/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include // for block_sync_page #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "print-tree.h" #if 0 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf) { if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) { printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n", (unsigned long long)extent_buffer_blocknr(buf), (unsigned long long)btrfs_header_blocknr(buf)); return 1; } return 0; } #endif struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct inode *btree_inode = root->fs_info->btree_inode; struct extent_buffer *eb; eb = find_extent_buffer(&BTRFS_I(btree_inode)->extent_tree, bytenr, blocksize, GFP_NOFS); if (eb) eb->alloc_addr = (unsigned long)__builtin_return_address(0); return eb; } struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct inode *btree_inode = root->fs_info->btree_inode; struct extent_buffer *eb; eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->extent_tree, bytenr, blocksize, GFP_NOFS); eb->alloc_addr = (unsigned long)__builtin_return_address(0); return eb; } struct extent_map *btree_get_extent(struct inode *inode, struct page *page, size_t page_offset, u64 start, u64 end, int create) { struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_map *em; int ret; again: em = lookup_extent_mapping(em_tree, start, end); if (em) { goto out; } em = alloc_extent_map(GFP_NOFS); if (!em) { em = ERR_PTR(-ENOMEM); goto out; } em->start = 0; em->end = (i_size_read(inode) & ~((u64)PAGE_CACHE_SIZE -1)) - 1; em->block_start = 0; em->block_end = em->end; em->bdev = inode->i_sb->s_bdev; ret = add_extent_mapping(em_tree, em); if (ret == -EEXIST) { free_extent_map(em); em = NULL; goto again; } else if (ret) { em = ERR_PTR(ret); } out: return em; } static int btree_writepage(struct page *page, struct writeback_control *wbc) { struct extent_map_tree *tree; tree = &BTRFS_I(page->mapping->host)->extent_tree; return extent_write_full_page(tree, page, btree_get_extent, wbc); } int btree_readpage(struct file *file, struct page *page) { struct extent_map_tree *tree; tree = &BTRFS_I(page->mapping->host)->extent_tree; return extent_read_full_page(tree, page, btree_get_extent); } static int btree_releasepage(struct page *page, gfp_t unused_gfp_flags) { struct extent_map_tree *tree; int ret; BUG_ON(page->private != 1); tree = &BTRFS_I(page->mapping->host)->extent_tree; ret = try_release_extent_mapping(tree, page); if (ret == 1) { ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } return ret; } static void btree_invalidatepage(struct page *page, unsigned long offset) { struct extent_map_tree *tree; tree = &BTRFS_I(page->mapping->host)->extent_tree; extent_invalidatepage(tree, page, offset); btree_releasepage(page, GFP_NOFS); } int btrfs_csum_data(struct btrfs_root * root, char *data, size_t len, char *result) { return 0; #if 0 u32 crc; crc = crc32c(0, data, len); memcpy(result, &crc, BTRFS_CRC32_SIZE); return 0; #endif } #if 0 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, int verify) { return 0; char result[BTRFS_CRC32_SIZE]; int ret; struct btrfs_node *node; ret = btrfs_csum_data(root, bh->b_data + BTRFS_CSUM_SIZE, bh->b_size - BTRFS_CSUM_SIZE, result); if (ret) return ret; if (verify) { if (memcmp(bh->b_data, result, BTRFS_CRC32_SIZE)) { printk("btrfs: %s checksum verify failed on %llu\n", root->fs_info->sb->s_id, (unsigned long long)bh_blocknr(bh)); return 1; } } else { node = btrfs_buffer_node(bh); memcpy(node->header.csum, result, BTRFS_CRC32_SIZE); } return 0; } #endif #if 0 static int btree_writepage(struct page *page, struct writeback_control *wbc) { struct buffer_head *bh; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; struct buffer_head *head; if (!page_has_buffers(page)) { create_empty_buffers(page, root->fs_info->sb->s_blocksize, (1 << BH_Dirty)|(1 << BH_Uptodate)); } head = page_buffers(page); bh = head; do { if (buffer_dirty(bh)) csum_tree_block(root, bh, 0); bh = bh->b_this_page; } while (bh != head); return block_write_full_page(page, btree_get_block, wbc); } #endif static struct address_space_operations btree_aops = { .readpage = btree_readpage, .writepage = btree_writepage, .releasepage = btree_releasepage, .invalidatepage = btree_invalidatepage, .sync_page = block_sync_page, }; int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct extent_buffer *buf = NULL; struct inode *btree_inode = root->fs_info->btree_inode; int ret = 0; buf = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!buf) return 0; read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree, buf, 0); free_extent_buffer(buf); return ret; } struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct extent_buffer *buf = NULL; struct inode *btree_inode = root->fs_info->btree_inode; buf = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!buf) return NULL; read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree, buf, 1); buf->alloc_addr = (unsigned long)__builtin_return_address(0); return buf; } int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf) { struct inode *btree_inode = root->fs_info->btree_inode; clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, buf); return 0; } int wait_on_tree_block_writeback(struct btrfs_root *root, struct extent_buffer *buf) { struct inode *btree_inode = root->fs_info->btree_inode; wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->extent_tree, buf); return 0; } int set_tree_block_dirty(struct btrfs_root *root, struct extent_buffer *buf) { struct inode *btree_inode = root->fs_info->btree_inode; set_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, buf); return 0; } static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { root->node = NULL; root->inode = NULL; root->commit_root = NULL; root->sectorsize = sectorsize; root->nodesize = nodesize; root->leafsize = leafsize; root->ref_cows = 0; root->fs_info = fs_info; root->objectid = objectid; root->last_trans = 0; root->highest_inode = 0; root->last_inode_alloc = 0; root->name = NULL; memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); memset(&root->root_kobj, 0, sizeof(root->root_kobj)); init_completion(&root->kobj_unregister); init_rwsem(&root->snap_sem); root->defrag_running = 0; root->defrag_level = 0; root->root_key.objectid = objectid; return 0; } static int find_and_setup_root(struct btrfs_root *tree_root, struct btrfs_fs_info *fs_info, u64 objectid, struct btrfs_root *root) { int ret; u32 blocksize; __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, root, fs_info, objectid); ret = btrfs_find_last_root(tree_root, objectid, &root->root_item, &root->root_key); BUG_ON(ret); blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize); BUG_ON(!root->node); return 0; } struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path; struct extent_buffer *l; u64 highest_inode; u32 blocksize; int ret = 0; root = kzalloc(sizeof(*root), GFP_NOFS); if (!root) return ERR_PTR(-ENOMEM); if (location->offset == (u64)-1) { ret = find_and_setup_root(tree_root, fs_info, location->objectid, root); if (ret) { kfree(root); return ERR_PTR(ret); } goto insert; } __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, root, fs_info, location->objectid); path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); if (ret != 0) { if (ret > 0) ret = -ENOENT; goto out; } l = path->nodes[0]; read_extent_buffer(l, &root->root_item, btrfs_item_ptr_offset(l, path->slots[0]), sizeof(root->root_item)); ret = 0; out: btrfs_release_path(root, path); btrfs_free_path(path); if (ret) { kfree(root); return ERR_PTR(ret); } blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize); BUG_ON(!root->node); insert: root->ref_cows = 1; ret = btrfs_find_highest_inode(root, &highest_inode); if (ret == 0) { root->highest_inode = highest_inode; root->last_inode_alloc = highest_inode; } return root; } struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_key *location, const char *name, int namelen) { struct btrfs_root *root; int ret; root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)location->objectid); if (root) return root; root = btrfs_read_fs_root_no_radix(fs_info, location); if (IS_ERR(root)) return root; ret = radix_tree_insert(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, root); if (ret) { free_extent_buffer(root->node); kfree(root); return ERR_PTR(ret); } ret = btrfs_set_root_name(root, name, namelen); if (ret) { free_extent_buffer(root->node); kfree(root); return ERR_PTR(ret); } ret = btrfs_sysfs_add_root(root); if (ret) { free_extent_buffer(root->node); kfree(root->name); kfree(root); return ERR_PTR(ret); } ret = btrfs_find_dead_roots(fs_info->tree_root, root->root_key.objectid, root); BUG_ON(ret); return root; } struct btrfs_root *open_ctree(struct super_block *sb) { u32 sectorsize; u32 nodesize; u32 leafsize; u32 blocksize; struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info), GFP_NOFS); int ret; int err = -EIO; struct btrfs_super_block *disk_super; if (!extent_root || !tree_root || !fs_info) { err = -ENOMEM; goto fail; } INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); INIT_LIST_HEAD(&fs_info->trans_list); INIT_LIST_HEAD(&fs_info->dead_roots); memset(&fs_info->super_kobj, 0, sizeof(fs_info->super_kobj)); init_completion(&fs_info->kobj_unregister); sb_set_blocksize(sb, 4096); fs_info->running_transaction = NULL; fs_info->last_trans_committed = 0; fs_info->tree_root = tree_root; fs_info->extent_root = extent_root; fs_info->sb = sb; fs_info->btree_inode = new_inode(sb); fs_info->btree_inode->i_ino = 1; fs_info->btree_inode->i_nlink = 1; fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size; fs_info->btree_inode->i_mapping->a_ops = &btree_aops; extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_map_tree_init(&fs_info->free_space_cache, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_map_tree_init(&fs_info->block_group_cache, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_map_tree_init(&fs_info->pinned_extents, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_map_tree_init(&fs_info->pending_del, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_map_tree_init(&fs_info->extent_ins, fs_info->btree_inode->i_mapping, GFP_NOFS); fs_info->do_barriers = 1; fs_info->closing = 0; INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner); BTRFS_I(fs_info->btree_inode)->root = tree_root; memset(&BTRFS_I(fs_info->btree_inode)->location, 0, sizeof(struct btrfs_key)); insert_inode_hash(fs_info->btree_inode); mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); mutex_init(&fs_info->trans_mutex); mutex_init(&fs_info->fs_mutex); __setup_root(512, 512, 512, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); fs_info->sb_buffer = read_tree_block(tree_root, BTRFS_SUPER_INFO_OFFSET, 512); if (!fs_info->sb_buffer) goto fail_iput; read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0, sizeof(fs_info->super_copy)); read_extent_buffer(fs_info->sb_buffer, fs_info->fsid, (unsigned long)btrfs_super_fsid(fs_info->sb_buffer), BTRFS_FSID_SIZE); disk_super = &fs_info->super_copy; if (!btrfs_super_root(disk_super)) goto fail_sb_buffer; nodesize = btrfs_super_nodesize(disk_super); leafsize = btrfs_super_leafsize(disk_super); sectorsize = btrfs_super_sectorsize(disk_super); tree_root->nodesize = nodesize; tree_root->leafsize = leafsize; tree_root->sectorsize = sectorsize; i_size_write(fs_info->btree_inode, btrfs_super_total_bytes(disk_super)); if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, sizeof(disk_super->magic))) { printk("btrfs: valid FS not found on %s\n", sb->s_id); goto fail_sb_buffer; } blocksize = btrfs_level_size(tree_root, btrfs_super_root_level(disk_super)); tree_root->node = read_tree_block(tree_root, btrfs_super_root(disk_super), blocksize); if (!tree_root->node) goto fail_sb_buffer; #if 0 btrfs_print_leaf(tree_root, tree_root->node); err = -EIO; goto fail_tree_root; #endif mutex_lock(&fs_info->fs_mutex); ret = find_and_setup_root(tree_root, fs_info, BTRFS_EXTENT_TREE_OBJECTID, extent_root); if (ret) { mutex_unlock(&fs_info->fs_mutex); goto fail_tree_root; } btrfs_read_block_groups(extent_root); fs_info->generation = btrfs_super_generation(disk_super) + 1; mutex_unlock(&fs_info->fs_mutex); return tree_root; fail_tree_root: free_extent_buffer(tree_root->node); fail_sb_buffer: free_extent_buffer(fs_info->sb_buffer); fail_iput: iput(fs_info->btree_inode); fail: kfree(extent_root); kfree(tree_root); kfree(fs_info); return ERR_PTR(err); } int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; struct extent_buffer *super = root->fs_info->sb_buffer; struct inode *btree_inode = root->fs_info->btree_inode; set_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, super); ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping, super->start, super->len); return ret; } int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { radix_tree_delete(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid); btrfs_sysfs_del_root(root); if (root->inode) iput(root->inode); if (root->node) free_extent_buffer(root->node); if (root->commit_root) free_extent_buffer(root->commit_root); if (root->name) kfree(root->name); kfree(root); return 0; } static int del_fs_roots(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_root *gang[8]; int i; while(1) { ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) btrfs_free_fs_root(fs_info, gang[i]); } return 0; } int close_ctree(struct btrfs_root *root) { int ret; struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; fs_info->closing = 1; btrfs_transaction_flush_work(root); mutex_lock(&fs_info->fs_mutex); btrfs_defrag_dirty_roots(root->fs_info); trans = btrfs_start_transaction(root, 1); ret = btrfs_commit_transaction(trans, root); /* run commit again to drop the original snapshot */ trans = btrfs_start_transaction(root, 1); btrfs_commit_transaction(trans, root); ret = btrfs_write_and_wait_transaction(NULL, root); BUG_ON(ret); write_ctree_super(NULL, root); mutex_unlock(&fs_info->fs_mutex); if (fs_info->extent_root->node) free_extent_buffer(fs_info->extent_root->node); if (fs_info->tree_root->node) free_extent_buffer(fs_info->tree_root->node); free_extent_buffer(fs_info->sb_buffer); btrfs_free_block_groups(root->fs_info); del_fs_roots(fs_info); truncate_inode_pages(fs_info->btree_inode->i_mapping, 0); iput(fs_info->btree_inode); kfree(fs_info->extent_root); kfree(fs_info->tree_root); return 0; } int btrfs_buffer_uptodate(struct extent_buffer *buf) { struct inode *btree_inode = buf->pages[0]->mapping->host; return extent_buffer_uptodate(&BTRFS_I(btree_inode)->extent_tree, buf); } int btrfs_set_buffer_uptodate(struct extent_buffer *buf) { struct inode *btree_inode = buf->pages[0]->mapping->host; return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->extent_tree, buf); } void btrfs_mark_buffer_dirty(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; u64 transid = btrfs_header_generation(buf); struct inode *btree_inode = root->fs_info->btree_inode; if (transid != root->fs_info->generation) { printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n", (unsigned long long)buf->start, transid, root->fs_info->generation); WARN_ON(1); } set_extent_buffer_dirty(&BTRFS_I(btree_inode)->extent_tree, buf); } void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) { balance_dirty_pages_ratelimited_nr( root->fs_info->btree_inode->i_mapping, nr); } void btrfs_set_buffer_defrag(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; set_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS); } void btrfs_set_buffer_defrag_done(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; set_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG_DONE, GFP_NOFS); } int btrfs_buffer_defrag(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return test_range_bit(&BTRFS_I(btree_inode)->extent_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0); } int btrfs_buffer_defrag_done(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return test_range_bit(&BTRFS_I(btree_inode)->extent_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG_DONE, 0); } int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return clear_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG_DONE, GFP_NOFS); } int btrfs_clear_buffer_defrag(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return clear_extent_bits(&BTRFS_I(btree_inode)->extent_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS); } int btrfs_read_buffer(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return read_extent_buffer_pages(&BTRFS_I(btree_inode)->extent_tree, buf, 1); }