]> pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - Documentation/DocBook/kernel-locking.tmpl
Merge branch 'master' of /pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6-omap-h63xx.git] / Documentation / DocBook / kernel-locking.tmpl
index 90dc2de8e0afd995f5bc57217b29455707106a47..2e9d6b41f034594b3b1af87c97ab1da81f5caccd 100644 (file)
    </para>
 
    <sect1 id="lock-intro">
-   <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title>
+   <title>Three Main Types of Kernel Locks: Spinlocks, Mutexes and Semaphores</title>
 
    <para>
-     There are two main types of kernel locks.  The fundamental type
+     There are three main types of kernel locks.  The fundamental type
      is the spinlock 
      (<filename class="headerfile">include/asm/spinlock.h</filename>),
      which is a very simple single-holder lock: if you can't get the 
      very small and fast, and can be used anywhere.
    </para>
    <para>
-     The second type is a semaphore
+     The second type is a mutex
+     (<filename class="headerfile">include/linux/mutex.h</filename>): it
+     is like a spinlock, but you may block holding a mutex.
+     If you can't lock a mutex, your task will suspend itself, and be woken
+     up when the mutex is released.  This means the CPU can do something
+     else while you are waiting.  There are many cases when you simply
+     can't sleep (see <xref linkend="sleeping-things"/>), and so have to
+     use a spinlock instead.
+   </para>
+   <para>
+     The third type is a semaphore
      (<filename class="headerfile">include/asm/semaphore.h</filename>): it
      can have more than one holder at any time (the number decided at
      initialization time), although it is most commonly used as a
-     single-holder lock (a mutex).  If you can't get a semaphore,
-     your task will put itself on the queue, and be woken up when the
-     semaphore is released.  This means the CPU will do something
-     else while you are waiting, but there are many cases when you
-     simply can't sleep (see <xref linkend="sleeping-things"/>), and so
-     have to use a spinlock instead.
+     single-holder lock (a mutex).  If you can't get a semaphore, your
+     task will be suspended and later on woken up - just like for mutexes.
    </para>
    <para>
      Neither type of lock is recursive: see
        <function>spin_lock_irqsave()</function>, which is a superset
        of all other spinlock primitives.
    </para>
+
    <table>
 <title>Table of Locking Requirements</title>
 <tgroup cols="11">
 <tbody>
+
 <row>
 <entry></entry>
 <entry>IRQ Handler A</entry>
 
 <row>
 <entry>IRQ Handler B</entry>
-<entry>spin_lock_irqsave</entry>
+<entry>SLIS</entry>
 <entry>None</entry>
 </row>
 
 <row>
 <entry>Softirq A</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SL</entry>
 </row>
 
 <row>
 <entry>Softirq B</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SL</entry>
+<entry>SL</entry>
 </row>
 
 <row>
 <entry>Tasklet A</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SL</entry>
+<entry>SL</entry>
 <entry>None</entry>
 </row>
 
 <row>
 <entry>Tasklet B</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SL</entry>
+<entry>SL</entry>
+<entry>SL</entry>
 <entry>None</entry>
 </row>
 
 <row>
 <entry>Timer A</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SL</entry>
+<entry>SL</entry>
+<entry>SL</entry>
+<entry>SL</entry>
 <entry>None</entry>
 </row>
 
 <row>
 <entry>Timer B</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
-<entry>spin_lock</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SL</entry>
+<entry>SL</entry>
+<entry>SL</entry>
+<entry>SL</entry>
+<entry>SL</entry>
 <entry>None</entry>
 </row>
 
 <row>
 <entry>User Context A</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
 <entry>None</entry>
 </row>
 
 <row>
 <entry>User Context B</entry>
+<entry>SLI</entry>
+<entry>SLI</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>SLBH</entry>
+<entry>DI</entry>
+<entry>None</entry>
+</row>
+
+</tbody>
+</tgroup>
+</table>
+
+   <table>
+<title>Legend for Locking Requirements Table</title>
+<tgroup cols="2">
+<tbody>
+
+<row>
+<entry>SLIS</entry>
+<entry>spin_lock_irqsave</entry>
+</row>
+<row>
+<entry>SLI</entry>
 <entry>spin_lock_irq</entry>
-<entry>spin_lock_irq</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
-<entry>spin_lock_bh</entry>
+</row>
+<row>
+<entry>SL</entry>
+<entry>spin_lock</entry>
+</row>
+<row>
+<entry>SLBH</entry>
 <entry>spin_lock_bh</entry>
+</row>
+<row>
+<entry>DI</entry>
 <entry>down_interruptible</entry>
-<entry>None</entry>
 </row>
 
 </tbody>
 </tgroup>
 </table>
+
 </sect1>
 </chapter>
 
@@ -678,7 +717,7 @@ used, and when it gets full, throws out the least used one.
     <para>
 For our first example, we assume that all operations are in user
 context (ie. from system calls), so we can sleep.  This means we can
-use a semaphore to protect the cache and all the objects within
+use a mutex to protect the cache and all the objects within
 it.  Here's the code:
     </para>
 
@@ -686,7 +725,7 @@ it.  Here's the code:
 #include &lt;linux/list.h&gt;
 #include &lt;linux/slab.h&gt;
 #include &lt;linux/string.h&gt;
-#include &lt;asm/semaphore.h&gt;
+#include &lt;linux/mutex.h&gt;
 #include &lt;asm/errno.h&gt;
 
 struct object
@@ -698,7 +737,7 @@ struct object
 };
 
 /* Protects the cache, cache_num, and the objects within it */
-static DECLARE_MUTEX(cache_lock);
+static DEFINE_MUTEX(cache_lock);
 static LIST_HEAD(cache);
 static unsigned int cache_num = 0;
 #define MAX_CACHE_SIZE 10
@@ -750,17 +789,17 @@ int cache_add(int id, const char *name)
         obj-&gt;id = id;
         obj-&gt;popularity = 0;
 
-        down(&amp;cache_lock);
+        mutex_lock(&amp;cache_lock);
         __cache_add(obj);
-        up(&amp;cache_lock);
+        mutex_unlock(&amp;cache_lock);
         return 0;
 }
 
 void cache_delete(int id)
 {
-        down(&amp;cache_lock);
+        mutex_lock(&amp;cache_lock);
         __cache_delete(__cache_find(id));
-        up(&amp;cache_lock);
+        mutex_unlock(&amp;cache_lock);
 }
 
 int cache_find(int id, char *name)
@@ -768,13 +807,13 @@ int cache_find(int id, char *name)
         struct object *obj;
         int ret = -ENOENT;
 
-        down(&amp;cache_lock);
+        mutex_lock(&amp;cache_lock);
         obj = __cache_find(id);
         if (obj) {
                 ret = 0;
                 strcpy(name, obj-&gt;name);
         }
-        up(&amp;cache_lock);
+        mutex_unlock(&amp;cache_lock);
         return ret;
 }
 </programlisting>
@@ -814,7 +853,7 @@ The change is shown below, in standard patch format: the
          int popularity;
  };
 
--static DECLARE_MUTEX(cache_lock);
+-static DEFINE_MUTEX(cache_lock);
 +static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
  static LIST_HEAD(cache);
  static unsigned int cache_num = 0;
@@ -831,22 +870,22 @@ The change is shown below, in standard patch format: the
          obj-&gt;id = id;
          obj-&gt;popularity = 0;
 
--        down(&amp;cache_lock);
+-        mutex_lock(&amp;cache_lock);
 +        spin_lock_irqsave(&amp;cache_lock, flags);
          __cache_add(obj);
--        up(&amp;cache_lock);
+-        mutex_unlock(&amp;cache_lock);
 +        spin_unlock_irqrestore(&amp;cache_lock, flags);
          return 0;
  }
 
  void cache_delete(int id)
  {
--        down(&amp;cache_lock);
+-        mutex_lock(&amp;cache_lock);
 +        unsigned long flags;
 +
 +        spin_lock_irqsave(&amp;cache_lock, flags);
          __cache_delete(__cache_find(id));
--        up(&amp;cache_lock);
+-        mutex_unlock(&amp;cache_lock);
 +        spin_unlock_irqrestore(&amp;cache_lock, flags);
  }
 
@@ -856,14 +895,14 @@ The change is shown below, in standard patch format: the
          int ret = -ENOENT;
 +        unsigned long flags;
 
--        down(&amp;cache_lock);
+-        mutex_lock(&amp;cache_lock);
 +        spin_lock_irqsave(&amp;cache_lock, flags);
          obj = __cache_find(id);
          if (obj) {
                  ret = 0;
                  strcpy(name, obj-&gt;name);
          }
--        up(&amp;cache_lock);
+-        mutex_unlock(&amp;cache_lock);
 +        spin_unlock_irqrestore(&amp;cache_lock, flags);
          return ret;
  }
@@ -1584,7 +1623,7 @@ the amount of locking which needs to be done.
     <para>
       Our final dilemma is this: when can we actually destroy the
       removed element?  Remember, a reader might be stepping through
-      this element in the list right now: it we free this element and
+      this element in the list right now: if we free this element and
       the <symbol>next</symbol> pointer changes, the reader will jump
       off into garbage and crash.  We need to wait until we know that
       all the readers who were traversing the list when we deleted the