet_frag_kill(&fq->q, &nf_frags);
169 }
170
171 static void nf_ct_frag6_evictor(void)
172 {
173         inet_frag_evictor(&nf_init_frags, &nf_frags);
174 }
175
176 static void nf_ct_frag6_expire(unsigned long data)
177 {
178         struct nf_ct_frag6_queue *fq;
179
180         fq = container_of((struct inet_frag_queue *)data,
181                         struct nf_ct_frag6_queue, q);
182
183         spin_lock(&fq->q.lock);
184
185         if (fq->q.last_in & COMPLETE)
186                 goto out;
187
188         fq_kill(fq);
189
190 out:
191         spin_unlock(&fq->q.lock);
192         fq_put(fq);
193 }
194
195 /* Creation primitives. */
196
197 static __inline__ struct nf_ct_frag6_queue *
198 fq_find(__be32 id, struct in6_addr *src, struct in6_addr *dst)
199 {
200         struct inet_frag_queue *q;
201         struct ip6_create_arg arg;
202         unsigned int hash;
203
204         arg.id = id;
205         arg.src = src;
206         arg.dst = dst;
207         hash = ip6qhashfn(id, src, dst);
208
209         q = inet_frag_find(&nf_init_frags, &nf_frags, &arg, hash);
210         if (q == NULL)
211                 goto oom;
212
213         return container_of(q, struct nf_ct_frag6_queue, q);
214
215 oom:
216         pr_debug("Can't alloc new queue\n");
217         return NULL;
218 }
219
220
221 static int nf_ct_frag6_queue(struct nf_ct_frag6_queue *fq, struct sk_buff *skb,
222                              struct frag_hdr *fhdr, int nhoff)
223 {
224         struct sk_buff *prev, *next;
225         int offset, end;
226
227         if (fq->q.last_in & COMPLETE) {
228                 pr_debug("Allready completed\n");
229                 goto err;
230         }
231
232         offset = ntohs(fhdr->frag_off) & ~0x7;
233         end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
234                         ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
235
236         if ((unsigned int)end > IPV6_MAXPLEN) {
237                 pr_debug("offset is too large.\n");
238                 return -1;
239         }
240
241         if (skb->ip_summed == CHECKSUM_COMPLETE) {
242                 const unsigned char *nh = skb_network_header(skb);
243                 skb->csum = csum_sub(skb->csum,
244                                      csum_partial(nh, (u8 *)(fhdr + 1) - nh,
245                                                   0));
246         }
247
248         /* Is this the final fragment? */
249         if (!(fhdr->frag_off & htons(IP6_MF))) {
250                 /* If we already have some bits beyond end
251                  * or have different end, the segment is corrupted.
252                  */
253                 if (end < fq->q.len ||
254                     ((fq->q.last_in & LAST_IN) && end != fq->q.len)) {
255                         pr_debug("already received last fragment\n");
256                         goto err;
257                 }
258                 fq->q.last_in |= LAST_IN;
259                 fq->q.len = end;
260         } else {
261                 /* Check if the fragment is rounded to 8 bytes.
262                  * Required by the RFC.
263                  */
264                 if (end & 0x7) {
265                         /* RFC2460 says always send parameter problem in
266                          * this case. -DaveM
267                          */
268                         pr_debug("end of fragment not rounded to 8 bytes.\n");
269                         return -1;
270                 }
271                 if (end > fq->q.len) {
272                         /* Some bits beyond end -> corruption. */
273                         if (fq->q.last_in & LAST_IN) {
274                                 pr_debug("last packet already reached.\n");
275                                 goto err;
276                         }
277                         fq->q.len = end;
278                 }
279         }
280
281         if (end == offset)
282                 goto err;
283
284         /* Point into the IP datagram 'data' part. */
285         if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) {
286                 pr_debug("queue: message is too short.\n");
287                 goto err;
288         }
289         if (pskb_trim_rcsum(skb, end - offset)) {
290                 pr_debug("Can't trim\n");
291                 goto err;
292         }
293
294         /* Find out which fragments are in front and at the back of us
295          * in the chain of fragments so far.  We must know where to put
296          * this fragment, right?
297          */
298         prev = NULL;
299         for (next = fq->q.fragments; next != NULL; next = next->next) {
300                 if (NFCT_FRAG6_CB(next)->offset >= offset)
301                         break;  /* bingo! */
302                 prev = next;
303         }
304
305         /* We found where to put this one.  Check for overlap with
306          * preceding fragment, and, if needed, align things so that
307          * any overlaps are eliminated.
308          */
309         if (prev) {
310                 int i = (NFCT_FRAG6_CB(prev)->offset + prev->len) - offset;
311
312                 if (i > 0) {
313                         offset += i;
314                         if (end <= offset) {
315                                 pr_debug("overlap\n");
316                                 goto err;
317                         }
318                         if (!pskb_pull(skb, i)) {
319                                 pr_debug("Can't pull\n");
320                                 goto err;
321                         }
322                         if (skb->ip_summed != CHECKSUM_UNNECESSARY)
323                                 skb->ip_summed = CHECKSUM_NONE;
324                 }
325         }
326
327         /* Look for overlap with succeeding segments.
328          * If we can merge fragments, do it.
329          */
330         while (next && NFCT_FRAG6_CB(next)->offset < end) {
331                 /* overlap is 'i' bytes */
332                 int i = end - NFCT_FRAG6_CB(next)->offset;
333
334                 if (i < next->len) {
335                         /* Eat head of the next overlapped fragment
336                          * and leave the loop. The next ones cannot overlap.
337                          */
338                         pr_debug("Eat head of the overlapped parts.: %d", i);
339                         if (!pskb_pull(next, i))
340                                 goto err;
341
342                         /* next fragment */
343                         NFCT_FRAG6_CB(next)->offset += i;
344                         fq->q.meat -= i;
345                         if (next->ip_summed != CHECKSUM_UNNECESSARY)
346                                 next->ip_summed = CHECKSUM_NONE;
347                         break;
348                 } else {
349                         struct sk_buff *free_it = next;
350
351                         /* Old fragmnet is completely overridden with
352                          * new one drop it.
353                          */
354                         next = next->next;
355
356                         if (prev)
357                                 prev->next = next;
358                         else
359                                 fq->q.fragments = next;
360
361                         fq->q.meat -= free_it->len;
362                         frag_kfree_skb(free_it, NULL);
363                 }
364         }
365
366         NFCT_FRAG6_CB(skb)->offset = offset;
367
368         /* Insert this fragment in the chain of fragments. */
369         skb->next = next;
370         if (prev)
371                 prev->next = skb;
372         else
373                 fq->q.fragments = skb;
374
375         skb->dev = NULL;
376         fq->q.stamp = skb->tstamp;
377         fq->q.meat += skb->len;
378         atomic_add(skb->truesize, &nf_init_frags.mem);
379
380         /* The first fragment.
381          * nhoffset is obtained from the first fragment, of course.
382          */
383         if (offset == 0) {
384                 fq->nhoffset = nhoff;
385                 fq->q.last_in |= FIRST_IN;
386         }
387         write_lock(&nf_frags.lock);
388         list_move_tail(&fq->q.lru_list, &nf_init_frags.lru_list);
389         write_unlock(&nf_frags.lock);
390         return 0;
391
392 err:
393         return -1;
394 }
395
396 /*
397  *      Check if this packet is complete.
398  *      Returns NULL on failure by any reason, and pointer
399  *      to current nexthdr field in reassembled frame.
400  *
401  *      It is called with locked fq, and caller must check that
402  *      queue is eligible for reassembly i.e. it is not COMPLETE,
403  *      the last and the first frames arrived and all the bits are here.
404  */
405 static struct sk_buff *
406 nf_ct_frag6_reasm(struct nf_ct_frag6_queue *fq, struct net_device *dev)
407 {
408         struct sk_buff *fp, *op, *head = fq->q.fragments;
409         int    payload_len;
410
411         fq_kill(fq);
412
413         BUG_TRAP(head != NULL);
414         BUG_TRAP(NFCT_FRAG6_CB(head)->offset == 0);
415
416         /* Unfragmented part is taken from the first segment. */
417         payload_len = ((head->data - skb_network_header(head)) -
418                        sizeof(struct ipv6hdr) + fq->q.len -
419                        sizeof(struct frag_hdr));
420         if (payload_len > IPV6_MAXPLEN) {
421                 pr_debug("payload len is too large.\n");
422                 goto out_oversize;
423         }
424
425         /* Head of list must not be cloned. */
426         if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) {
427                 pr_debug("skb is cloned but can't expand head");
428                 goto out_oom;
429         }
430
431         /* If the first fragment is fragmented itself, we split
432          * it to two chunks: the first with data and paged part
433          * and the second, holding only fragments. */
434         if (skb_shinfo(head)->frag_list) {
435                 struct sk_buff *clone;
436                 int i, plen = 0;
437
438                 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) {
439                         pr_debug("Can't alloc skb\n");
440                         goto out_oom;
441                 }
442                 clone->next = head->next;
443                 head->next = clone;
444                 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
445                 skb_shinfo(head)->frag_list = NULL;
446                 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
447                         plen += skb_shinfo(head)->frags[i].size;
448                 clone->len = clone->data_len = head->data_len - plen;
449                 head->data_len -= clone->len;
450                 head->len -= clone->len;
451                 clone->csum = 0;
452                 clone->ip_summed = head->ip_summed;
453
454                 NFCT_FRAG6_CB(clone)->orig = NULL;
455                 atomic_add(clone->truesize, &nf_init_frags.mem);
456         }
457
458         /* We have to remove fragment header from datagram and to relocate
459          * header in order to calculate ICV correctly. */
460         skb_network_header(head)[fq->nhoffset] = skb_transport_header(head)[0];
461         memmove(head->head + sizeof(struct frag_hdr), head->head,
462                 (head->data - head->head) - sizeof(struct frag_hdr));
463         head->mac_header += sizeof(struct frag_hdr);
464         head->network_header += sizeof(struct frag_hdr);
465
466         skb_shinfo(head)->frag_list = head->next;
467         skb_reset_transport_header(head);
468         skb_push(head, head->data - skb_network_header(head));
469         atomic_sub(head->truesize, &nf_init_frags.mem);
470
471         for (fp=head->next; fp; fp = fp->next) {
472                 head->data_len += fp->len;
473                 head->len += fp->len;
474                 if (head->ip_summed != fp->ip_summed)
475                         head->ip_summed = CHECKSUM_NONE;
476                 else if (head->ip_summed == CHECKSUM_COMPLETE)
477                         head->csum = csum_add(head->csum, fp->csum);
478                 head->truesize += fp->truesize;
479                 atomic_sub(fp->truesize, &nf_init_frags.mem);
480         }
481
482         head->next = NULL;
483         head->dev = dev;
484         head->tstamp = fq->q.stamp;
485         ipv6_hdr(head)->payload_len = htons(payload_len);
486
487         /* Yes, and fold redundant checksum back. 8) */
488         if (head->ip_summed == CHECKSUM_COMPLETE)
489                 head->csum = csum_partial(skb_network_header(head),
490                                           skb_network_header_len(head),
491                                           head->csum);
492
493         fq->q.fragments = NULL;
494
495         /* all original skbs are linked into the NFCT_FRAG6_CB(head).orig */
496         fp = skb_shinfo(head)->frag_list;
497         if (NFCT_FRAG6_CB(fp)->orig == NULL)
498                 /* at above code, head skb is divided into two skbs. */
499                 fp = fp->next;
500
501         op = NFCT_FRAG6_CB(head)->orig;
502         for (; fp; fp = fp->next) {
503                 struct sk_buff *orig = NFCT_FRAG6_CB(fp)->orig;
504
505                 op->next = orig;
506                 op = orig;
507                 NFCT_FRAG6_CB(fp)->orig = NULL;
508         }
509
510         return head;
511
512 out_oversize:
513         if (net_ratelimit())
514                 printk(KERN_DEBUG "nf_ct_frag6_reasm: payload len = %d\n", payload_len);
515         goto out_fail;
516 out_oom:
517         if (net_ratelimit())
518                 printk(KERN_DEBUG "nf_ct_frag6_reasm: no memory for reassembly\n");
519 out_fail:
520         return NULL;
521 }
522
523 /*
524  * find the header just before Fragment Header.
525  *
526  * if success return 0 and set ...
527  * (*prevhdrp): the value of "Next Header Field" in the header
528  *              just before Fragment Header.
529  * (*prevhoff): the offset of "Next Header Field" in the header
530  *              just before Fragment Header.
531  * (*fhoff)   : the offset of Fragment Header.
532  *
533  * Based on ipv6_skip_hdr() in net/ipv6/exthdr.c
534  *
535  */
536 static int
537 find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff)
538 {
539         u8 nexthdr = ipv6_hdr(skb)->nexthdr;
540         const int netoff = skb_network_offset(skb);
541         u8 prev_nhoff = netoff + offsetof(struct ipv6hdr, nexthdr);
542         int start = netoff + sizeof(struct ipv6hdr);
543         int len = skb->len - start;
544         u8 prevhdr = NEXTHDR_IPV6;
545
546         while (nexthdr != NEXTHDR_FRAGMENT) {
547                 struct ipv6_opt_hdr hdr;
548                 int hdrlen;
549
550                 if (!ipv6_ext_hdr(nexthdr)) {
551                         return -1;
552                 }
553                 if (len < (int)sizeof(struct ipv6_opt_hdr)) {
554                         pr_debug("too short\n");
555                         return -1;
556                 }
557                 if (nexthdr == NEXTHDR_NONE) {
558                         pr_debug("next header is none\n");
559                         return -1;
560                 }
561                 if (skb_copy_bits(skb, start, &hdr, sizeof(hdr)))
562                         BUG();
563                 if (nexthdr == NEXTHDR_AUTH)
564                         hdrlen = (hdr.hdrlen+2)<<2;
565                 else
566                         hdrlen = ipv6_optlen(&hdr);
567
568                 prevhdr = nexthdr;
569                 prev_nhoff = start;
570
571                 nexthdr = hdr.nexthdr;
572                 len -= hdrlen;
573                 start += hdrlen;
574         }
575
576         if (len < 0)
577                 return -1;
578
579         *prevhdrp = prevhdr;
580         *prevhoff = prev_nhoff;
581         *fhoff = start;
582
583         return 0;
584 }
585
586 struct sk_buff *nf_ct_frag6_gather(struct sk_buff *skb)
587 {
588         struct sk_buff *clone;
589         struct net_device *dev = skb->dev;
590         struct frag_hdr *fhdr;
591         struct nf_ct_frag6_queue *fq;
592         struct ipv6hdr *hdr;
593         int fhoff, nhoff;
594         u8 prevhdr;
595         struct sk_buff *ret_skb = NULL;
596
597         /* Jumbo payload inhibits frag. header */
598         if (ipv6_hdr(skb)->payload_len == 0) {
599                 pr_debug("payload len = 0\n");
600                 return skb;
601         }
602
603         if (find_prev_fhdr(skb, &prevhdr, &nhoff, &fhoff) < 0)
604                 return skb;
605
606         clone = skb_clone(skb, GFP_ATOMIC);
607         if (clone == NULL) {
608                 pr_debug("Can't clone skb\n");
609                 return skb;
610         }
611
612         NFCT_FRAG6_CB(clone)->orig = skb;
613
614         if (!pskb_may_pull(clone, fhoff + sizeof(*fhdr))) {
615                 pr_debug("message is too short.\n");
616                 goto ret_orig;
617         }
618
619         skb_set_transport_header(clone, fhoff);
620         hdr = ipv6_hdr(clone);
621         fhdr = (struct frag_hdr *)skb_transport_header(clone);
622
623         if (!(fhdr->frag_off & htons(0xFFF9))) {
624                 pr_debug("Invalid fragment offset\n");
625                 /* It is not a fragmented frame */
626                 goto ret_orig;
627         }
628
629         if (atomic_read(&nf_init_frags.mem) > nf_init_frags.high_thresh)
630                 nf_ct_frag6_evictor();
631
632         fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr);
633         if (fq == NULL) {
634                 pr_debug("Can't find and can't create new queue\n");
635                 goto ret_orig;
636         }
637
638         spin_lock(&fq->q.lock);
639
640         if (nf_ct_frag6_queue(fq, clone, fhdr, nhoff) < 0) {
641                 spin_unlock(&fq->q.lock);
642                 pr_debug("Can't insert skb to queue\n");
643                 fq_put(fq);
644                 goto ret_orig;
645         }
646
647         if (fq->q.last_in == (FIRST_IN|LAST_IN) && fq->q.meat == fq->q.len) {
648                 ret_skb = nf_ct_frag6_reasm(fq, dev);
649                 if (ret_skb == NULL)
650                         pr_debug("Can't reassemble fragmented packets\n");
651         }
652         spin_unlock(&fq->q.lock);
653
654         fq_put(fq);
655         return ret_skb;
656
657 ret_orig:
658         kfree_skb(clone);
659         return skb;
660 }
661
662 void nf_ct_frag6_output(unsigned int hooknum, struct sk_buff *skb,
663                         struct net_device *in, struct net_device *out,
664                         int (*okfn)(struct sk_buff *))
665 {
666         struct sk_buff *s, *s2;
667
668         for (s = NFCT_FRAG6_CB(skb)->orig; s;) {
669                 nf_conntrack_put_reasm(s->nfct_reasm);
670                 nf_conntrack_get_reasm(skb);
671                 s->nfct_reasm = skb;
672
673                 s2 = s->next;
674                 s->next = NULL;
675
676                 NF_HOOK_THRESH(PF_INET6, hooknum, s, in, out, okfn,
677                                NF_IP6_PRI_CONNTRACK_DEFRAG + 1);
678                 s = s2;
679         }
680         nf_conntrack_put_reasm(skb);
681 }
682
683 int nf_ct_frag6_kfree_frags(struct sk_buff *skb)
684 {
685         struct sk_buff *s, *s2;
686
687         for (s = NFCT_FRAG6_CB(skb)->orig; s; s = s2) {
688
689                 s2 = s->next;
690                 kfree_skb(s);
691         }
692
693         kfree_skb(skb);
694
695         return 0;
696 }
697
698 int nf_ct_frag6_init(void)
699 {
700         nf_frags.hashfn = nf_hashfn;
701         nf_frags.constructor = ip6_frag_init;
702         nf_frags.destructor = NULL;
703         nf_frags.skb_free = nf_skb_free;
704         nf_frags.qsize = sizeof(struct nf_ct_frag6_queue);
705         nf_frags.match = ip6_frag_match;
706         nf_frags.frag_expire = nf_ct_frag6_expire;
707         nf_frags.secret_interval = 10 * 60 * HZ;
708         nf_init_frags.timeout = IPV6_FRAG_TIMEOUT;
709         nf_init_frags.high_thresh = 256 * 1024;
710         nf_init_frags.low_thresh = 192 * 1024;
711         inet_frags_init_net(&nf_init_frags);
712         inet_frags_init(&nf_frags);
713
714         return 0;
715 }
716
717 void nf_ct_frag6_cleanup(void)
718 {
719         inet_frags_fini(&nf_frags);
720
721         nf_init_frags.low_thresh = 0;
722         nf_ct_frag6_evictor();
723 }