]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/sunrpc/cache.c
Merge branches 'release' and 'menlo' into release
[linux-2.6-omap-h63xx.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34
35 #define  RPCDBG_FACILITY RPCDBG_CACHE
36
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39
40 static void cache_init(struct cache_head *h)
41 {
42         time_t now = get_seconds();
43         h->next = NULL;
44         h->flags = 0;
45         kref_init(&h->ref);
46         h->expiry_time = now + CACHE_NEW_EXPIRY;
47         h->last_refresh = now;
48 }
49
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51                                        struct cache_head *key, int hash)
52 {
53         struct cache_head **head,  **hp;
54         struct cache_head *new = NULL;
55
56         head = &detail->hash_table[hash];
57
58         read_lock(&detail->hash_lock);
59
60         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61                 struct cache_head *tmp = *hp;
62                 if (detail->match(tmp, key)) {
63                         cache_get(tmp);
64                         read_unlock(&detail->hash_lock);
65                         return tmp;
66                 }
67         }
68         read_unlock(&detail->hash_lock);
69         /* Didn't find anything, insert an empty entry */
70
71         new = detail->alloc();
72         if (!new)
73                 return NULL;
74         /* must fully initialise 'new', else
75          * we might get lose if we need to
76          * cache_put it soon.
77          */
78         cache_init(new);
79         detail->init(new, key);
80
81         write_lock(&detail->hash_lock);
82
83         /* check if entry appeared while we slept */
84         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85                 struct cache_head *tmp = *hp;
86                 if (detail->match(tmp, key)) {
87                         cache_get(tmp);
88                         write_unlock(&detail->hash_lock);
89                         cache_put(new, detail);
90                         return tmp;
91                 }
92         }
93         new->next = *head;
94         *head = new;
95         detail->entries++;
96         cache_get(new);
97         write_unlock(&detail->hash_lock);
98
99         return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102
103
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108         head->expiry_time = expiry;
109         head->last_refresh = get_seconds();
110         return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112
113 static void cache_fresh_unlocked(struct cache_head *head,
114                         struct cache_detail *detail, int new)
115 {
116         if (new)
117                 cache_revisit_request(head);
118         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119                 cache_revisit_request(head);
120                 queue_loose(detail, head);
121         }
122 }
123
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125                                        struct cache_head *new, struct cache_head *old, int hash)
126 {
127         /* The 'old' entry is to be replaced by 'new'.
128          * If 'old' is not VALID, we update it directly,
129          * otherwise we need to replace it
130          */
131         struct cache_head **head;
132         struct cache_head *tmp;
133         int is_new;
134
135         if (!test_bit(CACHE_VALID, &old->flags)) {
136                 write_lock(&detail->hash_lock);
137                 if (!test_bit(CACHE_VALID, &old->flags)) {
138                         if (test_bit(CACHE_NEGATIVE, &new->flags))
139                                 set_bit(CACHE_NEGATIVE, &old->flags);
140                         else
141                                 detail->update(old, new);
142                         is_new = cache_fresh_locked(old, new->expiry_time);
143                         write_unlock(&detail->hash_lock);
144                         cache_fresh_unlocked(old, detail, is_new);
145                         return old;
146                 }
147                 write_unlock(&detail->hash_lock);
148         }
149         /* We need to insert a new entry */
150         tmp = detail->alloc();
151         if (!tmp) {
152                 cache_put(old, detail);
153                 return NULL;
154         }
155         cache_init(tmp);
156         detail->init(tmp, old);
157         head = &detail->hash_table[hash];
158
159         write_lock(&detail->hash_lock);
160         if (test_bit(CACHE_NEGATIVE, &new->flags))
161                 set_bit(CACHE_NEGATIVE, &tmp->flags);
162         else
163                 detail->update(tmp, new);
164         tmp->next = *head;
165         *head = tmp;
166         detail->entries++;
167         cache_get(tmp);
168         is_new = cache_fresh_locked(tmp, new->expiry_time);
169         cache_fresh_locked(old, 0);
170         write_unlock(&detail->hash_lock);
171         cache_fresh_unlocked(tmp, detail, is_new);
172         cache_fresh_unlocked(old, detail, 0);
173         cache_put(old, detail);
174         return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192                     struct cache_head *h, struct cache_req *rqstp)
193 {
194         int rv;
195         long refresh_age, age;
196
197         /* First decide return status as best we can */
198         if (!test_bit(CACHE_VALID, &h->flags) ||
199             h->expiry_time < get_seconds())
200                 rv = -EAGAIN;
201         else if (detail->flush_time > h->last_refresh)
202                 rv = -EAGAIN;
203         else {
204                 /* entry is valid */
205                 if (test_bit(CACHE_NEGATIVE, &h->flags))
206                         rv = -ENOENT;
207                 else rv = 0;
208         }
209
210         /* now see if we want to start an upcall */
211         refresh_age = (h->expiry_time - h->last_refresh);
212         age = get_seconds() - h->last_refresh;
213
214         if (rqstp == NULL) {
215                 if (rv == -EAGAIN)
216                         rv = -ENOENT;
217         } else if (rv == -EAGAIN || age > refresh_age/2) {
218                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219                                 refresh_age, age);
220                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221                         switch (cache_make_upcall(detail, h)) {
222                         case -EINVAL:
223                                 clear_bit(CACHE_PENDING, &h->flags);
224                                 if (rv == -EAGAIN) {
225                                         set_bit(CACHE_NEGATIVE, &h->flags);
226                                         cache_fresh_unlocked(h, detail,
227                                              cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228                                         rv = -ENOENT;
229                                 }
230                                 break;
231
232                         case -EAGAIN:
233                                 clear_bit(CACHE_PENDING, &h->flags);
234                                 cache_revisit_request(h);
235                                 break;
236                         }
237                 }
238         }
239
240         if (rv == -EAGAIN)
241                 if (cache_defer_req(rqstp, h) != 0)
242                         rv = -ETIMEDOUT;
243
244         if (rv)
245                 cache_put(h, detail);
246         return rv;
247 }
248 EXPORT_SYMBOL(cache_check);
249
250 /*
251  * caches need to be periodically cleaned.
252  * For this we maintain a list of cache_detail and
253  * a current pointer into that list and into the table
254  * for that entry.
255  *
256  * Each time clean_cache is called it finds the next non-empty entry
257  * in the current table and walks the list in that entry
258  * looking for entries that can be removed.
259  *
260  * An entry gets removed if:
261  * - The expiry is before current time
262  * - The last_refresh time is before the flush_time for that cache
263  *
264  * later we might drop old entries with non-NEVER expiry if that table
265  * is getting 'full' for some definition of 'full'
266  *
267  * The question of "how often to scan a table" is an interesting one
268  * and is answered in part by the use of the "nextcheck" field in the
269  * cache_detail.
270  * When a scan of a table begins, the nextcheck field is set to a time
271  * that is well into the future.
272  * While scanning, if an expiry time is found that is earlier than the
273  * current nextcheck time, nextcheck is set to that expiry time.
274  * If the flush_time is ever set to a time earlier than the nextcheck
275  * time, the nextcheck time is then set to that flush_time.
276  *
277  * A table is then only scanned if the current time is at least
278  * the nextcheck time.
279  *
280  */
281
282 static LIST_HEAD(cache_list);
283 static DEFINE_SPINLOCK(cache_list_lock);
284 static struct cache_detail *current_detail;
285 static int current_index;
286
287 static const struct file_operations cache_file_operations;
288 static const struct file_operations content_file_operations;
289 static const struct file_operations cache_flush_operations;
290
291 static void do_cache_clean(struct work_struct *work);
292 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293
294 static void remove_cache_proc_entries(struct cache_detail *cd)
295 {
296         if (cd->proc_ent == NULL)
297                 return;
298         if (cd->flush_ent)
299                 remove_proc_entry("flush", cd->proc_ent);
300         if (cd->channel_ent)
301                 remove_proc_entry("channel", cd->proc_ent);
302         if (cd->content_ent)
303                 remove_proc_entry("content", cd->proc_ent);
304         cd->proc_ent = NULL;
305         remove_proc_entry(cd->name, proc_net_rpc);
306 }
307
308 #ifdef CONFIG_PROC_FS
309 static int create_cache_proc_entries(struct cache_detail *cd)
310 {
311         struct proc_dir_entry *p;
312
313         cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
314         if (cd->proc_ent == NULL)
315                 goto out_nomem;
316         cd->proc_ent->owner = cd->owner;
317         cd->channel_ent = cd->content_ent = NULL;
318
319         p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR, cd->proc_ent);
320         cd->flush_ent = p;
321         if (p == NULL)
322                 goto out_nomem;
323         p->proc_fops = &cache_flush_operations;
324         p->owner = cd->owner;
325         p->data = cd;
326
327         if (cd->cache_request || cd->cache_parse) {
328                 p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
329                                       cd->proc_ent);
330                 cd->channel_ent = p;
331                 if (p == NULL)
332                         goto out_nomem;
333                 p->proc_fops = &cache_file_operations;
334                 p->owner = cd->owner;
335                 p->data = cd;
336         }
337         if (cd->cache_show) {
338                 p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
339                                       cd->proc_ent);
340                 cd->content_ent = p;
341                 if (p == NULL)
342                         goto out_nomem;
343                 p->proc_fops = &content_file_operations;
344                 p->owner = cd->owner;
345                 p->data = cd;
346         }
347         return 0;
348 out_nomem:
349         remove_cache_proc_entries(cd);
350         return -ENOMEM;
351 }
352 #else /* CONFIG_PROC_FS */
353 static int create_cache_proc_entries(struct cache_detail *cd)
354 {
355         return 0;
356 }
357 #endif
358
359 int cache_register(struct cache_detail *cd)
360 {
361         int ret;
362
363         ret = create_cache_proc_entries(cd);
364         if (ret)
365                 return ret;
366         rwlock_init(&cd->hash_lock);
367         INIT_LIST_HEAD(&cd->queue);
368         spin_lock(&cache_list_lock);
369         cd->nextcheck = 0;
370         cd->entries = 0;
371         atomic_set(&cd->readers, 0);
372         cd->last_close = 0;
373         cd->last_warn = -1;
374         list_add(&cd->others, &cache_list);
375         spin_unlock(&cache_list_lock);
376
377         /* start the cleaning process */
378         schedule_delayed_work(&cache_cleaner, 0);
379         return 0;
380 }
381 EXPORT_SYMBOL(cache_register);
382
383 void cache_unregister(struct cache_detail *cd)
384 {
385         cache_purge(cd);
386         spin_lock(&cache_list_lock);
387         write_lock(&cd->hash_lock);
388         if (cd->entries || atomic_read(&cd->inuse)) {
389                 write_unlock(&cd->hash_lock);
390                 spin_unlock(&cache_list_lock);
391                 goto out;
392         }
393         if (current_detail == cd)
394                 current_detail = NULL;
395         list_del_init(&cd->others);
396         write_unlock(&cd->hash_lock);
397         spin_unlock(&cache_list_lock);
398         remove_cache_proc_entries(cd);
399         if (list_empty(&cache_list)) {
400                 /* module must be being unloaded so its safe to kill the worker */
401                 cancel_delayed_work_sync(&cache_cleaner);
402         }
403         return;
404 out:
405         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
406 }
407 EXPORT_SYMBOL(cache_unregister);
408
409 /* clean cache tries to find something to clean
410  * and cleans it.
411  * It returns 1 if it cleaned something,
412  *            0 if it didn't find anything this time
413  *           -1 if it fell off the end of the list.
414  */
415 static int cache_clean(void)
416 {
417         int rv = 0;
418         struct list_head *next;
419
420         spin_lock(&cache_list_lock);
421
422         /* find a suitable table if we don't already have one */
423         while (current_detail == NULL ||
424             current_index >= current_detail->hash_size) {
425                 if (current_detail)
426                         next = current_detail->others.next;
427                 else
428                         next = cache_list.next;
429                 if (next == &cache_list) {
430                         current_detail = NULL;
431                         spin_unlock(&cache_list_lock);
432                         return -1;
433                 }
434                 current_detail = list_entry(next, struct cache_detail, others);
435                 if (current_detail->nextcheck > get_seconds())
436                         current_index = current_detail->hash_size;
437                 else {
438                         current_index = 0;
439                         current_detail->nextcheck = get_seconds()+30*60;
440                 }
441         }
442
443         /* find a non-empty bucket in the table */
444         while (current_detail &&
445                current_index < current_detail->hash_size &&
446                current_detail->hash_table[current_index] == NULL)
447                 current_index++;
448
449         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
450
451         if (current_detail && current_index < current_detail->hash_size) {
452                 struct cache_head *ch, **cp;
453                 struct cache_detail *d;
454
455                 write_lock(&current_detail->hash_lock);
456
457                 /* Ok, now to clean this strand */
458
459                 cp = & current_detail->hash_table[current_index];
460                 ch = *cp;
461                 for (; ch; cp= & ch->next, ch= *cp) {
462                         if (current_detail->nextcheck > ch->expiry_time)
463                                 current_detail->nextcheck = ch->expiry_time+1;
464                         if (ch->expiry_time >= get_seconds()
465                             && ch->last_refresh >= current_detail->flush_time
466                                 )
467                                 continue;
468                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
469                                 queue_loose(current_detail, ch);
470
471                         if (atomic_read(&ch->ref.refcount) == 1)
472                                 break;
473                 }
474                 if (ch) {
475                         *cp = ch->next;
476                         ch->next = NULL;
477                         current_detail->entries--;
478                         rv = 1;
479                 }
480                 write_unlock(&current_detail->hash_lock);
481                 d = current_detail;
482                 if (!ch)
483                         current_index ++;
484                 spin_unlock(&cache_list_lock);
485                 if (ch)
486                         cache_put(ch, d);
487         } else
488                 spin_unlock(&cache_list_lock);
489
490         return rv;
491 }
492
493 /*
494  * We want to regularly clean the cache, so we need to schedule some work ...
495  */
496 static void do_cache_clean(struct work_struct *work)
497 {
498         int delay = 5;
499         if (cache_clean() == -1)
500                 delay = 30*HZ;
501
502         if (list_empty(&cache_list))
503                 delay = 0;
504
505         if (delay)
506                 schedule_delayed_work(&cache_cleaner, delay);
507 }
508
509
510 /*
511  * Clean all caches promptly.  This just calls cache_clean
512  * repeatedly until we are sure that every cache has had a chance to
513  * be fully cleaned
514  */
515 void cache_flush(void)
516 {
517         while (cache_clean() != -1)
518                 cond_resched();
519         while (cache_clean() != -1)
520                 cond_resched();
521 }
522 EXPORT_SYMBOL(cache_flush);
523
524 void cache_purge(struct cache_detail *detail)
525 {
526         detail->flush_time = LONG_MAX;
527         detail->nextcheck = get_seconds();
528         cache_flush();
529         detail->flush_time = 1;
530 }
531 EXPORT_SYMBOL(cache_purge);
532
533
534 /*
535  * Deferral and Revisiting of Requests.
536  *
537  * If a cache lookup finds a pending entry, we
538  * need to defer the request and revisit it later.
539  * All deferred requests are stored in a hash table,
540  * indexed by "struct cache_head *".
541  * As it may be wasteful to store a whole request
542  * structure, we allow the request to provide a
543  * deferred form, which must contain a
544  * 'struct cache_deferred_req'
545  * This cache_deferred_req contains a method to allow
546  * it to be revisited when cache info is available
547  */
548
549 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
550 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
551
552 #define DFR_MAX 300     /* ??? */
553
554 static DEFINE_SPINLOCK(cache_defer_lock);
555 static LIST_HEAD(cache_defer_list);
556 static struct list_head cache_defer_hash[DFR_HASHSIZE];
557 static int cache_defer_cnt;
558
559 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
560 {
561         struct cache_deferred_req *dreq;
562         int hash = DFR_HASH(item);
563
564         if (cache_defer_cnt >= DFR_MAX) {
565                 /* too much in the cache, randomly drop this one,
566                  * or continue and drop the oldest below
567                  */
568                 if (net_random()&1)
569                         return -ETIMEDOUT;
570         }
571         dreq = req->defer(req);
572         if (dreq == NULL)
573                 return -ETIMEDOUT;
574
575         dreq->item = item;
576         dreq->recv_time = get_seconds();
577
578         spin_lock(&cache_defer_lock);
579
580         list_add(&dreq->recent, &cache_defer_list);
581
582         if (cache_defer_hash[hash].next == NULL)
583                 INIT_LIST_HEAD(&cache_defer_hash[hash]);
584         list_add(&dreq->hash, &cache_defer_hash[hash]);
585
586         /* it is in, now maybe clean up */
587         dreq = NULL;
588         if (++cache_defer_cnt > DFR_MAX) {
589                 dreq = list_entry(cache_defer_list.prev,
590                                   struct cache_deferred_req, recent);
591                 list_del(&dreq->recent);
592                 list_del(&dreq->hash);
593                 cache_defer_cnt--;
594         }
595         spin_unlock(&cache_defer_lock);
596
597         if (dreq) {
598                 /* there was one too many */
599                 dreq->revisit(dreq, 1);
600         }
601         if (!test_bit(CACHE_PENDING, &item->flags)) {
602                 /* must have just been validated... */
603                 cache_revisit_request(item);
604         }
605         return 0;
606 }
607
608 static void cache_revisit_request(struct cache_head *item)
609 {
610         struct cache_deferred_req *dreq;
611         struct list_head pending;
612
613         struct list_head *lp;
614         int hash = DFR_HASH(item);
615
616         INIT_LIST_HEAD(&pending);
617         spin_lock(&cache_defer_lock);
618
619         lp = cache_defer_hash[hash].next;
620         if (lp) {
621                 while (lp != &cache_defer_hash[hash]) {
622                         dreq = list_entry(lp, struct cache_deferred_req, hash);
623                         lp = lp->next;
624                         if (dreq->item == item) {
625                                 list_del(&dreq->hash);
626                                 list_move(&dreq->recent, &pending);
627                                 cache_defer_cnt--;
628                         }
629                 }
630         }
631         spin_unlock(&cache_defer_lock);
632
633         while (!list_empty(&pending)) {
634                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
635                 list_del_init(&dreq->recent);
636                 dreq->revisit(dreq, 0);
637         }
638 }
639
640 void cache_clean_deferred(void *owner)
641 {
642         struct cache_deferred_req *dreq, *tmp;
643         struct list_head pending;
644
645
646         INIT_LIST_HEAD(&pending);
647         spin_lock(&cache_defer_lock);
648
649         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
650                 if (dreq->owner == owner) {
651                         list_del(&dreq->hash);
652                         list_move(&dreq->recent, &pending);
653                         cache_defer_cnt--;
654                 }
655         }
656         spin_unlock(&cache_defer_lock);
657
658         while (!list_empty(&pending)) {
659                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
660                 list_del_init(&dreq->recent);
661                 dreq->revisit(dreq, 1);
662         }
663 }
664
665 /*
666  * communicate with user-space
667  *
668  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
669  * On read, you get a full request, or block.
670  * On write, an update request is processed.
671  * Poll works if anything to read, and always allows write.
672  *
673  * Implemented by linked list of requests.  Each open file has
674  * a ->private that also exists in this list.  New requests are added
675  * to the end and may wakeup and preceding readers.
676  * New readers are added to the head.  If, on read, an item is found with
677  * CACHE_UPCALLING clear, we free it from the list.
678  *
679  */
680
681 static DEFINE_SPINLOCK(queue_lock);
682 static DEFINE_MUTEX(queue_io_mutex);
683
684 struct cache_queue {
685         struct list_head        list;
686         int                     reader; /* if 0, then request */
687 };
688 struct cache_request {
689         struct cache_queue      q;
690         struct cache_head       *item;
691         char                    * buf;
692         int                     len;
693         int                     readers;
694 };
695 struct cache_reader {
696         struct cache_queue      q;
697         int                     offset; /* if non-0, we have a refcnt on next request */
698 };
699
700 static ssize_t
701 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
702 {
703         struct cache_reader *rp = filp->private_data;
704         struct cache_request *rq;
705         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
706         int err;
707
708         if (count == 0)
709                 return 0;
710
711         mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
712                               * readers on this file */
713  again:
714         spin_lock(&queue_lock);
715         /* need to find next request */
716         while (rp->q.list.next != &cd->queue &&
717                list_entry(rp->q.list.next, struct cache_queue, list)
718                ->reader) {
719                 struct list_head *next = rp->q.list.next;
720                 list_move(&rp->q.list, next);
721         }
722         if (rp->q.list.next == &cd->queue) {
723                 spin_unlock(&queue_lock);
724                 mutex_unlock(&queue_io_mutex);
725                 BUG_ON(rp->offset);
726                 return 0;
727         }
728         rq = container_of(rp->q.list.next, struct cache_request, q.list);
729         BUG_ON(rq->q.reader);
730         if (rp->offset == 0)
731                 rq->readers++;
732         spin_unlock(&queue_lock);
733
734         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
735                 err = -EAGAIN;
736                 spin_lock(&queue_lock);
737                 list_move(&rp->q.list, &rq->q.list);
738                 spin_unlock(&queue_lock);
739         } else {
740                 if (rp->offset + count > rq->len)
741                         count = rq->len - rp->offset;
742                 err = -EFAULT;
743                 if (copy_to_user(buf, rq->buf + rp->offset, count))
744                         goto out;
745                 rp->offset += count;
746                 if (rp->offset >= rq->len) {
747                         rp->offset = 0;
748                         spin_lock(&queue_lock);
749                         list_move(&rp->q.list, &rq->q.list);
750                         spin_unlock(&queue_lock);
751                 }
752                 err = 0;
753         }
754  out:
755         if (rp->offset == 0) {
756                 /* need to release rq */
757                 spin_lock(&queue_lock);
758                 rq->readers--;
759                 if (rq->readers == 0 &&
760                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
761                         list_del(&rq->q.list);
762                         spin_unlock(&queue_lock);
763                         cache_put(rq->item, cd);
764                         kfree(rq->buf);
765                         kfree(rq);
766                 } else
767                         spin_unlock(&queue_lock);
768         }
769         if (err == -EAGAIN)
770                 goto again;
771         mutex_unlock(&queue_io_mutex);
772         return err ? err :  count;
773 }
774
775 static char write_buf[8192]; /* protected by queue_io_mutex */
776
777 static ssize_t
778 cache_write(struct file *filp, const char __user *buf, size_t count,
779             loff_t *ppos)
780 {
781         int err;
782         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
783
784         if (count == 0)
785                 return 0;
786         if (count >= sizeof(write_buf))
787                 return -EINVAL;
788
789         mutex_lock(&queue_io_mutex);
790
791         if (copy_from_user(write_buf, buf, count)) {
792                 mutex_unlock(&queue_io_mutex);
793                 return -EFAULT;
794         }
795         write_buf[count] = '\0';
796         if (cd->cache_parse)
797                 err = cd->cache_parse(cd, write_buf, count);
798         else
799                 err = -EINVAL;
800
801         mutex_unlock(&queue_io_mutex);
802         return err ? err : count;
803 }
804
805 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
806
807 static unsigned int
808 cache_poll(struct file *filp, poll_table *wait)
809 {
810         unsigned int mask;
811         struct cache_reader *rp = filp->private_data;
812         struct cache_queue *cq;
813         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
814
815         poll_wait(filp, &queue_wait, wait);
816
817         /* alway allow write */
818         mask = POLL_OUT | POLLWRNORM;
819
820         if (!rp)
821                 return mask;
822
823         spin_lock(&queue_lock);
824
825         for (cq= &rp->q; &cq->list != &cd->queue;
826              cq = list_entry(cq->list.next, struct cache_queue, list))
827                 if (!cq->reader) {
828                         mask |= POLLIN | POLLRDNORM;
829                         break;
830                 }
831         spin_unlock(&queue_lock);
832         return mask;
833 }
834
835 static int
836 cache_ioctl(struct inode *ino, struct file *filp,
837             unsigned int cmd, unsigned long arg)
838 {
839         int len = 0;
840         struct cache_reader *rp = filp->private_data;
841         struct cache_queue *cq;
842         struct cache_detail *cd = PDE(ino)->data;
843
844         if (cmd != FIONREAD || !rp)
845                 return -EINVAL;
846
847         spin_lock(&queue_lock);
848
849         /* only find the length remaining in current request,
850          * or the length of the next request
851          */
852         for (cq= &rp->q; &cq->list != &cd->queue;
853              cq = list_entry(cq->list.next, struct cache_queue, list))
854                 if (!cq->reader) {
855                         struct cache_request *cr =
856                                 container_of(cq, struct cache_request, q);
857                         len = cr->len - rp->offset;
858                         break;
859                 }
860         spin_unlock(&queue_lock);
861
862         return put_user(len, (int __user *)arg);
863 }
864
865 static int
866 cache_open(struct inode *inode, struct file *filp)
867 {
868         struct cache_reader *rp = NULL;
869
870         nonseekable_open(inode, filp);
871         if (filp->f_mode & FMODE_READ) {
872                 struct cache_detail *cd = PDE(inode)->data;
873
874                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
875                 if (!rp)
876                         return -ENOMEM;
877                 rp->offset = 0;
878                 rp->q.reader = 1;
879                 atomic_inc(&cd->readers);
880                 spin_lock(&queue_lock);
881                 list_add(&rp->q.list, &cd->queue);
882                 spin_unlock(&queue_lock);
883         }
884         filp->private_data = rp;
885         return 0;
886 }
887
888 static int
889 cache_release(struct inode *inode, struct file *filp)
890 {
891         struct cache_reader *rp = filp->private_data;
892         struct cache_detail *cd = PDE(inode)->data;
893
894         if (rp) {
895                 spin_lock(&queue_lock);
896                 if (rp->offset) {
897                         struct cache_queue *cq;
898                         for (cq= &rp->q; &cq->list != &cd->queue;
899                              cq = list_entry(cq->list.next, struct cache_queue, list))
900                                 if (!cq->reader) {
901                                         container_of(cq, struct cache_request, q)
902                                                 ->readers--;
903                                         break;
904                                 }
905                         rp->offset = 0;
906                 }
907                 list_del(&rp->q.list);
908                 spin_unlock(&queue_lock);
909
910                 filp->private_data = NULL;
911                 kfree(rp);
912
913                 cd->last_close = get_seconds();
914                 atomic_dec(&cd->readers);
915         }
916         return 0;
917 }
918
919
920
921 static const struct file_operations cache_file_operations = {
922         .owner          = THIS_MODULE,
923         .llseek         = no_llseek,
924         .read           = cache_read,
925         .write          = cache_write,
926         .poll           = cache_poll,
927         .ioctl          = cache_ioctl, /* for FIONREAD */
928         .open           = cache_open,
929         .release        = cache_release,
930 };
931
932
933 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
934 {
935         struct cache_queue *cq;
936         spin_lock(&queue_lock);
937         list_for_each_entry(cq, &detail->queue, list)
938                 if (!cq->reader) {
939                         struct cache_request *cr = container_of(cq, struct cache_request, q);
940                         if (cr->item != ch)
941                                 continue;
942                         if (cr->readers != 0)
943                                 continue;
944                         list_del(&cr->q.list);
945                         spin_unlock(&queue_lock);
946                         cache_put(cr->item, detail);
947                         kfree(cr->buf);
948                         kfree(cr);
949                         return;
950                 }
951         spin_unlock(&queue_lock);
952 }
953
954 /*
955  * Support routines for text-based upcalls.
956  * Fields are separated by spaces.
957  * Fields are either mangled to quote space tab newline slosh with slosh
958  * or a hexified with a leading \x
959  * Record is terminated with newline.
960  *
961  */
962
963 void qword_add(char **bpp, int *lp, char *str)
964 {
965         char *bp = *bpp;
966         int len = *lp;
967         char c;
968
969         if (len < 0) return;
970
971         while ((c=*str++) && len)
972                 switch(c) {
973                 case ' ':
974                 case '\t':
975                 case '\n':
976                 case '\\':
977                         if (len >= 4) {
978                                 *bp++ = '\\';
979                                 *bp++ = '0' + ((c & 0300)>>6);
980                                 *bp++ = '0' + ((c & 0070)>>3);
981                                 *bp++ = '0' + ((c & 0007)>>0);
982                         }
983                         len -= 4;
984                         break;
985                 default:
986                         *bp++ = c;
987                         len--;
988                 }
989         if (c || len <1) len = -1;
990         else {
991                 *bp++ = ' ';
992                 len--;
993         }
994         *bpp = bp;
995         *lp = len;
996 }
997 EXPORT_SYMBOL(qword_add);
998
999 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1000 {
1001         char *bp = *bpp;
1002         int len = *lp;
1003
1004         if (len < 0) return;
1005
1006         if (len > 2) {
1007                 *bp++ = '\\';
1008                 *bp++ = 'x';
1009                 len -= 2;
1010                 while (blen && len >= 2) {
1011                         unsigned char c = *buf++;
1012                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1013                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1014                         len -= 2;
1015                         blen--;
1016                 }
1017         }
1018         if (blen || len<1) len = -1;
1019         else {
1020                 *bp++ = ' ';
1021                 len--;
1022         }
1023         *bpp = bp;
1024         *lp = len;
1025 }
1026 EXPORT_SYMBOL(qword_addhex);
1027
1028 static void warn_no_listener(struct cache_detail *detail)
1029 {
1030         if (detail->last_warn != detail->last_close) {
1031                 detail->last_warn = detail->last_close;
1032                 if (detail->warn_no_listener)
1033                         detail->warn_no_listener(detail);
1034         }
1035 }
1036
1037 /*
1038  * register an upcall request to user-space.
1039  * Each request is at most one page long.
1040  */
1041 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1042 {
1043
1044         char *buf;
1045         struct cache_request *crq;
1046         char *bp;
1047         int len;
1048
1049         if (detail->cache_request == NULL)
1050                 return -EINVAL;
1051
1052         if (atomic_read(&detail->readers) == 0 &&
1053             detail->last_close < get_seconds() - 30) {
1054                         warn_no_listener(detail);
1055                         return -EINVAL;
1056         }
1057
1058         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1059         if (!buf)
1060                 return -EAGAIN;
1061
1062         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1063         if (!crq) {
1064                 kfree(buf);
1065                 return -EAGAIN;
1066         }
1067
1068         bp = buf; len = PAGE_SIZE;
1069
1070         detail->cache_request(detail, h, &bp, &len);
1071
1072         if (len < 0) {
1073                 kfree(buf);
1074                 kfree(crq);
1075                 return -EAGAIN;
1076         }
1077         crq->q.reader = 0;
1078         crq->item = cache_get(h);
1079         crq->buf = buf;
1080         crq->len = PAGE_SIZE - len;
1081         crq->readers = 0;
1082         spin_lock(&queue_lock);
1083         list_add_tail(&crq->q.list, &detail->queue);
1084         spin_unlock(&queue_lock);
1085         wake_up(&queue_wait);
1086         return 0;
1087 }
1088
1089 /*
1090  * parse a message from user-space and pass it
1091  * to an appropriate cache
1092  * Messages are, like requests, separated into fields by
1093  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1094  *
1095  * Message is
1096  *   reply cachename expiry key ... content....
1097  *
1098  * key and content are both parsed by cache
1099  */
1100
1101 #define isodigit(c) (isdigit(c) && c <= '7')
1102 int qword_get(char **bpp, char *dest, int bufsize)
1103 {
1104         /* return bytes copied, or -1 on error */
1105         char *bp = *bpp;
1106         int len = 0;
1107
1108         while (*bp == ' ') bp++;
1109
1110         if (bp[0] == '\\' && bp[1] == 'x') {
1111                 /* HEX STRING */
1112                 bp += 2;
1113                 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1114                         int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1115                         bp++;
1116                         byte <<= 4;
1117                         byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1118                         *dest++ = byte;
1119                         bp++;
1120                         len++;
1121                 }
1122         } else {
1123                 /* text with \nnn octal quoting */
1124                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1125                         if (*bp == '\\' &&
1126                             isodigit(bp[1]) && (bp[1] <= '3') &&
1127                             isodigit(bp[2]) &&
1128                             isodigit(bp[3])) {
1129                                 int byte = (*++bp -'0');
1130                                 bp++;
1131                                 byte = (byte << 3) | (*bp++ - '0');
1132                                 byte = (byte << 3) | (*bp++ - '0');
1133                                 *dest++ = byte;
1134                                 len++;
1135                         } else {
1136                                 *dest++ = *bp++;
1137                                 len++;
1138                         }
1139                 }
1140         }
1141
1142         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1143                 return -1;
1144         while (*bp == ' ') bp++;
1145         *bpp = bp;
1146         *dest = '\0';
1147         return len;
1148 }
1149 EXPORT_SYMBOL(qword_get);
1150
1151
1152 /*
1153  * support /proc/sunrpc/cache/$CACHENAME/content
1154  * as a seqfile.
1155  * We call ->cache_show passing NULL for the item to
1156  * get a header, then pass each real item in the cache
1157  */
1158
1159 struct handle {
1160         struct cache_detail *cd;
1161 };
1162
1163 static void *c_start(struct seq_file *m, loff_t *pos)
1164         __acquires(cd->hash_lock)
1165 {
1166         loff_t n = *pos;
1167         unsigned hash, entry;
1168         struct cache_head *ch;
1169         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1170
1171
1172         read_lock(&cd->hash_lock);
1173         if (!n--)
1174                 return SEQ_START_TOKEN;
1175         hash = n >> 32;
1176         entry = n & ((1LL<<32) - 1);
1177
1178         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1179                 if (!entry--)
1180                         return ch;
1181         n &= ~((1LL<<32) - 1);
1182         do {
1183                 hash++;
1184                 n += 1LL<<32;
1185         } while(hash < cd->hash_size &&
1186                 cd->hash_table[hash]==NULL);
1187         if (hash >= cd->hash_size)
1188                 return NULL;
1189         *pos = n+1;
1190         return cd->hash_table[hash];
1191 }
1192
1193 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1194 {
1195         struct cache_head *ch = p;
1196         int hash = (*pos >> 32);
1197         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1198
1199         if (p == SEQ_START_TOKEN)
1200                 hash = 0;
1201         else if (ch->next == NULL) {
1202                 hash++;
1203                 *pos += 1LL<<32;
1204         } else {
1205                 ++*pos;
1206                 return ch->next;
1207         }
1208         *pos &= ~((1LL<<32) - 1);
1209         while (hash < cd->hash_size &&
1210                cd->hash_table[hash] == NULL) {
1211                 hash++;
1212                 *pos += 1LL<<32;
1213         }
1214         if (hash >= cd->hash_size)
1215                 return NULL;
1216         ++*pos;
1217         return cd->hash_table[hash];
1218 }
1219
1220 static void c_stop(struct seq_file *m, void *p)
1221         __releases(cd->hash_lock)
1222 {
1223         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1224         read_unlock(&cd->hash_lock);
1225 }
1226
1227 static int c_show(struct seq_file *m, void *p)
1228 {
1229         struct cache_head *cp = p;
1230         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1231
1232         if (p == SEQ_START_TOKEN)
1233                 return cd->cache_show(m, cd, NULL);
1234
1235         ifdebug(CACHE)
1236                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1237                            cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1238         cache_get(cp);
1239         if (cache_check(cd, cp, NULL))
1240                 /* cache_check does a cache_put on failure */
1241                 seq_printf(m, "# ");
1242         else
1243                 cache_put(cp, cd);
1244
1245         return cd->cache_show(m, cd, cp);
1246 }
1247
1248 static const struct seq_operations cache_content_op = {
1249         .start  = c_start,
1250         .next   = c_next,
1251         .stop   = c_stop,
1252         .show   = c_show,
1253 };
1254
1255 static int content_open(struct inode *inode, struct file *file)
1256 {
1257         struct handle *han;
1258         struct cache_detail *cd = PDE(inode)->data;
1259
1260         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1261         if (han == NULL)
1262                 return -ENOMEM;
1263
1264         han->cd = cd;
1265         return 0;
1266 }
1267
1268 static const struct file_operations content_file_operations = {
1269         .open           = content_open,
1270         .read           = seq_read,
1271         .llseek         = seq_lseek,
1272         .release        = seq_release_private,
1273 };
1274
1275 static ssize_t read_flush(struct file *file, char __user *buf,
1276                             size_t count, loff_t *ppos)
1277 {
1278         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1279         char tbuf[20];
1280         unsigned long p = *ppos;
1281         size_t len;
1282
1283         sprintf(tbuf, "%lu\n", cd->flush_time);
1284         len = strlen(tbuf);
1285         if (p >= len)
1286                 return 0;
1287         len -= p;
1288         if (len > count)
1289                 len = count;
1290         if (copy_to_user(buf, (void*)(tbuf+p), len))
1291                 return -EFAULT;
1292         *ppos += len;
1293         return len;
1294 }
1295
1296 static ssize_t write_flush(struct file * file, const char __user * buf,
1297                              size_t count, loff_t *ppos)
1298 {
1299         struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1300         char tbuf[20];
1301         char *ep;
1302         long flushtime;
1303         if (*ppos || count > sizeof(tbuf)-1)
1304                 return -EINVAL;
1305         if (copy_from_user(tbuf, buf, count))
1306                 return -EFAULT;
1307         tbuf[count] = 0;
1308         flushtime = simple_strtoul(tbuf, &ep, 0);
1309         if (*ep && *ep != '\n')
1310                 return -EINVAL;
1311
1312         cd->flush_time = flushtime;
1313         cd->nextcheck = get_seconds();
1314         cache_flush();
1315
1316         *ppos += count;
1317         return count;
1318 }
1319
1320 static const struct file_operations cache_flush_operations = {
1321         .open           = nonseekable_open,
1322         .read           = read_flush,
1323         .write          = write_flush,
1324 };