]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - sound/pci/ymfpci/ymfpci_main.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[linux-2.6-omap-h63xx.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mutex.h>
30
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/info.h>
34 #include <sound/tlv.h>
35 #include <sound/ymfpci.h>
36 #include <sound/asoundef.h>
37 #include <sound/mpu401.h>
38
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41
42 /*
43  *  common I/O routines
44  */
45
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50         return readb(chip->reg_area_virt + offset);
51 }
52
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55         writeb(val, chip->reg_area_virt + offset);
56 }
57
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60         return readw(chip->reg_area_virt + offset);
61 }
62
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65         writew(val, chip->reg_area_virt + offset);
66 }
67
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70         return readl(chip->reg_area_virt + offset);
71 }
72
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75         writel(val, chip->reg_area_virt + offset);
76 }
77
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80         unsigned long end_time;
81         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82         
83         end_time = jiffies + msecs_to_jiffies(750);
84         do {
85                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86                         return 0;
87                 schedule_timeout_uninterruptible(1);
88         } while (time_before(jiffies, end_time));
89         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
90         return -EBUSY;
91 }
92
93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
94 {
95         struct snd_ymfpci *chip = ac97->private_data;
96         u32 cmd;
97         
98         snd_ymfpci_codec_ready(chip, 0);
99         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
100         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
101 }
102
103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
104 {
105         struct snd_ymfpci *chip = ac97->private_data;
106
107         if (snd_ymfpci_codec_ready(chip, 0))
108                 return ~0;
109         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
110         if (snd_ymfpci_codec_ready(chip, 0))
111                 return ~0;
112         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
113                 int i;
114                 for (i = 0; i < 600; i++)
115                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
116         }
117         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
118 }
119
120 /*
121  *  Misc routines
122  */
123
124 static u32 snd_ymfpci_calc_delta(u32 rate)
125 {
126         switch (rate) {
127         case 8000:      return 0x02aaab00;
128         case 11025:     return 0x03accd00;
129         case 16000:     return 0x05555500;
130         case 22050:     return 0x07599a00;
131         case 32000:     return 0x0aaaab00;
132         case 44100:     return 0x0eb33300;
133         default:        return ((rate << 16) / 375) << 5;
134         }
135 }
136
137 static u32 def_rate[8] = {
138         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
139 };
140
141 static u32 snd_ymfpci_calc_lpfK(u32 rate)
142 {
143         u32 i;
144         static u32 val[8] = {
145                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
146                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
147         };
148         
149         if (rate == 44100)
150                 return 0x40000000;      /* FIXME: What's the right value? */
151         for (i = 0; i < 8; i++)
152                 if (rate <= def_rate[i])
153                         return val[i];
154         return val[0];
155 }
156
157 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
158 {
159         u32 i;
160         static u32 val[8] = {
161                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
162                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
163         };
164         
165         if (rate == 44100)
166                 return 0x370A0000;
167         for (i = 0; i < 8; i++)
168                 if (rate <= def_rate[i])
169                         return val[i];
170         return val[0];
171 }
172
173 /*
174  *  Hardware start management
175  */
176
177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
178 {
179         unsigned long flags;
180
181         spin_lock_irqsave(&chip->reg_lock, flags);
182         if (chip->start_count++ > 0)
183                 goto __end;
184         snd_ymfpci_writel(chip, YDSXGR_MODE,
185                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
186         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
187       __end:
188         spin_unlock_irqrestore(&chip->reg_lock, flags);
189 }
190
191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
192 {
193         unsigned long flags;
194         long timeout = 1000;
195
196         spin_lock_irqsave(&chip->reg_lock, flags);
197         if (--chip->start_count > 0)
198                 goto __end;
199         snd_ymfpci_writel(chip, YDSXGR_MODE,
200                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
201         while (timeout-- > 0) {
202                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
203                         break;
204         }
205         if (atomic_read(&chip->interrupt_sleep_count)) {
206                 atomic_set(&chip->interrupt_sleep_count, 0);
207                 wake_up(&chip->interrupt_sleep);
208         }
209       __end:
210         spin_unlock_irqrestore(&chip->reg_lock, flags);
211 }
212
213 /*
214  *  Playback voice management
215  */
216
217 static int voice_alloc(struct snd_ymfpci *chip,
218                        enum snd_ymfpci_voice_type type, int pair,
219                        struct snd_ymfpci_voice **rvoice)
220 {
221         struct snd_ymfpci_voice *voice, *voice2;
222         int idx;
223         
224         *rvoice = NULL;
225         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
226                 voice = &chip->voices[idx];
227                 voice2 = pair ? &chip->voices[idx+1] : NULL;
228                 if (voice->use || (voice2 && voice2->use))
229                         continue;
230                 voice->use = 1;
231                 if (voice2)
232                         voice2->use = 1;
233                 switch (type) {
234                 case YMFPCI_PCM:
235                         voice->pcm = 1;
236                         if (voice2)
237                                 voice2->pcm = 1;
238                         break;
239                 case YMFPCI_SYNTH:
240                         voice->synth = 1;
241                         break;
242                 case YMFPCI_MIDI:
243                         voice->midi = 1;
244                         break;
245                 }
246                 snd_ymfpci_hw_start(chip);
247                 if (voice2)
248                         snd_ymfpci_hw_start(chip);
249                 *rvoice = voice;
250                 return 0;
251         }
252         return -ENOMEM;
253 }
254
255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
256                                   enum snd_ymfpci_voice_type type, int pair,
257                                   struct snd_ymfpci_voice **rvoice)
258 {
259         unsigned long flags;
260         int result;
261         
262         if (snd_BUG_ON(!rvoice))
263                 return -EINVAL;
264         if (snd_BUG_ON(pair && type != YMFPCI_PCM))
265                 return -EINVAL;
266         
267         spin_lock_irqsave(&chip->voice_lock, flags);
268         for (;;) {
269                 result = voice_alloc(chip, type, pair, rvoice);
270                 if (result == 0 || type != YMFPCI_PCM)
271                         break;
272                 /* TODO: synth/midi voice deallocation */
273                 break;
274         }
275         spin_unlock_irqrestore(&chip->voice_lock, flags);       
276         return result;          
277 }
278
279 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
280 {
281         unsigned long flags;
282         
283         if (snd_BUG_ON(!pvoice))
284                 return -EINVAL;
285         snd_ymfpci_hw_stop(chip);
286         spin_lock_irqsave(&chip->voice_lock, flags);
287         if (pvoice->number == chip->src441_used) {
288                 chip->src441_used = -1;
289                 pvoice->ypcm->use_441_slot = 0;
290         }
291         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
292         pvoice->ypcm = NULL;
293         pvoice->interrupt = NULL;
294         spin_unlock_irqrestore(&chip->voice_lock, flags);
295         return 0;
296 }
297
298 /*
299  *  PCM part
300  */
301
302 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
303 {
304         struct snd_ymfpci_pcm *ypcm;
305         u32 pos, delta;
306         
307         if ((ypcm = voice->ypcm) == NULL)
308                 return;
309         if (ypcm->substream == NULL)
310                 return;
311         spin_lock(&chip->reg_lock);
312         if (ypcm->running) {
313                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
314                 if (pos < ypcm->last_pos)
315                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
316                 else
317                         delta = pos - ypcm->last_pos;
318                 ypcm->period_pos += delta;
319                 ypcm->last_pos = pos;
320                 if (ypcm->period_pos >= ypcm->period_size) {
321                         /*
322                         printk(KERN_DEBUG
323                                "done - active_bank = 0x%x, start = 0x%x\n",
324                                chip->active_bank,
325                                voice->bank[chip->active_bank].start);
326                         */
327                         ypcm->period_pos %= ypcm->period_size;
328                         spin_unlock(&chip->reg_lock);
329                         snd_pcm_period_elapsed(ypcm->substream);
330                         spin_lock(&chip->reg_lock);
331                 }
332
333                 if (unlikely(ypcm->update_pcm_vol)) {
334                         unsigned int subs = ypcm->substream->number;
335                         unsigned int next_bank = 1 - chip->active_bank;
336                         struct snd_ymfpci_playback_bank *bank;
337                         u32 volume;
338                         
339                         bank = &voice->bank[next_bank];
340                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
341                         bank->left_gain_end = volume;
342                         if (ypcm->output_rear)
343                                 bank->eff2_gain_end = volume;
344                         if (ypcm->voices[1])
345                                 bank = &ypcm->voices[1]->bank[next_bank];
346                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
347                         bank->right_gain_end = volume;
348                         if (ypcm->output_rear)
349                                 bank->eff3_gain_end = volume;
350                         ypcm->update_pcm_vol--;
351                 }
352         }
353         spin_unlock(&chip->reg_lock);
354 }
355
356 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
357 {
358         struct snd_pcm_runtime *runtime = substream->runtime;
359         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
360         struct snd_ymfpci *chip = ypcm->chip;
361         u32 pos, delta;
362         
363         spin_lock(&chip->reg_lock);
364         if (ypcm->running) {
365                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
366                 if (pos < ypcm->last_pos)
367                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
368                 else
369                         delta = pos - ypcm->last_pos;
370                 ypcm->period_pos += delta;
371                 ypcm->last_pos = pos;
372                 if (ypcm->period_pos >= ypcm->period_size) {
373                         ypcm->period_pos %= ypcm->period_size;
374                         /*
375                         printk(KERN_DEBUG
376                                "done - active_bank = 0x%x, start = 0x%x\n",
377                                chip->active_bank,
378                                voice->bank[chip->active_bank].start);
379                         */
380                         spin_unlock(&chip->reg_lock);
381                         snd_pcm_period_elapsed(substream);
382                         spin_lock(&chip->reg_lock);
383                 }
384         }
385         spin_unlock(&chip->reg_lock);
386 }
387
388 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
389                                        int cmd)
390 {
391         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
392         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
393         struct snd_kcontrol *kctl = NULL;
394         int result = 0;
395
396         spin_lock(&chip->reg_lock);
397         if (ypcm->voices[0] == NULL) {
398                 result = -EINVAL;
399                 goto __unlock;
400         }
401         switch (cmd) {
402         case SNDRV_PCM_TRIGGER_START:
403         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
404         case SNDRV_PCM_TRIGGER_RESUME:
405                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
406                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
407                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
408                 ypcm->running = 1;
409                 break;
410         case SNDRV_PCM_TRIGGER_STOP:
411                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
412                         kctl = chip->pcm_mixer[substream->number].ctl;
413                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
414                 }
415                 /* fall through */
416         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
417         case SNDRV_PCM_TRIGGER_SUSPEND:
418                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
419                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
420                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
421                 ypcm->running = 0;
422                 break;
423         default:
424                 result = -EINVAL;
425                 break;
426         }
427       __unlock:
428         spin_unlock(&chip->reg_lock);
429         if (kctl)
430                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
431         return result;
432 }
433 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
434                                       int cmd)
435 {
436         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
437         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
438         int result = 0;
439         u32 tmp;
440
441         spin_lock(&chip->reg_lock);
442         switch (cmd) {
443         case SNDRV_PCM_TRIGGER_START:
444         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
445         case SNDRV_PCM_TRIGGER_RESUME:
446                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
447                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
448                 ypcm->running = 1;
449                 break;
450         case SNDRV_PCM_TRIGGER_STOP:
451         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
452         case SNDRV_PCM_TRIGGER_SUSPEND:
453                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
454                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
455                 ypcm->running = 0;
456                 break;
457         default:
458                 result = -EINVAL;
459                 break;
460         }
461         spin_unlock(&chip->reg_lock);
462         return result;
463 }
464
465 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
466 {
467         int err;
468
469         if (ypcm->voices[1] != NULL && voices < 2) {
470                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
471                 ypcm->voices[1] = NULL;
472         }
473         if (voices == 1 && ypcm->voices[0] != NULL)
474                 return 0;               /* already allocated */
475         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
476                 return 0;               /* already allocated */
477         if (voices > 1) {
478                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
479                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
480                         ypcm->voices[0] = NULL;
481                 }               
482         }
483         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
484         if (err < 0)
485                 return err;
486         ypcm->voices[0]->ypcm = ypcm;
487         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
488         if (voices > 1) {
489                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
490                 ypcm->voices[1]->ypcm = ypcm;
491         }
492         return 0;
493 }
494
495 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
496                                       struct snd_pcm_runtime *runtime,
497                                       int has_pcm_volume)
498 {
499         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
500         u32 format;
501         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
502         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
503         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
504         struct snd_ymfpci_playback_bank *bank;
505         unsigned int nbank;
506         u32 vol_left, vol_right;
507         u8 use_left, use_right;
508         unsigned long flags;
509
510         if (snd_BUG_ON(!voice))
511                 return;
512         if (runtime->channels == 1) {
513                 use_left = 1;
514                 use_right = 1;
515         } else {
516                 use_left = (voiceidx & 1) == 0;
517                 use_right = !use_left;
518         }
519         if (has_pcm_volume) {
520                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
521                                        [ypcm->substream->number].left << 15);
522                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
523                                         [ypcm->substream->number].right << 15);
524         } else {
525                 vol_left = cpu_to_le32(0x40000000);
526                 vol_right = cpu_to_le32(0x40000000);
527         }
528         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
529         format = runtime->channels == 2 ? 0x00010000 : 0;
530         if (snd_pcm_format_width(runtime->format) == 8)
531                 format |= 0x80000000;
532         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
533                  runtime->rate == 44100 && runtime->channels == 2 &&
534                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
535                                    ypcm->chip->src441_used == voice->number)) {
536                 ypcm->chip->src441_used = voice->number;
537                 ypcm->use_441_slot = 1;
538                 format |= 0x10000000;
539         }
540         if (ypcm->chip->src441_used == voice->number &&
541             (format & 0x10000000) == 0) {
542                 ypcm->chip->src441_used = -1;
543                 ypcm->use_441_slot = 0;
544         }
545         if (runtime->channels == 2 && (voiceidx & 1) != 0)
546                 format |= 1;
547         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
548         for (nbank = 0; nbank < 2; nbank++) {
549                 bank = &voice->bank[nbank];
550                 memset(bank, 0, sizeof(*bank));
551                 bank->format = cpu_to_le32(format);
552                 bank->base = cpu_to_le32(runtime->dma_addr);
553                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
554                 bank->lpfQ = cpu_to_le32(lpfQ);
555                 bank->delta =
556                 bank->delta_end = cpu_to_le32(delta);
557                 bank->lpfK =
558                 bank->lpfK_end = cpu_to_le32(lpfK);
559                 bank->eg_gain =
560                 bank->eg_gain_end = cpu_to_le32(0x40000000);
561
562                 if (ypcm->output_front) {
563                         if (use_left) {
564                                 bank->left_gain =
565                                 bank->left_gain_end = vol_left;
566                         }
567                         if (use_right) {
568                                 bank->right_gain =
569                                 bank->right_gain_end = vol_right;
570                         }
571                 }
572                 if (ypcm->output_rear) {
573                         if (!ypcm->swap_rear) {
574                                 if (use_left) {
575                                         bank->eff2_gain =
576                                         bank->eff2_gain_end = vol_left;
577                                 }
578                                 if (use_right) {
579                                         bank->eff3_gain =
580                                         bank->eff3_gain_end = vol_right;
581                                 }
582                         } else {
583                                 /* The SPDIF out channels seem to be swapped, so we have
584                                  * to swap them here, too.  The rear analog out channels
585                                  * will be wrong, but otherwise AC3 would not work.
586                                  */
587                                 if (use_left) {
588                                         bank->eff3_gain =
589                                         bank->eff3_gain_end = vol_left;
590                                 }
591                                 if (use_right) {
592                                         bank->eff2_gain =
593                                         bank->eff2_gain_end = vol_right;
594                                 }
595                         }
596                 }
597         }
598 }
599
600 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
601 {
602         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
603                                 4096, &chip->ac3_tmp_base) < 0)
604                 return -ENOMEM;
605
606         chip->bank_effect[3][0]->base =
607         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
608         chip->bank_effect[3][0]->loop_end =
609         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
610         chip->bank_effect[4][0]->base =
611         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
612         chip->bank_effect[4][0]->loop_end =
613         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
614
615         spin_lock_irq(&chip->reg_lock);
616         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
617                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
618         spin_unlock_irq(&chip->reg_lock);
619         return 0;
620 }
621
622 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
623 {
624         spin_lock_irq(&chip->reg_lock);
625         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
626                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
627         spin_unlock_irq(&chip->reg_lock);
628         // snd_ymfpci_irq_wait(chip);
629         if (chip->ac3_tmp_base.area) {
630                 snd_dma_free_pages(&chip->ac3_tmp_base);
631                 chip->ac3_tmp_base.area = NULL;
632         }
633         return 0;
634 }
635
636 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
637                                          struct snd_pcm_hw_params *hw_params)
638 {
639         struct snd_pcm_runtime *runtime = substream->runtime;
640         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
641         int err;
642
643         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
644                 return err;
645         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
646                 return err;
647         return 0;
648 }
649
650 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
651 {
652         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
653         struct snd_pcm_runtime *runtime = substream->runtime;
654         struct snd_ymfpci_pcm *ypcm;
655         
656         if (runtime->private_data == NULL)
657                 return 0;
658         ypcm = runtime->private_data;
659
660         /* wait, until the PCI operations are not finished */
661         snd_ymfpci_irq_wait(chip);
662         snd_pcm_lib_free_pages(substream);
663         if (ypcm->voices[1]) {
664                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
665                 ypcm->voices[1] = NULL;
666         }
667         if (ypcm->voices[0]) {
668                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
669                 ypcm->voices[0] = NULL;
670         }
671         return 0;
672 }
673
674 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
675 {
676         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
677         struct snd_pcm_runtime *runtime = substream->runtime;
678         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
679         struct snd_kcontrol *kctl;
680         unsigned int nvoice;
681
682         ypcm->period_size = runtime->period_size;
683         ypcm->buffer_size = runtime->buffer_size;
684         ypcm->period_pos = 0;
685         ypcm->last_pos = 0;
686         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
687                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
688                                           substream->pcm == chip->pcm);
689
690         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
691                 kctl = chip->pcm_mixer[substream->number].ctl;
692                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
693                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
694         }
695         return 0;
696 }
697
698 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
699                                         struct snd_pcm_hw_params *hw_params)
700 {
701         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
702 }
703
704 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
705 {
706         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
707
708         /* wait, until the PCI operations are not finished */
709         snd_ymfpci_irq_wait(chip);
710         return snd_pcm_lib_free_pages(substream);
711 }
712
713 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
714 {
715         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
716         struct snd_pcm_runtime *runtime = substream->runtime;
717         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
718         struct snd_ymfpci_capture_bank * bank;
719         int nbank;
720         u32 rate, format;
721
722         ypcm->period_size = runtime->period_size;
723         ypcm->buffer_size = runtime->buffer_size;
724         ypcm->period_pos = 0;
725         ypcm->last_pos = 0;
726         ypcm->shift = 0;
727         rate = ((48000 * 4096) / runtime->rate) - 1;
728         format = 0;
729         if (runtime->channels == 2) {
730                 format |= 2;
731                 ypcm->shift++;
732         }
733         if (snd_pcm_format_width(runtime->format) == 8)
734                 format |= 1;
735         else
736                 ypcm->shift++;
737         switch (ypcm->capture_bank_number) {
738         case 0:
739                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
740                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
741                 break;
742         case 1:
743                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
744                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
745                 break;
746         }
747         for (nbank = 0; nbank < 2; nbank++) {
748                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
749                 bank->base = cpu_to_le32(runtime->dma_addr);
750                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
751                 bank->start = 0;
752                 bank->num_of_loops = 0;
753         }
754         return 0;
755 }
756
757 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
758 {
759         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
760         struct snd_pcm_runtime *runtime = substream->runtime;
761         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
762         struct snd_ymfpci_voice *voice = ypcm->voices[0];
763
764         if (!(ypcm->running && voice))
765                 return 0;
766         return le32_to_cpu(voice->bank[chip->active_bank].start);
767 }
768
769 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
770 {
771         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
772         struct snd_pcm_runtime *runtime = substream->runtime;
773         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
774
775         if (!ypcm->running)
776                 return 0;
777         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
778 }
779
780 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
781 {
782         wait_queue_t wait;
783         int loops = 4;
784
785         while (loops-- > 0) {
786                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
787                         continue;
788                 init_waitqueue_entry(&wait, current);
789                 add_wait_queue(&chip->interrupt_sleep, &wait);
790                 atomic_inc(&chip->interrupt_sleep_count);
791                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
792                 remove_wait_queue(&chip->interrupt_sleep, &wait);
793         }
794 }
795
796 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
797 {
798         struct snd_ymfpci *chip = dev_id;
799         u32 status, nvoice, mode;
800         struct snd_ymfpci_voice *voice;
801
802         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
803         if (status & 0x80000000) {
804                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
805                 spin_lock(&chip->voice_lock);
806                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
807                         voice = &chip->voices[nvoice];
808                         if (voice->interrupt)
809                                 voice->interrupt(chip, voice);
810                 }
811                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
812                         if (chip->capture_substream[nvoice])
813                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
814                 }
815 #if 0
816                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
817                         if (chip->effect_substream[nvoice])
818                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
819                 }
820 #endif
821                 spin_unlock(&chip->voice_lock);
822                 spin_lock(&chip->reg_lock);
823                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
824                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
825                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
826                 spin_unlock(&chip->reg_lock);
827
828                 if (atomic_read(&chip->interrupt_sleep_count)) {
829                         atomic_set(&chip->interrupt_sleep_count, 0);
830                         wake_up(&chip->interrupt_sleep);
831                 }
832         }
833
834         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
835         if (status & 1) {
836                 if (chip->timer)
837                         snd_timer_interrupt(chip->timer, chip->timer->sticks);
838         }
839         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
840
841         if (chip->rawmidi)
842                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
843         return IRQ_HANDLED;
844 }
845
846 static struct snd_pcm_hardware snd_ymfpci_playback =
847 {
848         .info =                 (SNDRV_PCM_INFO_MMAP |
849                                  SNDRV_PCM_INFO_MMAP_VALID | 
850                                  SNDRV_PCM_INFO_INTERLEAVED |
851                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
852                                  SNDRV_PCM_INFO_PAUSE |
853                                  SNDRV_PCM_INFO_RESUME),
854         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
855         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
856         .rate_min =             8000,
857         .rate_max =             48000,
858         .channels_min =         1,
859         .channels_max =         2,
860         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
861         .period_bytes_min =     64,
862         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
863         .periods_min =          3,
864         .periods_max =          1024,
865         .fifo_size =            0,
866 };
867
868 static struct snd_pcm_hardware snd_ymfpci_capture =
869 {
870         .info =                 (SNDRV_PCM_INFO_MMAP |
871                                  SNDRV_PCM_INFO_MMAP_VALID |
872                                  SNDRV_PCM_INFO_INTERLEAVED |
873                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
874                                  SNDRV_PCM_INFO_PAUSE |
875                                  SNDRV_PCM_INFO_RESUME),
876         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
877         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
878         .rate_min =             8000,
879         .rate_max =             48000,
880         .channels_min =         1,
881         .channels_max =         2,
882         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
883         .period_bytes_min =     64,
884         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
885         .periods_min =          3,
886         .periods_max =          1024,
887         .fifo_size =            0,
888 };
889
890 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
891 {
892         kfree(runtime->private_data);
893 }
894
895 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
896 {
897         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
898         struct snd_pcm_runtime *runtime = substream->runtime;
899         struct snd_ymfpci_pcm *ypcm;
900
901         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
902         if (ypcm == NULL)
903                 return -ENOMEM;
904         ypcm->chip = chip;
905         ypcm->type = PLAYBACK_VOICE;
906         ypcm->substream = substream;
907         runtime->hw = snd_ymfpci_playback;
908         runtime->private_data = ypcm;
909         runtime->private_free = snd_ymfpci_pcm_free_substream;
910         /* FIXME? True value is 256/48 = 5.33333 ms */
911         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
912         return 0;
913 }
914
915 /* call with spinlock held */
916 static void ymfpci_open_extension(struct snd_ymfpci *chip)
917 {
918         if (! chip->rear_opened) {
919                 if (! chip->spdif_opened) /* set AC3 */
920                         snd_ymfpci_writel(chip, YDSXGR_MODE,
921                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
922                 /* enable second codec (4CHEN) */
923                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
924                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
925         }
926 }
927
928 /* call with spinlock held */
929 static void ymfpci_close_extension(struct snd_ymfpci *chip)
930 {
931         if (! chip->rear_opened) {
932                 if (! chip->spdif_opened)
933                         snd_ymfpci_writel(chip, YDSXGR_MODE,
934                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
935                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
936                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
937         }
938 }
939
940 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
941 {
942         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
943         struct snd_pcm_runtime *runtime = substream->runtime;
944         struct snd_ymfpci_pcm *ypcm;
945         int err;
946         
947         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
948                 return err;
949         ypcm = runtime->private_data;
950         ypcm->output_front = 1;
951         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
952         ypcm->swap_rear = 0;
953         spin_lock_irq(&chip->reg_lock);
954         if (ypcm->output_rear) {
955                 ymfpci_open_extension(chip);
956                 chip->rear_opened++;
957         }
958         spin_unlock_irq(&chip->reg_lock);
959         return 0;
960 }
961
962 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
963 {
964         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
965         struct snd_pcm_runtime *runtime = substream->runtime;
966         struct snd_ymfpci_pcm *ypcm;
967         int err;
968         
969         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
970                 return err;
971         ypcm = runtime->private_data;
972         ypcm->output_front = 0;
973         ypcm->output_rear = 1;
974         ypcm->swap_rear = 1;
975         spin_lock_irq(&chip->reg_lock);
976         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
977                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
978         ymfpci_open_extension(chip);
979         chip->spdif_pcm_bits = chip->spdif_bits;
980         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
981         chip->spdif_opened++;
982         spin_unlock_irq(&chip->reg_lock);
983
984         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
985         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
986                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
987         return 0;
988 }
989
990 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
991 {
992         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
993         struct snd_pcm_runtime *runtime = substream->runtime;
994         struct snd_ymfpci_pcm *ypcm;
995         int err;
996         
997         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
998                 return err;
999         ypcm = runtime->private_data;
1000         ypcm->output_front = 0;
1001         ypcm->output_rear = 1;
1002         ypcm->swap_rear = 0;
1003         spin_lock_irq(&chip->reg_lock);
1004         ymfpci_open_extension(chip);
1005         chip->rear_opened++;
1006         spin_unlock_irq(&chip->reg_lock);
1007         return 0;
1008 }
1009
1010 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1011                                    u32 capture_bank_number)
1012 {
1013         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1014         struct snd_pcm_runtime *runtime = substream->runtime;
1015         struct snd_ymfpci_pcm *ypcm;
1016
1017         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1018         if (ypcm == NULL)
1019                 return -ENOMEM;
1020         ypcm->chip = chip;
1021         ypcm->type = capture_bank_number + CAPTURE_REC;
1022         ypcm->substream = substream;    
1023         ypcm->capture_bank_number = capture_bank_number;
1024         chip->capture_substream[capture_bank_number] = substream;
1025         runtime->hw = snd_ymfpci_capture;
1026         /* FIXME? True value is 256/48 = 5.33333 ms */
1027         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
1028         runtime->private_data = ypcm;
1029         runtime->private_free = snd_ymfpci_pcm_free_substream;
1030         snd_ymfpci_hw_start(chip);
1031         return 0;
1032 }
1033
1034 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1035 {
1036         return snd_ymfpci_capture_open(substream, 0);
1037 }
1038
1039 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1040 {
1041         return snd_ymfpci_capture_open(substream, 1);
1042 }
1043
1044 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1045 {
1046         return 0;
1047 }
1048
1049 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1050 {
1051         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1052         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1053
1054         spin_lock_irq(&chip->reg_lock);
1055         if (ypcm->output_rear && chip->rear_opened > 0) {
1056                 chip->rear_opened--;
1057                 ymfpci_close_extension(chip);
1058         }
1059         spin_unlock_irq(&chip->reg_lock);
1060         return snd_ymfpci_playback_close_1(substream);
1061 }
1062
1063 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1064 {
1065         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1066
1067         spin_lock_irq(&chip->reg_lock);
1068         chip->spdif_opened = 0;
1069         ymfpci_close_extension(chip);
1070         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1071                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1072         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1073         spin_unlock_irq(&chip->reg_lock);
1074         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1075         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1076                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1077         return snd_ymfpci_playback_close_1(substream);
1078 }
1079
1080 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1081 {
1082         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1083
1084         spin_lock_irq(&chip->reg_lock);
1085         if (chip->rear_opened > 0) {
1086                 chip->rear_opened--;
1087                 ymfpci_close_extension(chip);
1088         }
1089         spin_unlock_irq(&chip->reg_lock);
1090         return snd_ymfpci_playback_close_1(substream);
1091 }
1092
1093 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1094 {
1095         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1096         struct snd_pcm_runtime *runtime = substream->runtime;
1097         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1098
1099         if (ypcm != NULL) {
1100                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1101                 snd_ymfpci_hw_stop(chip);
1102         }
1103         return 0;
1104 }
1105
1106 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1107         .open =                 snd_ymfpci_playback_open,
1108         .close =                snd_ymfpci_playback_close,
1109         .ioctl =                snd_pcm_lib_ioctl,
1110         .hw_params =            snd_ymfpci_playback_hw_params,
1111         .hw_free =              snd_ymfpci_playback_hw_free,
1112         .prepare =              snd_ymfpci_playback_prepare,
1113         .trigger =              snd_ymfpci_playback_trigger,
1114         .pointer =              snd_ymfpci_playback_pointer,
1115 };
1116
1117 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1118         .open =                 snd_ymfpci_capture_rec_open,
1119         .close =                snd_ymfpci_capture_close,
1120         .ioctl =                snd_pcm_lib_ioctl,
1121         .hw_params =            snd_ymfpci_capture_hw_params,
1122         .hw_free =              snd_ymfpci_capture_hw_free,
1123         .prepare =              snd_ymfpci_capture_prepare,
1124         .trigger =              snd_ymfpci_capture_trigger,
1125         .pointer =              snd_ymfpci_capture_pointer,
1126 };
1127
1128 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1129 {
1130         struct snd_pcm *pcm;
1131         int err;
1132
1133         if (rpcm)
1134                 *rpcm = NULL;
1135         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1136                 return err;
1137         pcm->private_data = chip;
1138
1139         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1140         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1141
1142         /* global setup */
1143         pcm->info_flags = 0;
1144         strcpy(pcm->name, "YMFPCI");
1145         chip->pcm = pcm;
1146
1147         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1148                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1149
1150         if (rpcm)
1151                 *rpcm = pcm;
1152         return 0;
1153 }
1154
1155 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1156         .open =                 snd_ymfpci_capture_ac97_open,
1157         .close =                snd_ymfpci_capture_close,
1158         .ioctl =                snd_pcm_lib_ioctl,
1159         .hw_params =            snd_ymfpci_capture_hw_params,
1160         .hw_free =              snd_ymfpci_capture_hw_free,
1161         .prepare =              snd_ymfpci_capture_prepare,
1162         .trigger =              snd_ymfpci_capture_trigger,
1163         .pointer =              snd_ymfpci_capture_pointer,
1164 };
1165
1166 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1167 {
1168         struct snd_pcm *pcm;
1169         int err;
1170
1171         if (rpcm)
1172                 *rpcm = NULL;
1173         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1174                 return err;
1175         pcm->private_data = chip;
1176
1177         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1178
1179         /* global setup */
1180         pcm->info_flags = 0;
1181         sprintf(pcm->name, "YMFPCI - %s",
1182                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1183         chip->pcm2 = pcm;
1184
1185         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1186                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1187
1188         if (rpcm)
1189                 *rpcm = pcm;
1190         return 0;
1191 }
1192
1193 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1194         .open =                 snd_ymfpci_playback_spdif_open,
1195         .close =                snd_ymfpci_playback_spdif_close,
1196         .ioctl =                snd_pcm_lib_ioctl,
1197         .hw_params =            snd_ymfpci_playback_hw_params,
1198         .hw_free =              snd_ymfpci_playback_hw_free,
1199         .prepare =              snd_ymfpci_playback_prepare,
1200         .trigger =              snd_ymfpci_playback_trigger,
1201         .pointer =              snd_ymfpci_playback_pointer,
1202 };
1203
1204 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1205 {
1206         struct snd_pcm *pcm;
1207         int err;
1208
1209         if (rpcm)
1210                 *rpcm = NULL;
1211         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1212                 return err;
1213         pcm->private_data = chip;
1214
1215         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1216
1217         /* global setup */
1218         pcm->info_flags = 0;
1219         strcpy(pcm->name, "YMFPCI - IEC958");
1220         chip->pcm_spdif = pcm;
1221
1222         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1223                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1224
1225         if (rpcm)
1226                 *rpcm = pcm;
1227         return 0;
1228 }
1229
1230 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1231         .open =                 snd_ymfpci_playback_4ch_open,
1232         .close =                snd_ymfpci_playback_4ch_close,
1233         .ioctl =                snd_pcm_lib_ioctl,
1234         .hw_params =            snd_ymfpci_playback_hw_params,
1235         .hw_free =              snd_ymfpci_playback_hw_free,
1236         .prepare =              snd_ymfpci_playback_prepare,
1237         .trigger =              snd_ymfpci_playback_trigger,
1238         .pointer =              snd_ymfpci_playback_pointer,
1239 };
1240
1241 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1242 {
1243         struct snd_pcm *pcm;
1244         int err;
1245
1246         if (rpcm)
1247                 *rpcm = NULL;
1248         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1249                 return err;
1250         pcm->private_data = chip;
1251
1252         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1253
1254         /* global setup */
1255         pcm->info_flags = 0;
1256         strcpy(pcm->name, "YMFPCI - Rear PCM");
1257         chip->pcm_4ch = pcm;
1258
1259         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1260                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1261
1262         if (rpcm)
1263                 *rpcm = pcm;
1264         return 0;
1265 }
1266
1267 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1268 {
1269         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1270         uinfo->count = 1;
1271         return 0;
1272 }
1273
1274 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1275                                         struct snd_ctl_elem_value *ucontrol)
1276 {
1277         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1278
1279         spin_lock_irq(&chip->reg_lock);
1280         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1281         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1282         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1283         spin_unlock_irq(&chip->reg_lock);
1284         return 0;
1285 }
1286
1287 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1288                                          struct snd_ctl_elem_value *ucontrol)
1289 {
1290         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1291         unsigned int val;
1292         int change;
1293
1294         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1295               (ucontrol->value.iec958.status[1] << 8);
1296         spin_lock_irq(&chip->reg_lock);
1297         change = chip->spdif_bits != val;
1298         chip->spdif_bits = val;
1299         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1300                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1301         spin_unlock_irq(&chip->reg_lock);
1302         return change;
1303 }
1304
1305 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1306 {
1307         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1308         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1309         .info =         snd_ymfpci_spdif_default_info,
1310         .get =          snd_ymfpci_spdif_default_get,
1311         .put =          snd_ymfpci_spdif_default_put
1312 };
1313
1314 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1315 {
1316         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1317         uinfo->count = 1;
1318         return 0;
1319 }
1320
1321 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1322                                       struct snd_ctl_elem_value *ucontrol)
1323 {
1324         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1325
1326         spin_lock_irq(&chip->reg_lock);
1327         ucontrol->value.iec958.status[0] = 0x3e;
1328         ucontrol->value.iec958.status[1] = 0xff;
1329         spin_unlock_irq(&chip->reg_lock);
1330         return 0;
1331 }
1332
1333 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1334 {
1335         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1336         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1337         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1338         .info =         snd_ymfpci_spdif_mask_info,
1339         .get =          snd_ymfpci_spdif_mask_get,
1340 };
1341
1342 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1343 {
1344         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1345         uinfo->count = 1;
1346         return 0;
1347 }
1348
1349 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1350                                         struct snd_ctl_elem_value *ucontrol)
1351 {
1352         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1353
1354         spin_lock_irq(&chip->reg_lock);
1355         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1356         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1357         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1358         spin_unlock_irq(&chip->reg_lock);
1359         return 0;
1360 }
1361
1362 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1363                                         struct snd_ctl_elem_value *ucontrol)
1364 {
1365         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1366         unsigned int val;
1367         int change;
1368
1369         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1370               (ucontrol->value.iec958.status[1] << 8);
1371         spin_lock_irq(&chip->reg_lock);
1372         change = chip->spdif_pcm_bits != val;
1373         chip->spdif_pcm_bits = val;
1374         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1375                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1376         spin_unlock_irq(&chip->reg_lock);
1377         return change;
1378 }
1379
1380 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1381 {
1382         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1383         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1384         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1385         .info =         snd_ymfpci_spdif_stream_info,
1386         .get =          snd_ymfpci_spdif_stream_get,
1387         .put =          snd_ymfpci_spdif_stream_put
1388 };
1389
1390 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1391 {
1392         static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1393
1394         info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1395         info->count = 1;
1396         info->value.enumerated.items = 3;
1397         if (info->value.enumerated.item > 2)
1398                 info->value.enumerated.item = 2;
1399         strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1400         return 0;
1401 }
1402
1403 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1404 {
1405         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1406         u16 reg;
1407
1408         spin_lock_irq(&chip->reg_lock);
1409         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1410         spin_unlock_irq(&chip->reg_lock);
1411         if (!(reg & 0x100))
1412                 value->value.enumerated.item[0] = 0;
1413         else
1414                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1415         return 0;
1416 }
1417
1418 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1419 {
1420         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1421         u16 reg, old_reg;
1422
1423         spin_lock_irq(&chip->reg_lock);
1424         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1425         if (value->value.enumerated.item[0] == 0)
1426                 reg = old_reg & ~0x100;
1427         else
1428                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1429         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1430         spin_unlock_irq(&chip->reg_lock);
1431         return reg != old_reg;
1432 }
1433
1434 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1435         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1436         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1437         .name =         "Direct Recording Source",
1438         .info =         snd_ymfpci_drec_source_info,
1439         .get =          snd_ymfpci_drec_source_get,
1440         .put =          snd_ymfpci_drec_source_put
1441 };
1442
1443 /*
1444  *  Mixer controls
1445  */
1446
1447 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1448 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1449   .info = snd_ymfpci_info_single, \
1450   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1451   .private_value = ((reg) | ((shift) << 16)) }
1452
1453 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1454
1455 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1456                                  struct snd_ctl_elem_value *ucontrol)
1457 {
1458         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1459         int reg = kcontrol->private_value & 0xffff;
1460         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1461         unsigned int mask = 1;
1462         
1463         switch (reg) {
1464         case YDSXGR_SPDIFOUTCTRL: break;
1465         case YDSXGR_SPDIFINCTRL: break;
1466         default: return -EINVAL;
1467         }
1468         ucontrol->value.integer.value[0] =
1469                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1470         return 0;
1471 }
1472
1473 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1474                                  struct snd_ctl_elem_value *ucontrol)
1475 {
1476         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1477         int reg = kcontrol->private_value & 0xffff;
1478         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1479         unsigned int mask = 1;
1480         int change;
1481         unsigned int val, oval;
1482         
1483         switch (reg) {
1484         case YDSXGR_SPDIFOUTCTRL: break;
1485         case YDSXGR_SPDIFINCTRL: break;
1486         default: return -EINVAL;
1487         }
1488         val = (ucontrol->value.integer.value[0] & mask);
1489         val <<= shift;
1490         spin_lock_irq(&chip->reg_lock);
1491         oval = snd_ymfpci_readl(chip, reg);
1492         val = (oval & ~(mask << shift)) | val;
1493         change = val != oval;
1494         snd_ymfpci_writel(chip, reg, val);
1495         spin_unlock_irq(&chip->reg_lock);
1496         return change;
1497 }
1498
1499 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1500
1501 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1502 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1503   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1504   .info = snd_ymfpci_info_double, \
1505   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1506   .private_value = reg, \
1507   .tlv = { .p = db_scale_native } }
1508
1509 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1510 {
1511         unsigned int reg = kcontrol->private_value;
1512
1513         if (reg < 0x80 || reg >= 0xc0)
1514                 return -EINVAL;
1515         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1516         uinfo->count = 2;
1517         uinfo->value.integer.min = 0;
1518         uinfo->value.integer.max = 16383;
1519         return 0;
1520 }
1521
1522 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1523 {
1524         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1525         unsigned int reg = kcontrol->private_value;
1526         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1527         unsigned int val;
1528         
1529         if (reg < 0x80 || reg >= 0xc0)
1530                 return -EINVAL;
1531         spin_lock_irq(&chip->reg_lock);
1532         val = snd_ymfpci_readl(chip, reg);
1533         spin_unlock_irq(&chip->reg_lock);
1534         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1535         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1536         return 0;
1537 }
1538
1539 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1540 {
1541         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1542         unsigned int reg = kcontrol->private_value;
1543         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1544         int change;
1545         unsigned int val1, val2, oval;
1546         
1547         if (reg < 0x80 || reg >= 0xc0)
1548                 return -EINVAL;
1549         val1 = ucontrol->value.integer.value[0] & mask;
1550         val2 = ucontrol->value.integer.value[1] & mask;
1551         val1 <<= shift_left;
1552         val2 <<= shift_right;
1553         spin_lock_irq(&chip->reg_lock);
1554         oval = snd_ymfpci_readl(chip, reg);
1555         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1556         change = val1 != oval;
1557         snd_ymfpci_writel(chip, reg, val1);
1558         spin_unlock_irq(&chip->reg_lock);
1559         return change;
1560 }
1561
1562 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1563                                        struct snd_ctl_elem_value *ucontrol)
1564 {
1565         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1566         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1567         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1568         int change;
1569         unsigned int value, oval;
1570         
1571         value = ucontrol->value.integer.value[0] & 0x3fff;
1572         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1573         spin_lock_irq(&chip->reg_lock);
1574         oval = snd_ymfpci_readl(chip, reg);
1575         change = value != oval;
1576         snd_ymfpci_writel(chip, reg, value);
1577         snd_ymfpci_writel(chip, reg2, value);
1578         spin_unlock_irq(&chip->reg_lock);
1579         return change;
1580 }
1581
1582 /*
1583  * 4ch duplication
1584  */
1585 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1586
1587 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1588 {
1589         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1590         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1591         return 0;
1592 }
1593
1594 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1595 {
1596         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1597         int change;
1598         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1599         if (change)
1600                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1601         return change;
1602 }
1603
1604
1605 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1606 {
1607         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1608         .name = "Wave Playback Volume",
1609         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1610                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1611         .info = snd_ymfpci_info_double,
1612         .get = snd_ymfpci_get_double,
1613         .put = snd_ymfpci_put_nativedacvol,
1614         .private_value = YDSXGR_NATIVEDACOUTVOL,
1615         .tlv = { .p = db_scale_native },
1616 },
1617 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1618 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1619 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1620 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1621 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1622 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1623 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1624 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1625 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1626 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1627 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1628 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1629 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1630 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1631 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1632 {
1633         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1634         .name = "4ch Duplication",
1635         .info = snd_ymfpci_info_dup4ch,
1636         .get = snd_ymfpci_get_dup4ch,
1637         .put = snd_ymfpci_put_dup4ch,
1638 },
1639 };
1640
1641
1642 /*
1643  * GPIO
1644  */
1645
1646 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1647 {
1648         u16 reg, mode;
1649         unsigned long flags;
1650
1651         spin_lock_irqsave(&chip->reg_lock, flags);
1652         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1653         reg &= ~(1 << (pin + 8));
1654         reg |= (1 << pin);
1655         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1656         /* set the level mode for input line */
1657         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1658         mode &= ~(3 << (pin * 2));
1659         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1660         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1661         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1662         spin_unlock_irqrestore(&chip->reg_lock, flags);
1663         return (mode >> pin) & 1;
1664 }
1665
1666 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1667 {
1668         u16 reg;
1669         unsigned long flags;
1670
1671         spin_lock_irqsave(&chip->reg_lock, flags);
1672         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1673         reg &= ~(1 << pin);
1674         reg &= ~(1 << (pin + 8));
1675         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1676         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1677         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1678         spin_unlock_irqrestore(&chip->reg_lock, flags);
1679
1680         return 0;
1681 }
1682
1683 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1684
1685 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1686 {
1687         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1688         int pin = (int)kcontrol->private_value;
1689         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1690         return 0;
1691 }
1692
1693 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1694 {
1695         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1696         int pin = (int)kcontrol->private_value;
1697
1698         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1699                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1700                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1701                 return 1;
1702         }
1703         return 0;
1704 }
1705
1706 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1707         .name = "Shared Rear/Line-In Switch",
1708         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1709         .info = snd_ymfpci_gpio_sw_info,
1710         .get = snd_ymfpci_gpio_sw_get,
1711         .put = snd_ymfpci_gpio_sw_put,
1712         .private_value = 2,
1713 };
1714
1715 /*
1716  * PCM voice volume
1717  */
1718
1719 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1720                                    struct snd_ctl_elem_info *uinfo)
1721 {
1722         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1723         uinfo->count = 2;
1724         uinfo->value.integer.min = 0;
1725         uinfo->value.integer.max = 0x8000;
1726         return 0;
1727 }
1728
1729 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1730                                   struct snd_ctl_elem_value *ucontrol)
1731 {
1732         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1733         unsigned int subs = kcontrol->id.subdevice;
1734
1735         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1736         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1737         return 0;
1738 }
1739
1740 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1741                                   struct snd_ctl_elem_value *ucontrol)
1742 {
1743         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1744         unsigned int subs = kcontrol->id.subdevice;
1745         struct snd_pcm_substream *substream;
1746         unsigned long flags;
1747
1748         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1749             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1750                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1751                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1752                 if (chip->pcm_mixer[subs].left > 0x8000)
1753                         chip->pcm_mixer[subs].left = 0x8000;
1754                 if (chip->pcm_mixer[subs].right > 0x8000)
1755                         chip->pcm_mixer[subs].right = 0x8000;
1756
1757                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1758                 spin_lock_irqsave(&chip->voice_lock, flags);
1759                 if (substream->runtime && substream->runtime->private_data) {
1760                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1761                         if (!ypcm->use_441_slot)
1762                                 ypcm->update_pcm_vol = 2;
1763                 }
1764                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1765                 return 1;
1766         }
1767         return 0;
1768 }
1769
1770 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1771         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1772         .name = "PCM Playback Volume",
1773         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1774                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1775         .info = snd_ymfpci_pcm_vol_info,
1776         .get = snd_ymfpci_pcm_vol_get,
1777         .put = snd_ymfpci_pcm_vol_put,
1778 };
1779
1780
1781 /*
1782  *  Mixer routines
1783  */
1784
1785 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1786 {
1787         struct snd_ymfpci *chip = bus->private_data;
1788         chip->ac97_bus = NULL;
1789 }
1790
1791 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1792 {
1793         struct snd_ymfpci *chip = ac97->private_data;
1794         chip->ac97 = NULL;
1795 }
1796
1797 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1798 {
1799         struct snd_ac97_template ac97;
1800         struct snd_kcontrol *kctl;
1801         struct snd_pcm_substream *substream;
1802         unsigned int idx;
1803         int err;
1804         static struct snd_ac97_bus_ops ops = {
1805                 .write = snd_ymfpci_codec_write,
1806                 .read = snd_ymfpci_codec_read,
1807         };
1808
1809         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1810                 return err;
1811         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1812         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1813
1814         memset(&ac97, 0, sizeof(ac97));
1815         ac97.private_data = chip;
1816         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1817         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1818                 return err;
1819
1820         /* to be sure */
1821         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1822                              AC97_EA_VRA|AC97_EA_VRM, 0);
1823
1824         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1825                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1826                         return err;
1827         }
1828
1829         /* add S/PDIF control */
1830         if (snd_BUG_ON(!chip->pcm_spdif))
1831                 return -ENXIO;
1832         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1833                 return err;
1834         kctl->id.device = chip->pcm_spdif->device;
1835         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1836                 return err;
1837         kctl->id.device = chip->pcm_spdif->device;
1838         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1839                 return err;
1840         kctl->id.device = chip->pcm_spdif->device;
1841         chip->spdif_pcm_ctl = kctl;
1842
1843         /* direct recording source */
1844         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1845             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1846                 return err;
1847
1848         /*
1849          * shared rear/line-in
1850          */
1851         if (rear_switch) {
1852                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1853                         return err;
1854         }
1855
1856         /* per-voice volume */
1857         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1858         for (idx = 0; idx < 32; ++idx) {
1859                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1860                 if (!kctl)
1861                         return -ENOMEM;
1862                 kctl->id.device = chip->pcm->device;
1863                 kctl->id.subdevice = idx;
1864                 kctl->private_value = (unsigned long)substream;
1865                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1866                         return err;
1867                 chip->pcm_mixer[idx].left = 0x8000;
1868                 chip->pcm_mixer[idx].right = 0x8000;
1869                 chip->pcm_mixer[idx].ctl = kctl;
1870                 substream = substream->next;
1871         }
1872
1873         return 0;
1874 }
1875
1876
1877 /*
1878  * timer
1879  */
1880
1881 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1882 {
1883         struct snd_ymfpci *chip;
1884         unsigned long flags;
1885         unsigned int count;
1886
1887         chip = snd_timer_chip(timer);
1888         count = (timer->sticks << 1) - 1;
1889         spin_lock_irqsave(&chip->reg_lock, flags);
1890         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1891         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1892         spin_unlock_irqrestore(&chip->reg_lock, flags);
1893         return 0;
1894 }
1895
1896 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1897 {
1898         struct snd_ymfpci *chip;
1899         unsigned long flags;
1900
1901         chip = snd_timer_chip(timer);
1902         spin_lock_irqsave(&chip->reg_lock, flags);
1903         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1904         spin_unlock_irqrestore(&chip->reg_lock, flags);
1905         return 0;
1906 }
1907
1908 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1909                                                unsigned long *num, unsigned long *den)
1910 {
1911         *num = 1;
1912         *den = 48000;
1913         return 0;
1914 }
1915
1916 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1917         .flags = SNDRV_TIMER_HW_AUTO,
1918         .resolution = 20833, /* 1/fs = 20.8333...us */
1919         .ticks = 0x8000,
1920         .start = snd_ymfpci_timer_start,
1921         .stop = snd_ymfpci_timer_stop,
1922         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1923 };
1924
1925 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1926 {
1927         struct snd_timer *timer = NULL;
1928         struct snd_timer_id tid;
1929         int err;
1930
1931         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1932         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1933         tid.card = chip->card->number;
1934         tid.device = device;
1935         tid.subdevice = 0;
1936         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1937                 strcpy(timer->name, "YMFPCI timer");
1938                 timer->private_data = chip;
1939                 timer->hw = snd_ymfpci_timer_hw;
1940         }
1941         chip->timer = timer;
1942         return err;
1943 }
1944
1945
1946 /*
1947  *  proc interface
1948  */
1949
1950 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1951                                  struct snd_info_buffer *buffer)
1952 {
1953         struct snd_ymfpci *chip = entry->private_data;
1954         int i;
1955         
1956         snd_iprintf(buffer, "YMFPCI\n\n");
1957         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1958                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1959 }
1960
1961 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1962 {
1963         struct snd_info_entry *entry;
1964         
1965         if (! snd_card_proc_new(card, "ymfpci", &entry))
1966                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1967         return 0;
1968 }
1969
1970 /*
1971  *  initialization routines
1972  */
1973
1974 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1975 {
1976         u8 cmd;
1977
1978         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1979 #if 0 // force to reset
1980         if (cmd & 0x03) {
1981 #endif
1982                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1983                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1984                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1985                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1986                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1987 #if 0
1988         }
1989 #endif
1990 }
1991
1992 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1993 {
1994         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1995 }
1996
1997 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1998 {
1999         u32 val;
2000         int timeout = 1000;
2001
2002         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2003         if (val)
2004                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2005         while (timeout-- > 0) {
2006                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2007                 if ((val & 0x00000002) == 0)
2008                         break;
2009         }
2010 }
2011
2012 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2013 {
2014         int err, is_1e;
2015         const char *name;
2016
2017         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2018                                &chip->pci->dev);
2019         if (err >= 0) {
2020                 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2021                         snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2022                         err = -EINVAL;
2023                 }
2024         }
2025         if (err < 0)
2026                 return err;
2027         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2028                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2029                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2030                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2031         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2032         err = request_firmware(&chip->controller_microcode, name,
2033                                &chip->pci->dev);
2034         if (err >= 0) {
2035                 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2036                         snd_printk(KERN_ERR "controller microcode"
2037                                    " has wrong size\n");
2038                         err = -EINVAL;
2039                 }
2040         }
2041         if (err < 0)
2042                 return err;
2043         return 0;
2044 }
2045
2046 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2047 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2048 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2049
2050 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2051 {
2052         int i;
2053         u16 ctrl;
2054         const __le32 *inst;
2055
2056         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2057         snd_ymfpci_disable_dsp(chip);
2058         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2059         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2060         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2061         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2062         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2063         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2064         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2065         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2066         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2067
2068         /* setup DSP instruction code */
2069         inst = (const __le32 *)chip->dsp_microcode->data;
2070         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2071                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2072                                   le32_to_cpu(inst[i]));
2073
2074         /* setup control instruction code */
2075         inst = (const __le32 *)chip->controller_microcode->data;
2076         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2077                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2078                                   le32_to_cpu(inst[i]));
2079
2080         snd_ymfpci_enable_dsp(chip);
2081 }
2082
2083 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2084 {
2085         long size, playback_ctrl_size;
2086         int voice, bank, reg;
2087         u8 *ptr;
2088         dma_addr_t ptr_addr;
2089
2090         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2091         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2092         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2093         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2094         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2095         
2096         size = ALIGN(playback_ctrl_size, 0x100) +
2097                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2098                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2099                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2100                chip->work_size;
2101         /* work_ptr must be aligned to 256 bytes, but it's already
2102            covered with the kernel page allocation mechanism */
2103         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2104                                 size, &chip->work_ptr) < 0) 
2105                 return -ENOMEM;
2106         ptr = chip->work_ptr.area;
2107         ptr_addr = chip->work_ptr.addr;
2108         memset(ptr, 0, size);   /* for sure */
2109
2110         chip->bank_base_playback = ptr;
2111         chip->bank_base_playback_addr = ptr_addr;
2112         chip->ctrl_playback = (u32 *)ptr;
2113         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2114         ptr += ALIGN(playback_ctrl_size, 0x100);
2115         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2116         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2117                 chip->voices[voice].number = voice;
2118                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2119                 chip->voices[voice].bank_addr = ptr_addr;
2120                 for (bank = 0; bank < 2; bank++) {
2121                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2122                         ptr += chip->bank_size_playback;
2123                         ptr_addr += chip->bank_size_playback;
2124                 }
2125         }
2126         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2127         ptr_addr = ALIGN(ptr_addr, 0x100);
2128         chip->bank_base_capture = ptr;
2129         chip->bank_base_capture_addr = ptr_addr;
2130         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2131                 for (bank = 0; bank < 2; bank++) {
2132                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2133                         ptr += chip->bank_size_capture;
2134                         ptr_addr += chip->bank_size_capture;
2135                 }
2136         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2137         ptr_addr = ALIGN(ptr_addr, 0x100);
2138         chip->bank_base_effect = ptr;
2139         chip->bank_base_effect_addr = ptr_addr;
2140         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2141                 for (bank = 0; bank < 2; bank++) {
2142                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2143                         ptr += chip->bank_size_effect;
2144                         ptr_addr += chip->bank_size_effect;
2145                 }
2146         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2147         ptr_addr = ALIGN(ptr_addr, 0x100);
2148         chip->work_base = ptr;
2149         chip->work_base_addr = ptr_addr;
2150         
2151         snd_BUG_ON(ptr + chip->work_size !=
2152                    chip->work_ptr.area + chip->work_ptr.bytes);
2153
2154         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2155         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2156         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2157         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2158         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2159
2160         /* S/PDIF output initialization */
2161         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2162         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2163         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2164
2165         /* S/PDIF input initialization */
2166         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2167
2168         /* digital mixer setup */
2169         for (reg = 0x80; reg < 0xc0; reg += 4)
2170                 snd_ymfpci_writel(chip, reg, 0);
2171         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2172         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2173         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2174         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2175         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2176         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2177         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2178         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2179         
2180         return 0;
2181 }
2182
2183 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2184 {
2185         u16 ctrl;
2186
2187         if (snd_BUG_ON(!chip))
2188                 return -EINVAL;
2189
2190         if (chip->res_reg_area) {       /* don't touch busy hardware */
2191                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2192                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2193                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2194                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2195                 snd_ymfpci_disable_dsp(chip);
2196                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2197                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2198                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2199                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2200                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2201                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2202                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2203         }
2204
2205         snd_ymfpci_ac3_done(chip);
2206
2207         /* Set PCI device to D3 state */
2208 #if 0
2209         /* FIXME: temporarily disabled, otherwise we cannot fire up
2210          * the chip again unless reboot.  ACPI bug?
2211          */
2212         pci_set_power_state(chip->pci, 3);
2213 #endif
2214
2215 #ifdef CONFIG_PM
2216         vfree(chip->saved_regs);
2217 #endif
2218         if (chip->irq >= 0)
2219                 free_irq(chip->irq, chip);
2220         release_and_free_resource(chip->mpu_res);
2221         release_and_free_resource(chip->fm_res);
2222         snd_ymfpci_free_gameport(chip);
2223         if (chip->reg_area_virt)
2224                 iounmap(chip->reg_area_virt);
2225         if (chip->work_ptr.area)
2226                 snd_dma_free_pages(&chip->work_ptr);
2227         
2228         release_and_free_resource(chip->res_reg_area);
2229
2230         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2231         
2232         pci_disable_device(chip->pci);
2233         release_firmware(chip->dsp_microcode);
2234         release_firmware(chip->controller_microcode);
2235         kfree(chip);
2236         return 0;
2237 }
2238
2239 static int snd_ymfpci_dev_free(struct snd_device *device)
2240 {
2241         struct snd_ymfpci *chip = device->device_data;
2242         return snd_ymfpci_free(chip);
2243 }
2244
2245 #ifdef CONFIG_PM
2246 static int saved_regs_index[] = {
2247         /* spdif */
2248         YDSXGR_SPDIFOUTCTRL,
2249         YDSXGR_SPDIFOUTSTATUS,
2250         YDSXGR_SPDIFINCTRL,
2251         /* volumes */
2252         YDSXGR_PRIADCLOOPVOL,
2253         YDSXGR_NATIVEDACINVOL,
2254         YDSXGR_NATIVEDACOUTVOL,
2255         YDSXGR_BUF441OUTVOL,
2256         YDSXGR_NATIVEADCINVOL,
2257         YDSXGR_SPDIFLOOPVOL,
2258         YDSXGR_SPDIFOUTVOL,
2259         YDSXGR_ZVOUTVOL,
2260         YDSXGR_LEGACYOUTVOL,
2261         /* address bases */
2262         YDSXGR_PLAYCTRLBASE,
2263         YDSXGR_RECCTRLBASE,
2264         YDSXGR_EFFCTRLBASE,
2265         YDSXGR_WORKBASE,
2266         /* capture set up */
2267         YDSXGR_MAPOFREC,
2268         YDSXGR_RECFORMAT,
2269         YDSXGR_RECSLOTSR,
2270         YDSXGR_ADCFORMAT,
2271         YDSXGR_ADCSLOTSR,
2272 };
2273 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2274
2275 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2276 {
2277         struct snd_card *card = pci_get_drvdata(pci);
2278         struct snd_ymfpci *chip = card->private_data;
2279         unsigned int i;
2280         
2281         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2282         snd_pcm_suspend_all(chip->pcm);
2283         snd_pcm_suspend_all(chip->pcm2);
2284         snd_pcm_suspend_all(chip->pcm_spdif);
2285         snd_pcm_suspend_all(chip->pcm_4ch);
2286         snd_ac97_suspend(chip->ac97);
2287         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2288                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2289         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2290         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2291         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2292         snd_ymfpci_disable_dsp(chip);
2293         pci_disable_device(pci);
2294         pci_save_state(pci);
2295         pci_set_power_state(pci, pci_choose_state(pci, state));
2296         return 0;
2297 }
2298
2299 int snd_ymfpci_resume(struct pci_dev *pci)
2300 {
2301         struct snd_card *card = pci_get_drvdata(pci);
2302         struct snd_ymfpci *chip = card->private_data;
2303         unsigned int i;
2304
2305         pci_set_power_state(pci, PCI_D0);
2306         pci_restore_state(pci);
2307         if (pci_enable_device(pci) < 0) {
2308                 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2309                        "disabling device\n");
2310                 snd_card_disconnect(card);
2311                 return -EIO;
2312         }
2313         pci_set_master(pci);
2314         snd_ymfpci_aclink_reset(pci);
2315         snd_ymfpci_codec_ready(chip, 0);
2316         snd_ymfpci_download_image(chip);
2317         udelay(100);
2318
2319         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2320                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2321
2322         snd_ac97_resume(chip->ac97);
2323
2324         /* start hw again */
2325         if (chip->start_count > 0) {
2326                 spin_lock_irq(&chip->reg_lock);
2327                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2328                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2329                 spin_unlock_irq(&chip->reg_lock);
2330         }
2331         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2332         return 0;
2333 }
2334 #endif /* CONFIG_PM */
2335
2336 int __devinit snd_ymfpci_create(struct snd_card *card,
2337                                 struct pci_dev * pci,
2338                                 unsigned short old_legacy_ctrl,
2339                                 struct snd_ymfpci ** rchip)
2340 {
2341         struct snd_ymfpci *chip;
2342         int err;
2343         static struct snd_device_ops ops = {
2344                 .dev_free =     snd_ymfpci_dev_free,
2345         };
2346         
2347         *rchip = NULL;
2348
2349         /* enable PCI device */
2350         if ((err = pci_enable_device(pci)) < 0)
2351                 return err;
2352
2353         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2354         if (chip == NULL) {
2355                 pci_disable_device(pci);
2356                 return -ENOMEM;
2357         }
2358         chip->old_legacy_ctrl = old_legacy_ctrl;
2359         spin_lock_init(&chip->reg_lock);
2360         spin_lock_init(&chip->voice_lock);
2361         init_waitqueue_head(&chip->interrupt_sleep);
2362         atomic_set(&chip->interrupt_sleep_count, 0);
2363         chip->card = card;
2364         chip->pci = pci;
2365         chip->irq = -1;
2366         chip->device_id = pci->device;
2367         chip->rev = pci->revision;
2368         chip->reg_area_phys = pci_resource_start(pci, 0);
2369         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2370         pci_set_master(pci);
2371         chip->src441_used = -1;
2372
2373         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2374                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2375                 snd_ymfpci_free(chip);
2376                 return -EBUSY;
2377         }
2378         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2379                         "YMFPCI", chip)) {
2380                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2381                 snd_ymfpci_free(chip);
2382                 return -EBUSY;
2383         }
2384         chip->irq = pci->irq;
2385
2386         snd_ymfpci_aclink_reset(pci);
2387         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2388                 snd_ymfpci_free(chip);
2389                 return -EIO;
2390         }
2391
2392         err = snd_ymfpci_request_firmware(chip);
2393         if (err < 0) {
2394                 snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2395                 snd_ymfpci_free(chip);
2396                 return err;
2397         }
2398         snd_ymfpci_download_image(chip);
2399
2400         udelay(100); /* seems we need a delay after downloading image.. */
2401
2402         if (snd_ymfpci_memalloc(chip) < 0) {
2403                 snd_ymfpci_free(chip);
2404                 return -EIO;
2405         }
2406
2407         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2408                 snd_ymfpci_free(chip);
2409                 return err;
2410         }
2411
2412 #ifdef CONFIG_PM
2413         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2414         if (chip->saved_regs == NULL) {
2415                 snd_ymfpci_free(chip);
2416                 return -ENOMEM;
2417         }
2418 #endif
2419
2420         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2421                 snd_ymfpci_free(chip);
2422                 return err;
2423         }
2424
2425         snd_ymfpci_proc_init(card, chip);
2426
2427         snd_card_set_dev(card, &pci->dev);
2428
2429         *rchip = chip;
2430         return 0;
2431 }