]> pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - Documentation/lguest/lguest.c
Example launcher handle guests not being ready for input
[linux-2.6-omap-h63xx.git] / Documentation / lguest / lguest.c
index 1432b502a2d983e2156937ab2e747f9ce1ddab1e..cbf4becd2667609d82d6e260010c3c480b260a9d 100644 (file)
@@ -1,5 +1,7 @@
-/* Simple program to layout "physical" memory for new lguest guest.
- * Linked high to avoid likely physical memory.  */
+/*P:100 This is the Launcher code, a simple program which lays out the
+ * "physical" memory for the new Guest by mapping the kernel image and the
+ * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
+:*/
 #define _LARGEFILE64_SOURCE
 #define _GNU_SOURCE
 #include <stdio.h>
@@ -10,6 +12,7 @@
 #include <stdlib.h>
 #include <elf.h>
 #include <sys/mman.h>
+#include <sys/param.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <sys/wait.h>
 #include <termios.h>
 #include <getopt.h>
 #include <zlib.h>
+#include <assert.h>
+#include <sched.h>
+/*L:110 We can ignore the 30 include files we need for this program, but I do
+ * want to draw attention to the use of kernel-style types.
+ *
+ * As Linus said, "C is a Spartan language, and so should your naming be."  I
+ * like these abbreviations and the header we need uses them, so we define them
+ * here.
+ */
 typedef unsigned long long u64;
 typedef uint32_t u32;
 typedef uint16_t u16;
 typedef uint8_t u8;
-#include "../../include/linux/lguest_launcher.h"
-#include "../../include/asm-i386/e820.h"
+#include "linux/lguest_launcher.h"
+#include "linux/pci_ids.h"
+#include "linux/virtio_config.h"
+#include "linux/virtio_net.h"
+#include "linux/virtio_blk.h"
+#include "linux/virtio_console.h"
+#include "linux/virtio_ring.h"
+#include "asm-x86/e820.h"
+/*:*/
 
 #define PAGE_PRESENT 0x7       /* Present, RW, Execute */
 #define NET_PEERNUM 1
@@ -42,40 +61,161 @@ typedef uint8_t u8;
 #ifndef SIOCBRADDIF
 #define SIOCBRADDIF    0x89a2          /* add interface to bridge      */
 #endif
+/* We can have up to 256 pages for devices. */
+#define DEVICE_PAGES 256
+/* This fits nicely in a single 4096-byte page. */
+#define VIRTQUEUE_NUM 127
 
+/*L:120 verbose is both a global flag and a macro.  The C preprocessor allows
+ * this, and although I wouldn't recommend it, it works quite nicely here. */
 static bool verbose;
 #define verbose(args...) \
        do { if (verbose) printf(args); } while(0)
+/*:*/
+
+/* The pipe to send commands to the waker process */
 static int waker_fd;
+/* The pointer to the start of guest memory. */
+static void *guest_base;
+/* The maximum guest physical address allowed, and maximum possible. */
+static unsigned long guest_limit, guest_max;
 
+/* This is our list of devices. */
 struct device_list
 {
+       /* Summary information about the devices in our list: ready to pass to
+        * select() to ask which need servicing.*/
        fd_set infds;
        int max_infd;
 
+       /* Counter to assign interrupt numbers. */
+       unsigned int next_irq;
+
+       /* Counter to print out convenient device numbers. */
+       unsigned int device_num;
+
+       /* The descriptor page for the devices. */
+       u8 *descpage;
+
+       /* The tail of the last descriptor. */
+       unsigned int desc_used;
+
+       /* A single linked list of devices. */
        struct device *dev;
+       /* ... And an end pointer so we can easily append new devices */
        struct device **lastdev;
 };
 
+/* The list of Guest devices, based on command line arguments. */
+static struct device_list devices;
+
+/* The device structure describes a single device. */
 struct device
 {
+       /* The linked-list pointer. */
        struct device *next;
+
+       /* The this device's descriptor, as mapped into the Guest. */
        struct lguest_device_desc *desc;
-       void *mem;
 
-       /* Watch this fd if handle_input non-NULL. */
+       /* The name of this device, for --verbose. */
+       const char *name;
+
+       /* If handle_input is set, it wants to be called when this file
+        * descriptor is ready. */
        int fd;
        bool (*handle_input)(int fd, struct device *me);
 
-       /* Watch DMA to this key if handle_input non-NULL. */
-       unsigned long watch_key;
-       u32 (*handle_output)(int fd, const struct iovec *iov,
-                            unsigned int num, struct device *me);
+       /* Any queues attached to this device */
+       struct virtqueue *vq;
 
        /* Device-specific data. */
        void *priv;
 };
 
+/* The virtqueue structure describes a queue attached to a device. */
+struct virtqueue
+{
+       struct virtqueue *next;
+
+       /* Which device owns me. */
+       struct device *dev;
+
+       /* The configuration for this queue. */
+       struct lguest_vqconfig config;
+
+       /* The actual ring of buffers. */
+       struct vring vring;
+
+       /* Last available index we saw. */
+       u16 last_avail_idx;
+
+       /* The routine to call when the Guest pings us. */
+       void (*handle_output)(int fd, struct virtqueue *me);
+};
+
+/* Since guest is UP and we don't run at the same time, we don't need barriers.
+ * But I include them in the code in case others copy it. */
+#define wmb()
+
+/* Convert an iovec element to the given type.
+ *
+ * This is a fairly ugly trick: we need to know the size of the type and
+ * alignment requirement to check the pointer is kosher.  It's also nice to
+ * have the name of the type in case we report failure.
+ *
+ * Typing those three things all the time is cumbersome and error prone, so we
+ * have a macro which sets them all up and passes to the real function. */
+#define convert(iov, type) \
+       ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
+
+static void *_convert(struct iovec *iov, size_t size, size_t align,
+                     const char *name)
+{
+       if (iov->iov_len != size)
+               errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
+       if ((unsigned long)iov->iov_base % align != 0)
+               errx(1, "Bad alignment %p for %s", iov->iov_base, name);
+       return iov->iov_base;
+}
+
+/* The virtio configuration space is defined to be little-endian.  x86 is
+ * little-endian too, but it's nice to be explicit so we have these helpers. */
+#define cpu_to_le16(v16) (v16)
+#define cpu_to_le32(v32) (v32)
+#define cpu_to_le64(v64) (v64)
+#define le16_to_cpu(v16) (v16)
+#define le32_to_cpu(v32) (v32)
+#define le64_to_cpu(v32) (v64)
+
+/*L:100 The Launcher code itself takes us out into userspace, that scary place
+ * where pointers run wild and free!  Unfortunately, like most userspace
+ * programs, it's quite boring (which is why everyone likes to hack on the
+ * kernel!).  Perhaps if you make up an Lguest Drinking Game at this point, it
+ * will get you through this section.  Or, maybe not.
+ *
+ * The Launcher sets up a big chunk of memory to be the Guest's "physical"
+ * memory and stores it in "guest_base".  In other words, Guest physical ==
+ * Launcher virtual with an offset.
+ *
+ * This can be tough to get your head around, but usually it just means that we
+ * use these trivial conversion functions when the Guest gives us it's
+ * "physical" addresses: */
+static void *from_guest_phys(unsigned long addr)
+{
+       return guest_base + addr;
+}
+
+static unsigned long to_guest_phys(const void *addr)
+{
+       return (addr - guest_base);
+}
+
+/*L:130
+ * Loading the Kernel.
+ *
+ * We start with couple of simple helper routines.  open_or_die() avoids
+ * error-checking code cluttering the callers: */
 static int open_or_die(const char *name, int flags)
 {
        int fd = open(name, flags);
@@ -84,126 +224,173 @@ static int open_or_die(const char *name, int flags)
        return fd;
 }
 
-static void *map_zeroed_pages(unsigned long addr, unsigned int num)
+/* map_zeroed_pages() takes a number of pages. */
+static void *map_zeroed_pages(unsigned int num)
 {
-       static int fd = -1;
+       int fd = open_or_die("/dev/zero", O_RDONLY);
+       void *addr;
 
-       if (fd == -1)
-               fd = open_or_die("/dev/zero", O_RDONLY);
+       /* We use a private mapping (ie. if we write to the page, it will be
+        * copied). */
+       addr = mmap(NULL, getpagesize() * num,
+                   PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
+       if (addr == MAP_FAILED)
+               err(1, "Mmaping %u pages of /dev/zero", num);
 
-       if (mmap((void *)addr, getpagesize() * num,
-                PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, fd, 0)
-           != (void *)addr)
-               err(1, "Mmaping %u pages of /dev/zero @%p", num, (void *)addr);
-       return (void *)addr;
+       return addr;
 }
 
-/* Find magic string marking entry point, return entry point. */
-static unsigned long entry_point(void *start, void *end,
-                                unsigned long page_offset)
+/* Get some more pages for a device. */
+static void *get_pages(unsigned int num)
 {
-       void *p;
+       void *addr = from_guest_phys(guest_limit);
+
+       guest_limit += num * getpagesize();
+       if (guest_limit > guest_max)
+               errx(1, "Not enough memory for devices");
+       return addr;
+}
 
+/* To find out where to start we look for the magic Guest string, which marks
+ * the code we see in lguest_asm.S.  This is a hack which we are currently
+ * plotting to replace with the normal Linux entry point. */
+static unsigned long entry_point(const void *start, const void *end)
+{
+       const void *p;
+
+       /* The scan gives us the physical starting address.  We boot with
+        * pagetables set up with virtual and physical the same, so that's
+        * OK. */
        for (p = start; p < end; p++)
                if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0)
-                       return (long)p + strlen("GenuineLguest") + page_offset;
+                       return to_guest_phys(p + strlen("GenuineLguest"));
 
-       err(1, "Is this image a genuine lguest?");
+       errx(1, "Is this image a genuine lguest?");
 }
 
-/* Returns the entry point */
-static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr,
-                            unsigned long *page_offset)
+/* This routine is used to load the kernel or initrd.  It tries mmap, but if
+ * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
+ * it falls back to reading the memory in. */
+static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
 {
-       void *addr;
+       ssize_t r;
+
+       /* We map writable even though for some segments are marked read-only.
+        * The kernel really wants to be writable: it patches its own
+        * instructions.
+        *
+        * MAP_PRIVATE means that the page won't be copied until a write is
+        * done to it.  This allows us to share untouched memory between
+        * Guests. */
+       if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
+                MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
+               return;
+
+       /* pread does a seek and a read in one shot: saves a few lines. */
+       r = pread(fd, addr, len, offset);
+       if (r != len)
+               err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
+}
+
+/* This routine takes an open vmlinux image, which is in ELF, and maps it into
+ * the Guest memory.  ELF = Embedded Linking Format, which is the format used
+ * by all modern binaries on Linux including the kernel.
+ *
+ * The ELF headers give *two* addresses: a physical address, and a virtual
+ * address.  We use the physical address; the Guest will map itself to the
+ * virtual address.
+ *
+ * We return the starting address. */
+static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
+{
+       void *start = (void *)-1, *end = NULL;
        Elf32_Phdr phdr[ehdr->e_phnum];
        unsigned int i;
-       unsigned long start = -1UL, end = 0;
 
-       /* Sanity checks. */
+       /* Sanity checks on the main ELF header: an x86 executable with a
+        * reasonable number of correctly-sized program headers. */
        if (ehdr->e_type != ET_EXEC
            || ehdr->e_machine != EM_386
            || ehdr->e_phentsize != sizeof(Elf32_Phdr)
            || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
                errx(1, "Malformed elf header");
 
+       /* An ELF executable contains an ELF header and a number of "program"
+        * headers which indicate which parts ("segments") of the program to
+        * load where. */
+
+       /* We read in all the program headers at once: */
        if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
                err(1, "Seeking to program headers");
        if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
                err(1, "Reading program headers");
 
-       *page_offset = 0;
-       /* We map the loadable segments at virtual addresses corresponding
-        * to their physical addresses (our virtual == guest physical). */
+       /* Try all the headers: there are usually only three.  A read-only one,
+        * a read-write one, and a "note" section which isn't loadable. */
        for (i = 0; i < ehdr->e_phnum; i++) {
+               /* If this isn't a loadable segment, we ignore it */
                if (phdr[i].p_type != PT_LOAD)
                        continue;
 
                verbose("Section %i: size %i addr %p\n",
                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 
-               /* We expect linear address space. */
-               if (!*page_offset)
-                       *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr;
-               else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr)
-                       errx(1, "Page offset of section %i different", i);
-
-               if (phdr[i].p_paddr < start)
-                       start = phdr[i].p_paddr;
-               if (phdr[i].p_paddr + phdr[i].p_filesz > end)
-                       end = phdr[i].p_paddr + phdr[i].p_filesz;
-
-               /* We map everything private, writable. */
-               addr = mmap((void *)phdr[i].p_paddr,
-                           phdr[i].p_filesz,
-                           PROT_READ|PROT_WRITE|PROT_EXEC,
-                           MAP_FIXED|MAP_PRIVATE,
-                           elf_fd, phdr[i].p_offset);
-               if (addr != (void *)phdr[i].p_paddr)
-                       err(1, "Mmaping vmlinux seg %i gave %p not %p",
-                           i, addr, (void *)phdr[i].p_paddr);
-       }
-
-       return entry_point((void *)start, (void *)end, *page_offset);
-}
-
-/* This is amazingly reliable. */
-static unsigned long intuit_page_offset(unsigned char *img, unsigned long len)
-{
-       unsigned int i, possibilities[256] = { 0 };
+               /* We track the first and last address we mapped, so we can
+                * tell entry_point() where to scan. */
+               if (from_guest_phys(phdr[i].p_paddr) < start)
+                       start = from_guest_phys(phdr[i].p_paddr);
+               if (from_guest_phys(phdr[i].p_paddr) + phdr[i].p_filesz > end)
+                       end=from_guest_phys(phdr[i].p_paddr)+phdr[i].p_filesz;
 
-       for (i = 0; i + 4 < len; i++) {
-               /* mov 0xXXXXXXXX,%eax */
-               if (img[i] == 0xA1 && ++possibilities[img[i+4]] > 3)
-                       return (unsigned long)img[i+4] << 24;
+               /* We map this section of the file at its physical address. */
+               map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
+                      phdr[i].p_offset, phdr[i].p_filesz);
        }
-       errx(1, "could not determine page offset");
+
+       return entry_point(start, end);
 }
 
-static unsigned long unpack_bzimage(int fd, unsigned long *page_offset)
+/*L:160 Unfortunately the entire ELF image isn't compressed: the segments
+ * which need loading are extracted and compressed raw.  This denies us the
+ * information we need to make a fully-general loader. */
+static unsigned long unpack_bzimage(int fd)
 {
        gzFile f;
        int ret, len = 0;
-       void *img = (void *)0x100000;
-
+       /* A bzImage always gets loaded at physical address 1M.  This is
+        * actually configurable as CONFIG_PHYSICAL_START, but as the comment
+        * there says, "Don't change this unless you know what you are doing".
+        * Indeed. */
+       void *img = from_guest_phys(0x100000);
+
+       /* gzdopen takes our file descriptor (carefully placed at the start of
+        * the GZIP header we found) and returns a gzFile. */
        f = gzdopen(fd, "rb");
+       /* We read it into memory in 64k chunks until we hit the end. */
        while ((ret = gzread(f, img + len, 65536)) > 0)
                len += ret;
        if (ret < 0)
                err(1, "reading image from bzImage");
 
        verbose("Unpacked size %i addr %p\n", len, img);
-       *page_offset = intuit_page_offset(img, len);
 
-       return entry_point(img, img + len, *page_offset);
+       return entry_point(img, img + len);
 }
 
-static unsigned long load_bzimage(int fd, unsigned long *page_offset)
+/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded.  You're
+ * supposed to jump into it and it will unpack itself.  We can't do that
+ * because the Guest can't run the unpacking code, and adding features to
+ * lguest kills puppies, so we don't want to.
+ *
+ * The bzImage is formed by putting the decompressing code in front of the
+ * compressed kernel code.  So we can simple scan through it looking for the
+ * first "gzip" header, and start decompressing from there. */
+static unsigned long load_bzimage(int fd)
 {
        unsigned char c;
        int state = 0;
 
-       /* Ugly brute force search for gzip header. */
+       /* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */
        while (read(fd, &c, 1) == 1) {
                switch (state) {
                case 0:
@@ -220,94 +407,126 @@ static unsigned long load_bzimage(int fd, unsigned long *page_offset)
                        state++;
                        break;
                case 9:
+                       /* Seek back to the start of the gzip header. */
                        lseek(fd, -10, SEEK_CUR);
-                       if (c != 0x03) /* Compressed under UNIX. */
+                       /* One final check: "compressed under UNIX". */
+                       if (c != 0x03)
                                state = -1;
                        else
-                               return unpack_bzimage(fd, page_offset);
+                               return unpack_bzimage(fd);
                }
        }
        errx(1, "Could not find kernel in bzImage");
 }
 
-static unsigned long load_kernel(int fd, unsigned long *page_offset)
+/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
+ * come wrapped up in the self-decompressing "bzImage" format.  With some funky
+ * coding, we can load those, too. */
+static unsigned long load_kernel(int fd)
 {
        Elf32_Ehdr hdr;
 
+       /* Read in the first few bytes. */
        if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
                err(1, "Reading kernel");
 
+       /* If it's an ELF file, it starts with "\177ELF" */
        if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
-               return map_elf(fd, &hdr, page_offset);
+               return map_elf(fd, &hdr);
 
-       return load_bzimage(fd, page_offset);
+       /* Otherwise we assume it's a bzImage, and try to unpack it */
+       return load_bzimage(fd);
 }
 
+/* This is a trivial little helper to align pages.  Andi Kleen hated it because
+ * it calls getpagesize() twice: "it's dumb code."
+ *
+ * Kernel guys get really het up about optimization, even when it's not
+ * necessary.  I leave this code as a reaction against that. */
 static inline unsigned long page_align(unsigned long addr)
 {
+       /* Add upwards and truncate downwards. */
        return ((addr + getpagesize()-1) & ~(getpagesize()-1));
 }
 
-/* initrd gets loaded at top of memory: return length. */
+/*L:180 An "initial ram disk" is a disk image loaded into memory along with
+ * the kernel which the kernel can use to boot from without needing any
+ * drivers.  Most distributions now use this as standard: the initrd contains
+ * the code to load the appropriate driver modules for the current machine.
+ *
+ * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
+ * kernels.  He sent me this (and tells me when I break it). */
 static unsigned long load_initrd(const char *name, unsigned long mem)
 {
        int ifd;
        struct stat st;
        unsigned long len;
-       void *iaddr;
 
        ifd = open_or_die(name, O_RDONLY);
+       /* fstat() is needed to get the file size. */
        if (fstat(ifd, &st) < 0)
                err(1, "fstat() on initrd '%s'", name);
 
+       /* We map the initrd at the top of memory, but mmap wants it to be
+        * page-aligned, so we round the size up for that. */
        len = page_align(st.st_size);
-       iaddr = mmap((void *)mem - len, st.st_size,
-                    PROT_READ|PROT_EXEC|PROT_WRITE,
-                    MAP_FIXED|MAP_PRIVATE, ifd, 0);
-       if (iaddr != (void *)mem - len)
-               err(1, "Mmaping initrd '%s' returned %p not %p",
-                   name, iaddr, (void *)mem - len);
+       map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
+       /* Once a file is mapped, you can close the file descriptor.  It's a
+        * little odd, but quite useful. */
        close(ifd);
-       verbose("mapped initrd %s size=%lu @ %p\n", name, st.st_size, iaddr);
+       verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
+
+       /* We return the initrd size. */
        return len;
 }
 
+/* Once we know how much memory we have, we can construct simple linear page
+ * tables which set virtual == physical which will get the Guest far enough
+ * into the boot to create its own.
+ *
+ * We lay them out of the way, just below the initrd (which is why we need to
+ * know its size). */
 static unsigned long setup_pagetables(unsigned long mem,
-                                     unsigned long initrd_size,
-                                     unsigned long page_offset)
+                                     unsigned long initrd_size)
 {
-       u32 *pgdir, *linear;
+       unsigned long *pgdir, *linear;
        unsigned int mapped_pages, i, linear_pages;
-       unsigned int ptes_per_page = getpagesize()/sizeof(u32);
+       unsigned int ptes_per_page = getpagesize()/sizeof(void *);
 
-       /* If we can map all of memory above page_offset, we do so. */
-       if (mem <= -page_offset)
-               mapped_pages = mem/getpagesize();
-       else
-               mapped_pages = -page_offset/getpagesize();
+       mapped_pages = mem/getpagesize();
 
-       /* Each linear PTE page can map ptes_per_page pages. */
+       /* Each PTE page can map ptes_per_page pages: how many do we need? */
        linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
 
-       /* We lay out top-level then linear mapping immediately below initrd */
-       pgdir = (void *)mem - initrd_size - getpagesize();
+       /* We put the toplevel page directory page at the top of memory. */
+       pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
+
+       /* Now we use the next linear_pages pages as pte pages */
        linear = (void *)pgdir - linear_pages*getpagesize();
 
+       /* Linear mapping is easy: put every page's address into the mapping in
+        * order.  PAGE_PRESENT contains the flags Present, Writable and
+        * Executable. */
        for (i = 0; i < mapped_pages; i++)
                linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
 
-       /* Now set up pgd so that this memory is at page_offset */
+       /* The top level points to the linear page table pages above. */
        for (i = 0; i < mapped_pages; i += ptes_per_page) {
-               pgdir[(i + page_offset/getpagesize())/ptes_per_page]
-                       = (((u32)linear + i*sizeof(u32)) | PAGE_PRESENT);
+               pgdir[i/ptes_per_page]
+                       = ((to_guest_phys(linear) + i*sizeof(void *))
+                          | PAGE_PRESENT);
        }
 
-       verbose("Linear mapping of %u pages in %u pte pages at %p\n",
-               mapped_pages, linear_pages, linear);
+       verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
+               mapped_pages, linear_pages, to_guest_phys(linear));
 
-       return (unsigned long)pgdir;
+       /* We return the top level (guest-physical) address: the kernel needs
+        * to know where it is. */
+       return to_guest_phys(pgdir);
 }
 
+/* Simple routine to roll all the commandline arguments together with spaces
+ * between them. */
 static void concat(char *dst, char *args[])
 {
        unsigned int i, len = 0;
@@ -321,162 +540,300 @@ static void concat(char *dst, char *args[])
        dst[len] = '\0';
 }
 
-static int tell_kernel(u32 pgdir, u32 start, u32 page_offset)
+/* This is where we actually tell the kernel to initialize the Guest.  We saw
+ * the arguments it expects when we looked at initialize() in lguest_user.c:
+ * the base of guest "physical" memory, the top physical page to allow, the
+ * top level pagetable and the entry point for the Guest. */
+static int tell_kernel(unsigned long pgdir, unsigned long start)
 {
-       u32 args[] = { LHREQ_INITIALIZE,
-                      LGUEST_GUEST_TOP/getpagesize(), /* Just below us */
-                      pgdir, start, page_offset };
+       unsigned long args[] = { LHREQ_INITIALIZE,
+                                (unsigned long)guest_base,
+                                guest_limit / getpagesize(), pgdir, start };
        int fd;
 
+       verbose("Guest: %p - %p (%#lx)\n",
+               guest_base, guest_base + guest_limit, guest_limit);
        fd = open_or_die("/dev/lguest", O_RDWR);
        if (write(fd, args, sizeof(args)) < 0)
                err(1, "Writing to /dev/lguest");
+
+       /* We return the /dev/lguest file descriptor to control this Guest */
        return fd;
 }
+/*:*/
 
-static void set_fd(int fd, struct device_list *devices)
+static void add_device_fd(int fd)
 {
-       FD_SET(fd, &devices->infds);
-       if (fd > devices->max_infd)
-               devices->max_infd = fd;
+       FD_SET(fd, &devices.infds);
+       if (fd > devices.max_infd)
+               devices.max_infd = fd;
 }
 
-/* When input arrives, we tell the kernel to kick lguest out with -EAGAIN. */
-static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices)
+/*L:200
+ * The Waker.
+ *
+ * With a console and network devices, we can have lots of input which we need
+ * to process.  We could try to tell the kernel what file descriptors to watch,
+ * but handing a file descriptor mask through to the kernel is fairly icky.
+ *
+ * Instead, we fork off a process which watches the file descriptors and writes
+ * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
+ * loop to stop running the Guest.  This causes it to return from the
+ * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
+ * the LHREQ_BREAK and wake us up again.
+ *
+ * This, of course, is merely a different *kind* of icky.
+ */
+static void wake_parent(int pipefd, int lguest_fd)
 {
-       set_fd(pipefd, devices);
+       /* Add the pipe from the Launcher to the fdset in the device_list, so
+        * we watch it, too. */
+       add_device_fd(pipefd);
 
        for (;;) {
-               fd_set rfds = devices->infds;
-               u32 args[] = { LHREQ_BREAK, 1 };
+               fd_set rfds = devices.infds;
+               unsigned long args[] = { LHREQ_BREAK, 1 };
 
-               select(devices->max_infd+1, &rfds, NULL, NULL, NULL);
+               /* Wait until input is ready from one of the devices. */
+               select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
+               /* Is it a message from the Launcher? */
                if (FD_ISSET(pipefd, &rfds)) {
-                       int ignorefd;
-                       if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0)
+                       int fd;
+                       /* If read() returns 0, it means the Launcher has
+                        * exited.  We silently follow. */
+                       if (read(pipefd, &fd, sizeof(fd)) == 0)
                                exit(0);
-                       FD_CLR(ignorefd, &devices->infds);
-               } else
+                       /* Otherwise it's telling us to change what file
+                        * descriptors we're to listen to. */
+                       if (fd >= 0)
+                               FD_SET(fd, &devices.infds);
+                       else
+                               FD_CLR(-fd - 1, &devices.infds);
+               } else /* Send LHREQ_BREAK command. */
                        write(lguest_fd, args, sizeof(args));
        }
 }
 
-static int setup_waker(int lguest_fd, struct device_list *device_list)
+/* This routine just sets up a pipe to the Waker process. */
+static int setup_waker(int lguest_fd)
 {
        int pipefd[2], child;
 
+       /* We create a pipe to talk to the waker, and also so it knows when the
+        * Launcher dies (and closes pipe). */
        pipe(pipefd);
        child = fork();
        if (child == -1)
                err(1, "forking");
 
        if (child == 0) {
+               /* Close the "writing" end of our copy of the pipe */
                close(pipefd[1]);
-               wake_parent(pipefd[0], lguest_fd, device_list);
+               wake_parent(pipefd[0], lguest_fd);
        }
+       /* Close the reading end of our copy of the pipe. */
        close(pipefd[0]);
 
+       /* Here is the fd used to talk to the waker. */
        return pipefd[1];
 }
 
+/*L:210
+ * Device Handling.
+ *
+ * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
+ * We need to make sure it's not trying to reach into the Launcher itself, so
+ * we have a convenient routine which check it and exits with an error message
+ * if something funny is going on:
+ */
 static void *_check_pointer(unsigned long addr, unsigned int size,
                            unsigned int line)
 {
-       if (addr >= LGUEST_GUEST_TOP || addr + size >= LGUEST_GUEST_TOP)
-               errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr);
-       return (void *)addr;
+       /* We have to separately check addr and addr+size, because size could
+        * be huge and addr + size might wrap around. */
+       if (addr >= guest_limit || addr + size >= guest_limit)
+               errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
+       /* We return a pointer for the caller's convenience, now we know it's
+        * safe to use. */
+       return from_guest_phys(addr);
 }
+/* A macro which transparently hands the line number to the real function. */
 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 
-/* Returns pointer to dma->used_len */
-static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num)
+/* This function returns the next descriptor in the chain, or vq->vring.num. */
+static unsigned next_desc(struct virtqueue *vq, unsigned int i)
 {
-       unsigned int i;
-       struct lguest_dma *udma;
+       unsigned int next;
 
-       udma = check_pointer(dma, sizeof(*udma));
-       for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
-               if (!udma->len[i])
-                       break;
+       /* If this descriptor says it doesn't chain, we're done. */
+       if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
+               return vq->vring.num;
 
-               iov[i].iov_base = check_pointer(udma->addr[i], udma->len[i]);
-               iov[i].iov_len = udma->len[i];
-       }
-       *num = i;
-       return &udma->used_len;
+       /* Check they're not leading us off end of descriptors. */
+       next = vq->vring.desc[i].next;
+       /* Make sure compiler knows to grab that: we don't want it changing! */
+       wmb();
+
+       if (next >= vq->vring.num)
+               errx(1, "Desc next is %u", next);
+
+       return next;
 }
 
-static u32 *get_dma_buffer(int fd, void *key,
-                          struct iovec iov[], unsigned int *num, u32 *irq)
+/* This looks in the virtqueue and for the first available buffer, and converts
+ * it to an iovec for convenient access.  Since descriptors consist of some
+ * number of output then some number of input descriptors, it's actually two
+ * iovecs, but we pack them into one and note how many of each there were.
+ *
+ * This function returns the descriptor number found, or vq->vring.num (which
+ * is never a valid descriptor number) if none was found. */
+static unsigned get_vq_desc(struct virtqueue *vq,
+                           struct iovec iov[],
+                           unsigned int *out_num, unsigned int *in_num)
 {
-       u32 buf[] = { LHREQ_GETDMA, (u32)key };
-       unsigned long udma;
-       u32 *res;
+       unsigned int i, head;
+
+       /* Check it isn't doing very strange things with descriptor numbers. */
+       if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
+               errx(1, "Guest moved used index from %u to %u",
+                    vq->last_avail_idx, vq->vring.avail->idx);
+
+       /* If there's nothing new since last we looked, return invalid. */
+       if (vq->vring.avail->idx == vq->last_avail_idx)
+               return vq->vring.num;
+
+       /* Grab the next descriptor number they're advertising, and increment
+        * the index we've seen. */
+       head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
+
+       /* If their number is silly, that's a fatal mistake. */
+       if (head >= vq->vring.num)
+               errx(1, "Guest says index %u is available", head);
+
+       /* When we start there are none of either input nor output. */
+       *out_num = *in_num = 0;
+
+       i = head;
+       do {
+               /* Grab the first descriptor, and check it's OK. */
+               iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
+               iov[*out_num + *in_num].iov_base
+                       = check_pointer(vq->vring.desc[i].addr,
+                                       vq->vring.desc[i].len);
+               /* If this is an input descriptor, increment that count. */
+               if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
+                       (*in_num)++;
+               else {
+                       /* If it's an output descriptor, they're all supposed
+                        * to come before any input descriptors. */
+                       if (*in_num)
+                               errx(1, "Descriptor has out after in");
+                       (*out_num)++;
+               }
+
+               /* If we've got too many, that implies a descriptor loop. */
+               if (*out_num + *in_num > vq->vring.num)
+                       errx(1, "Looped descriptor");
+       } while ((i = next_desc(vq, i)) != vq->vring.num);
 
-       udma = write(fd, buf, sizeof(buf));
-       if (udma == (unsigned long)-1)
-               return NULL;
+       return head;
+}
 
-       /* Kernel stashes irq in ->used_len. */
-       res = dma2iov(udma, iov, num);
-       *irq = *res;
-       return res;
+/* Once we've used one of their buffers, we tell them about it.  We'll then
+ * want to send them an interrupt, using trigger_irq(). */
+static void add_used(struct virtqueue *vq, unsigned int head, int len)
+{
+       struct vring_used_elem *used;
+
+       /* Get a pointer to the next entry in the used ring. */
+       used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
+       used->id = head;
+       used->len = len;
+       /* Make sure buffer is written before we update index. */
+       wmb();
+       vq->vring.used->idx++;
 }
 
-static void trigger_irq(int fd, u32 irq)
+/* This actually sends the interrupt for this virtqueue */
+static void trigger_irq(int fd, struct virtqueue *vq)
 {
-       u32 buf[] = { LHREQ_IRQ, irq };
+       unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
+
+       if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
+               return;
+
+       /* Send the Guest an interrupt tell them we used something up. */
        if (write(fd, buf, sizeof(buf)) != 0)
-               err(1, "Triggering irq %i", irq);
+               err(1, "Triggering irq %i", vq->config.irq);
 }
 
-static void discard_iovec(struct iovec *iov, unsigned int *num)
+/* And here's the combo meal deal.  Supersize me! */
+static void add_used_and_trigger(int fd, struct virtqueue *vq,
+                                unsigned int head, int len)
 {
-       static char discard_buf[1024];
-       *num = 1;
-       iov->iov_base = discard_buf;
-       iov->iov_len = sizeof(discard_buf);
+       add_used(vq, head, len);
+       trigger_irq(fd, vq);
 }
 
+/* Here is the input terminal setting we save, and the routine to restore them
+ * on exit so the user can see what they type next. */
 static struct termios orig_term;
 static void restore_term(void)
 {
        tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
 }
 
+/* We associate some data with the console for our exit hack. */
 struct console_abort
 {
+       /* How many times have they hit ^C? */
        int count;
+       /* When did they start? */
        struct timeval start;
 };
 
-/* We DMA input to buffer bound at start of console page. */
+/* This is the routine which handles console input (ie. stdin). */
 static bool handle_console_input(int fd, struct device *dev)
 {
-       u32 irq = 0, *lenp;
        int len;
-       unsigned int num;
-       struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
+       unsigned int head, in_num, out_num;
+       struct iovec iov[dev->vq->vring.num];
        struct console_abort *abort = dev->priv;
 
-       lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq);
-       if (!lenp) {
-               warn("console: no dma buffer!");
-               discard_iovec(iov, &num);
-       }
+       /* First we need a console buffer from the Guests's input virtqueue. */
+       head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
+
+       /* If they're not ready for input, stop listening to this file
+        * descriptor.  We'll start again once they add an input buffer. */
+       if (head == dev->vq->vring.num)
+               return false;
 
-       len = readv(dev->fd, iov, num);
+       if (out_num)
+               errx(1, "Output buffers in console in queue?");
+
+       /* This is why we convert to iovecs: the readv() call uses them, and so
+        * it reads straight into the Guest's buffer. */
+       len = readv(dev->fd, iov, in_num);
        if (len <= 0) {
+               /* This implies that the console is closed, is /dev/null, or
+                * something went terribly wrong. */
                warnx("Failed to get console input, ignoring console.");
-               len = 0;
+               /* Put the input terminal back. */
+               restore_term();
+               /* Remove callback from input vq, so it doesn't restart us. */
+               dev->vq->handle_output = NULL;
+               /* Stop listening to this fd: don't call us again. */
+               return false;
        }
 
-       if (lenp) {
-               *lenp = len;
-               trigger_irq(fd, irq);
-       }
+       /* Tell the Guest about the new input. */
+       add_used_and_trigger(fd, dev->vq, head, len);
 
-       /* Three ^C within one second?  Exit. */
+       /* Three ^C within one second?  Exit.
+        *
+        * This is such a hack, but works surprisingly well.  Each ^C has to be
+        * in a buffer by itself, so they can't be too fast.  But we check that
+        * we get three within about a second, so they can't be too slow. */
        if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
                if (!abort->count++)
                        gettimeofday(&abort->start, NULL);
@@ -484,289 +841,351 @@ static bool handle_console_input(int fd, struct device *dev)
                        struct timeval now;
                        gettimeofday(&now, NULL);
                        if (now.tv_sec <= abort->start.tv_sec+1) {
-                               /* Make sure waker is not blocked in BREAK */
-                               u32 args[] = { LHREQ_BREAK, 0 };
+                               unsigned long args[] = { LHREQ_BREAK, 0 };
+                               /* Close the fd so Waker will know it has to
+                                * exit. */
                                close(waker_fd);
+                               /* Just in case waker is blocked in BREAK, send
+                                * unbreak now. */
                                write(fd, args, sizeof(args));
                                exit(2);
                        }
                        abort->count = 0;
                }
        } else
+               /* Any other key resets the abort counter. */
                abort->count = 0;
 
-       if (!len) {
-               restore_term();
-               return false;
-       }
+       /* Everything went OK! */
        return true;
 }
 
-static u32 handle_console_output(int fd, const struct iovec *iov,
-                                unsigned num, struct device*dev)
-{
-       return writev(STDOUT_FILENO, iov, num);
-}
-
-static u32 handle_tun_output(int fd, const struct iovec *iov,
-                            unsigned num, struct device *dev)
+/* Handling output for console is simple: we just get all the output buffers
+ * and write them to stdout. */
+static void handle_console_output(int fd, struct virtqueue *vq)
 {
-       /* Now we've seen output, we should warn if we can't get buffers. */
-       *(bool *)dev->priv = true;
-       return writev(dev->fd, iov, num);
+       unsigned int head, out, in;
+       int len;
+       struct iovec iov[vq->vring.num];
+
+       /* Keep getting output buffers from the Guest until we run out. */
+       while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
+               if (in)
+                       errx(1, "Input buffers in output queue?");
+               len = writev(STDOUT_FILENO, iov, out);
+               add_used_and_trigger(fd, vq, head, len);
+       }
 }
 
-static unsigned long peer_offset(unsigned int peernum)
+/* Handling output for network is also simple: we get all the output buffers
+ * and write them (ignoring the first element) to this device's file descriptor
+ * (stdout). */
+static void handle_net_output(int fd, struct virtqueue *vq)
 {
-       return 4 * peernum;
+       unsigned int head, out, in;
+       int len;
+       struct iovec iov[vq->vring.num];
+
+       /* Keep getting output buffers from the Guest until we run out. */
+       while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
+               if (in)
+                       errx(1, "Input buffers in output queue?");
+               /* Check header, but otherwise ignore it (we said we supported
+                * no features). */
+               (void)convert(&iov[0], struct virtio_net_hdr);
+               len = writev(vq->dev->fd, iov+1, out-1);
+               add_used_and_trigger(fd, vq, head, len);
+       }
 }
 
+/* This is where we handle a packet coming in from the tun device to our
+ * Guest. */
 static bool handle_tun_input(int fd, struct device *dev)
 {
-       u32 irq = 0, *lenp;
+       unsigned int head, in_num, out_num;
        int len;
-       unsigned num;
-       struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
-
-       lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num,
-                             &irq);
-       if (!lenp) {
-               if (*(bool *)dev->priv)
+       struct iovec iov[dev->vq->vring.num];
+       struct virtio_net_hdr *hdr;
+
+       /* First we need a network buffer from the Guests's recv virtqueue. */
+       head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
+       if (head == dev->vq->vring.num) {
+               /* Now, it's expected that if we try to send a packet too
+                * early, the Guest won't be ready yet.  Wait until the device
+                * status says it's ready. */
+               /* FIXME: Actually want DRIVER_ACTIVE here. */
+               if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
                        warn("network: no dma buffer!");
-               discard_iovec(iov, &num);
-       }
+               /* We'll turn this back on if input buffers are registered. */
+               return false;
+       } else if (out_num)
+               errx(1, "Output buffers in network recv queue?");
 
-       len = readv(dev->fd, iov, num);
+       /* First element is the header: we set it to 0 (no features). */
+       hdr = convert(&iov[0], struct virtio_net_hdr);
+       hdr->flags = 0;
+       hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
+
+       /* Read the packet from the device directly into the Guest's buffer. */
+       len = readv(dev->fd, iov+1, in_num-1);
        if (len <= 0)
                err(1, "reading network");
-       if (lenp) {
-               *lenp = len;
-               trigger_irq(fd, irq);
-       }
+
+       /* Tell the Guest about the new packet. */
+       add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
+
        verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
-               ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1],
-               lenp ? "sent" : "discarded");
+               ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
+               head != dev->vq->vring.num ? "sent" : "discarded");
+
+       /* All good. */
        return true;
 }
 
-static u32 handle_block_output(int fd, const struct iovec *iov,
-                              unsigned num, struct device *dev)
+/* This callback ensures we try again, in case we stopped console or net
+ * delivery because Guest didn't have any buffers. */
+static void enable_fd(int fd, struct virtqueue *vq)
 {
-       struct lguest_block_page *p = dev->mem;
-       u32 irq, *lenp;
-       unsigned int len, reply_num;
-       struct iovec reply[LGUEST_MAX_DMA_SECTIONS];
-       off64_t device_len, off = (off64_t)p->sector * 512;
-
-       device_len = *(off64_t *)dev->priv;
-
-       if (off >= device_len)
-               err(1, "Bad offset %llu vs %llu", off, device_len);
-       if (lseek64(dev->fd, off, SEEK_SET) != off)
-               err(1, "Bad seek to sector %i", p->sector);
-
-       verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off);
-
-       lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq);
-       if (!lenp)
-               err(1, "Block request didn't give us a dma buffer");
-
-       if (p->type) {
-               len = writev(dev->fd, iov, num);
-               if (off + len > device_len) {
-                       ftruncate(dev->fd, device_len);
-                       errx(1, "Write past end %llu+%u", off, len);
-               }
-               *lenp = 0;
-       } else {
-               len = readv(dev->fd, reply, reply_num);
-               *lenp = len;
-       }
-
-       p->result = 1 + (p->bytes != len);
-       trigger_irq(fd, irq);
-       return 0;
+       add_device_fd(vq->dev->fd);
+       /* Tell waker to listen to it again */
+       write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
 }
 
-static void handle_output(int fd, unsigned long dma, unsigned long key,
-                         struct device_list *devices)
+/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
+static void handle_output(int fd, unsigned long addr)
 {
        struct device *i;
-       u32 *lenp;
-       struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
-       unsigned num = 0;
-
-       lenp = dma2iov(dma, iov, &num);
-       for (i = devices->dev; i; i = i->next) {
-               if (i->handle_output && key == i->watch_key) {
-                       *lenp = i->handle_output(fd, iov, num, i);
-                       return;
+       struct virtqueue *vq;
+
+       /* Check each virtqueue. */
+       for (i = devices.dev; i; i = i->next) {
+               for (vq = i->vq; vq; vq = vq->next) {
+                       if (vq->config.pfn == addr/getpagesize()
+                           && vq->handle_output) {
+                               verbose("Output to %s\n", vq->dev->name);
+                               vq->handle_output(fd, vq);
+                               return;
+                       }
                }
        }
-       warnx("Pending dma %p, key %p", (void *)dma, (void *)key);
+
+       /* Early console write is done using notify on a nul-terminated string
+        * in Guest memory. */
+       if (addr >= guest_limit)
+               errx(1, "Bad NOTIFY %#lx", addr);
+
+       write(STDOUT_FILENO, from_guest_phys(addr),
+             strnlen(from_guest_phys(addr), guest_limit - addr));
 }
 
-static void handle_input(int fd, struct device_list *devices)
+/* This is called when the waker wakes us up: check for incoming file
+ * descriptors. */
+static void handle_input(int fd)
 {
+       /* select() wants a zeroed timeval to mean "don't wait". */
        struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
 
        for (;;) {
                struct device *i;
-               fd_set fds = devices->infds;
+               fd_set fds = devices.infds;
 
-               if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0)
+               /* If nothing is ready, we're done. */
+               if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
                        break;
 
-               for (i = devices->dev; i; i = i->next) {
+               /* Otherwise, call the device(s) which have readable
+                * file descriptors and a method of handling them.  */
+               for (i = devices.dev; i; i = i->next) {
                        if (i->handle_input && FD_ISSET(i->fd, &fds)) {
-                               if (!i->handle_input(fd, i)) {
-                                       FD_CLR(i->fd, &devices->infds);
-                                       /* Tell waker to ignore it too... */
-                                       write(waker_fd, &i->fd, sizeof(i->fd));
-                               }
+                               int dev_fd;
+                               if (i->handle_input(fd, i))
+                                       continue;
+
+                               /* If handle_input() returns false, it means we
+                                * should no longer service it.  Networking and
+                                * console do this when there's no input
+                                * buffers to deliver into.  Console also uses
+                                * it when it discovers that stdin is
+                                * closed. */
+                               FD_CLR(i->fd, &devices.infds);
+                               /* Tell waker to ignore it too, by sending a
+                                * negative fd number (-1, since 0 is a valid
+                                * FD number). */
+                               dev_fd = -i->fd - 1;
+                               write(waker_fd, &dev_fd, sizeof(dev_fd));
                        }
                }
        }
 }
 
-static struct lguest_device_desc *new_dev_desc(u16 type, u16 features,
-                                              u16 num_pages)
+/*L:190
+ * Device Setup
+ *
+ * All devices need a descriptor so the Guest knows it exists, and a "struct
+ * device" so the Launcher can keep track of it.  We have common helper
+ * routines to allocate them.
+ *
+ * This routine allocates a new "struct lguest_device_desc" from descriptor
+ * table just above the Guest's normal memory.  It returns a pointer to that
+ * descriptor. */
+static struct lguest_device_desc *new_dev_desc(u16 type)
 {
-       static unsigned long top = LGUEST_GUEST_TOP;
-       struct lguest_device_desc *desc;
+       struct lguest_device_desc *d;
 
-       desc = malloc(sizeof(*desc));
-       desc->type = type;
-       desc->num_pages = num_pages;
-       desc->features = features;
-       desc->status = 0;
-       if (num_pages) {
-               top -= num_pages*getpagesize();
-               map_zeroed_pages(top, num_pages);
-               desc->pfn = top / getpagesize();
-       } else
-               desc->pfn = 0;
-       return desc;
+       /* We only have one page for all the descriptors. */
+       if (devices.desc_used + sizeof(*d) > getpagesize())
+               errx(1, "Too many devices");
+
+       /* We don't need to set config_len or status: page is 0 already. */
+       d = (void *)devices.descpage + devices.desc_used;
+       d->type = type;
+       devices.desc_used += sizeof(*d);
+
+       return d;
+}
+
+/* Each device descriptor is followed by some configuration information.
+ * The first byte is a "status" byte for the Guest to report what's happening.
+ * After that are fields: u8 type, u8 len, [... len bytes...].
+ *
+ * This routine adds a new field to an existing device's descriptor.  It only
+ * works for the last device, but that's OK because that's how we use it. */
+static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
+{
+       /* This is the last descriptor, right? */
+       assert(devices.descpage + devices.desc_used
+              == (u8 *)(dev->desc + 1) + dev->desc->config_len);
+
+       /* We only have one page of device descriptions. */
+       if (devices.desc_used + 2 + len > getpagesize())
+               errx(1, "Too many devices");
+
+       /* Copy in the new config header: type then length. */
+       devices.descpage[devices.desc_used++] = type;
+       devices.descpage[devices.desc_used++] = len;
+       memcpy(devices.descpage + devices.desc_used, c, len);
+       devices.desc_used += len;
+
+       /* Update the device descriptor length: two byte head then data. */
+       dev->desc->config_len += 2 + len;
+}
+
+/* This routine adds a virtqueue to a device.  We specify how many descriptors
+ * the virtqueue is to have. */
+static void add_virtqueue(struct device *dev, unsigned int num_descs,
+                         void (*handle_output)(int fd, struct virtqueue *me))
+{
+       unsigned int pages;
+       struct virtqueue **i, *vq = malloc(sizeof(*vq));
+       void *p;
+
+       /* First we need some pages for this virtqueue. */
+       pages = (vring_size(num_descs) + getpagesize() - 1) / getpagesize();
+       p = get_pages(pages);
+
+       /* Initialize the configuration. */
+       vq->config.num = num_descs;
+       vq->config.irq = devices.next_irq++;
+       vq->config.pfn = to_guest_phys(p) / getpagesize();
+
+       /* Initialize the vring. */
+       vring_init(&vq->vring, num_descs, p);
+
+       /* Add the configuration information to this device's descriptor. */
+       add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
+                      sizeof(vq->config), &vq->config);
+
+       /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
+        * second.  */
+       for (i = &dev->vq; *i; i = &(*i)->next);
+       *i = vq;
+
+       /* Link virtqueue back to device. */
+       vq->dev = dev;
+
+       /* Set up handler. */
+       vq->handle_output = handle_output;
+       if (!handle_output)
+               vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
 }
 
-static struct device *new_device(struct device_list *devices,
-                                u16 type, u16 num_pages, u16 features,
-                                int fd,
-                                bool (*handle_input)(int, struct device *),
-                                unsigned long watch_off,
-                                u32 (*handle_output)(int,
-                                                     const struct iovec *,
-                                                     unsigned,
-                                                     struct device *))
+/* This routine does all the creation and setup of a new device, including
+ * caling new_dev_desc() to allocate the descriptor and device memory. */
+static struct device *new_device(const char *name, u16 type, int fd,
+                                bool (*handle_input)(int, struct device *))
 {
        struct device *dev = malloc(sizeof(*dev));
 
-       /* Append to device list. */
-       *devices->lastdev = dev;
+       /* Append to device list.  Prepending to a single-linked list is
+        * easier, but the user expects the devices to be arranged on the bus
+        * in command-line order.  The first network device on the command line
+        * is eth0, the first block device /dev/lgba, etc. */
+       *devices.lastdev = dev;
        dev->next = NULL;
-       devices->lastdev = &dev->next;
+       devices.lastdev = &dev->next;
 
+       /* Now we populate the fields one at a time. */
        dev->fd = fd;
+       /* If we have an input handler for this file descriptor, then we add it
+        * to the device_list's fdset and maxfd. */
        if (handle_input)
-               set_fd(dev->fd, devices);
-       dev->desc = new_dev_desc(type, features, num_pages);
-       dev->mem = (void *)(dev->desc->pfn * getpagesize());
+               add_device_fd(dev->fd);
+       dev->desc = new_dev_desc(type);
        dev->handle_input = handle_input;
-       dev->watch_key = (unsigned long)dev->mem + watch_off;
-       dev->handle_output = handle_output;
+       dev->name = name;
        return dev;
 }
 
-static void setup_console(struct device_list *devices)
+/* Our first setup routine is the console.  It's a fairly simple device, but
+ * UNIX tty handling makes it uglier than it could be. */
+static void setup_console(void)
 {
        struct device *dev;
 
+       /* If we can save the initial standard input settings... */
        if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
                struct termios term = orig_term;
+               /* Then we turn off echo, line buffering and ^C etc.  We want a
+                * raw input stream to the Guest. */
                term.c_lflag &= ~(ISIG|ICANON|ECHO);
                tcsetattr(STDIN_FILENO, TCSANOW, &term);
+               /* If we exit gracefully, the original settings will be
+                * restored so the user can see what they're typing. */
                atexit(restore_term);
        }
 
-       /* We don't currently require a page for the console. */
-       dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0,
-                        STDIN_FILENO, handle_console_input,
-                        LGUEST_CONSOLE_DMA_KEY, handle_console_output);
+       dev = new_device("console", VIRTIO_ID_CONSOLE,
+                        STDIN_FILENO, handle_console_input);
+       /* We store the console state in dev->priv, and initialize it. */
        dev->priv = malloc(sizeof(struct console_abort));
        ((struct console_abort *)dev->priv)->count = 0;
-       verbose("device %p: console\n",
-               (void *)(dev->desc->pfn * getpagesize()));
-}
 
-static void setup_block_file(const char *filename, struct device_list *devices)
-{
-       int fd;
-       struct device *dev;
-       off64_t *device_len;
-       struct lguest_block_page *p;
-
-       fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT);
-       dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1,
-                        LGUEST_DEVICE_F_RANDOMNESS,
-                        fd, NULL, 0, handle_block_output);
-       device_len = dev->priv = malloc(sizeof(*device_len));
-       *device_len = lseek64(fd, 0, SEEK_END);
-       p = dev->mem;
-
-       p->num_sectors = *device_len/512;
-       verbose("device %p: block %i sectors\n",
-               (void *)(dev->desc->pfn * getpagesize()), p->num_sectors);
-}
-
-/* We use fnctl locks to reserve network slots (autocleanup!) */
-static unsigned int find_slot(int netfd, const char *filename)
-{
-       struct flock fl;
-
-       fl.l_type = F_WRLCK;
-       fl.l_whence = SEEK_SET;
-       fl.l_len = 1;
-       for (fl.l_start = 0;
-            fl.l_start < getpagesize()/sizeof(struct lguest_net);
-            fl.l_start++) {
-               if (fcntl(netfd, F_SETLK, &fl) == 0)
-                       return fl.l_start;
-       }
-       errx(1, "No free slots in network file %s", filename);
-}
-
-static void setup_net_file(const char *filename,
-                          struct device_list *devices)
-{
-       int netfd;
-       struct device *dev;
-
-       netfd = open(filename, O_RDWR, 0);
-       if (netfd < 0) {
-               if (errno == ENOENT) {
-                       netfd = open(filename, O_RDWR|O_CREAT, 0600);
-                       if (netfd >= 0) {
-                               char page[getpagesize()];
-                               memset(page, 0, sizeof(page));
-                               write(netfd, page, sizeof(page));
-                       }
-               }
-               if (netfd < 0)
-                       err(1, "cannot open net file '%s'", filename);
-       }
-
-       dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
-                        find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM,
-                        -1, NULL, 0, NULL);
+       /* The console needs two virtqueues: the input then the output.  When
+        * they put something the input queue, we make sure we're listening to
+        * stdin.  When they put something in the output queue, we write it to
+        * stdout.  */
+       add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
+       add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
 
-       /* We overwrite the /dev/zero mapping with the actual file. */
-       if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE,
-                        MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem)
-                       err(1, "could not mmap '%s'", filename);
-       verbose("device %p: shared net %s, peer %i\n",
-               (void *)(dev->desc->pfn * getpagesize()), filename,
-               dev->desc->features & ~LGUEST_NET_F_NOCSUM);
+       verbose("device %u: console\n", devices.device_num++);
 }
+/*:*/
+
+/*M:010 Inter-guest networking is an interesting area.  Simplest is to have a
+ * --sharenet=<name> option which opens or creates a named pipe.  This can be
+ * used to send packets to another guest in a 1:1 manner.
+ *
+ * More sopisticated is to use one of the tools developed for project like UML
+ * to do networking.
+ *
+ * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
+ * completely generic ("here's my vring, attach to your vring") and would work
+ * for any traffic.  Of course, namespace and permissions issues need to be
+ * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
+ * multiple inter-guest channels behind one interface, although it would
+ * require some manner of hotplugging new virtio channels.
+ *
+ * Finally, we could implement a virtio network switch in the kernel. :*/
 
 static u32 str2ip(const char *ipaddr)
 {
@@ -776,7 +1195,11 @@ static u32 str2ip(const char *ipaddr)
        return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
 }
 
-/* adapted from libbridge */
+/* This code is "adapted" from libbridge: it attaches the Host end of the
+ * network device to the bridge device specified by the command line.
+ *
+ * This is yet another James Morris contribution (I'm an IP-level guy, so I
+ * dislike bridging), and I just try not to break it. */
 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
 {
        int ifidx;
@@ -795,12 +1218,16 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
                err(1, "can't add %s to bridge %s", if_name, br_name);
 }
 
+/* This sets up the Host end of the network device with an IP address, brings
+ * it up so packets will flow, the copies the MAC address into the hwaddr
+ * pointer. */
 static void configure_device(int fd, const char *devname, u32 ipaddr,
                             unsigned char hwaddr[6])
 {
        struct ifreq ifr;
        struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
 
+       /* Don't read these incantations.  Just cut & paste them like I did! */
        memset(&ifr, 0, sizeof(ifr));
        strcpy(ifr.ifr_name, devname);
        sin->sin_family = AF_INET;
@@ -811,114 +1238,335 @@ static void configure_device(int fd, const char *devname, u32 ipaddr,
        if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
                err(1, "Bringing interface %s up", devname);
 
+       /* SIOC stands for Socket I/O Control.  G means Get (vs S for Set
+        * above).  IF means Interface, and HWADDR is hardware address.
+        * Simple! */
        if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
                err(1, "getting hw address for %s", devname);
-
        memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
 }
 
-static void setup_tun_net(const char *arg, struct device_list *devices)
+/*L:195 Our network is a Host<->Guest network.  This can either use bridging or
+ * routing, but the principle is the same: it uses the "tun" device to inject
+ * packets into the Host as if they came in from a normal network card.  We
+ * just shunt packets between the Guest and the tun device. */
+static void setup_tun_net(const char *arg)
 {
        struct device *dev;
        struct ifreq ifr;
        int netfd, ipfd;
        u32 ip;
        const char *br_name = NULL;
+       u8 hwaddr[6];
 
+       /* We open the /dev/net/tun device and tell it we want a tap device.  A
+        * tap device is like a tun device, only somehow different.  To tell
+        * the truth, I completely blundered my way through this code, but it
+        * works now! */
        netfd = open_or_die("/dev/net/tun", O_RDWR);
        memset(&ifr, 0, sizeof(ifr));
        ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
        strcpy(ifr.ifr_name, "tap%d");
        if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
                err(1, "configuring /dev/net/tun");
+       /* We don't need checksums calculated for packets coming in this
+        * device: trust us! */
        ioctl(netfd, TUNSETNOCSUM, 1);
 
-       /* You will be peer 1: we should create enough jitter to randomize */
-       dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
-                        NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd,
-                        handle_tun_input, peer_offset(0), handle_tun_output);
-       dev->priv = malloc(sizeof(bool));
-       *(bool *)dev->priv = false;
+       /* First we create a new network device. */
+       dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
+
+       /* Network devices need a receive and a send queue, just like
+        * console. */
+       add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
+       add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
 
+       /* We need a socket to perform the magic network ioctls to bring up the
+        * tap interface, connect to the bridge etc.  Any socket will do! */
        ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
        if (ipfd < 0)
                err(1, "opening IP socket");
 
+       /* If the command line was --tunnet=bridge:<name> do bridging. */
        if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
                ip = INADDR_ANY;
                br_name = arg + strlen(BRIDGE_PFX);
                add_to_bridge(ipfd, ifr.ifr_name, br_name);
-       } else
+       } else /* It is an IP address to set up the device with */
                ip = str2ip(arg);
 
-       /* We are peer 0, ie. first slot. */
-       configure_device(ipfd, ifr.ifr_name, ip, dev->mem);
+       /* Set up the tun device, and get the mac address for the interface. */
+       configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
 
-       /* Set "promisc" bit: we want every single packet. */
-       *((u8 *)dev->mem) |= 0x1;
+       /* Tell Guest what MAC address to use. */
+       add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
 
+       /* We don't seed the socket any more; setup is done. */
        close(ipfd);
 
-       verbose("device %p: tun net %u.%u.%u.%u\n",
-               (void *)(dev->desc->pfn * getpagesize()),
-               (u8)(ip>>24), (u8)(ip>>16), (u8)(ip>>8), (u8)ip);
+       verbose("device %u: tun net %u.%u.%u.%u\n",
+               devices.device_num++,
+               (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
        if (br_name)
                verbose("attached to bridge: %s\n", br_name);
 }
 
-/* Now we know how much memory we have, we copy in device descriptors */
-static void map_device_descriptors(struct device_list *devs, unsigned long mem)
+
+/*
+ * Block device.
+ *
+ * Serving a block device is really easy: the Guest asks for a block number and
+ * we read or write that position in the file.
+ *
+ * Unfortunately, this is amazingly slow: the Guest waits until the read is
+ * finished before running anything else, even if it could be doing useful
+ * work.  We could use async I/O, except it's reputed to suck so hard that
+ * characters actually go missing from your code when you try to use it.
+ *
+ * So we farm the I/O out to thread, and communicate with it via a pipe. */
+
+/* This hangs off device->priv, with the data. */
+struct vblk_info
 {
-       struct device *i;
-       unsigned int num;
-       struct lguest_device_desc *descs;
-
-       /* Device descriptor array sits just above top of normal memory */
-       descs = map_zeroed_pages(mem, 1);
-
-       for (i = devs->dev, num = 0; i; i = i->next, num++) {
-               if (num == LGUEST_MAX_DEVICES)
-                       errx(1, "too many devices");
-               verbose("Device %i: %s\n", num,
-                       i->desc->type == LGUEST_DEVICE_T_NET ? "net"
-                       : i->desc->type == LGUEST_DEVICE_T_CONSOLE ? "console"
-                       : i->desc->type == LGUEST_DEVICE_T_BLOCK ? "block"
-                       : "unknown");
-               descs[num] = *i->desc;
-               free(i->desc);
-               i->desc = &descs[num];
+       /* The size of the file. */
+       off64_t len;
+
+       /* The file descriptor for the file. */
+       int fd;
+
+       /* IO thread listens on this file descriptor [0]. */
+       int workpipe[2];
+
+       /* IO thread writes to this file descriptor to mark it done, then
+        * Launcher triggers interrupt to Guest. */
+       int done_fd;
+};
+
+/* This is the core of the I/O thread.  It returns true if it did something. */
+static bool service_io(struct device *dev)
+{
+       struct vblk_info *vblk = dev->priv;
+       unsigned int head, out_num, in_num, wlen;
+       int ret;
+       struct virtio_blk_inhdr *in;
+       struct virtio_blk_outhdr *out;
+       struct iovec iov[dev->vq->vring.num];
+       off64_t off;
+
+       head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
+       if (head == dev->vq->vring.num)
+               return false;
+
+       if (out_num == 0 || in_num == 0)
+               errx(1, "Bad virtblk cmd %u out=%u in=%u",
+                    head, out_num, in_num);
+
+       out = convert(&iov[0], struct virtio_blk_outhdr);
+       in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
+       off = out->sector * 512;
+
+       /* This is how we implement barriers.  Pretty poor, no? */
+       if (out->type & VIRTIO_BLK_T_BARRIER)
+               fdatasync(vblk->fd);
+
+       if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
+               fprintf(stderr, "Scsi commands unsupported\n");
+               in->status = VIRTIO_BLK_S_UNSUPP;
+               wlen = sizeof(in);
+       } else if (out->type & VIRTIO_BLK_T_OUT) {
+               /* Write */
+
+               /* Move to the right location in the block file.  This can fail
+                * if they try to write past end. */
+               if (lseek64(vblk->fd, off, SEEK_SET) != off)
+                       err(1, "Bad seek to sector %llu", out->sector);
+
+               ret = writev(vblk->fd, iov+1, out_num-1);
+               verbose("WRITE to sector %llu: %i\n", out->sector, ret);
+
+               /* Grr... Now we know how long the descriptor they sent was, we
+                * make sure they didn't try to write over the end of the block
+                * file (possibly extending it). */
+               if (ret > 0 && off + ret > vblk->len) {
+                       /* Trim it back to the correct length */
+                       ftruncate64(vblk->fd, vblk->len);
+                       /* Die, bad Guest, die. */
+                       errx(1, "Write past end %llu+%u", off, ret);
+               }
+               wlen = sizeof(in);
+               in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
+       } else {
+               /* Read */
+
+               /* Move to the right location in the block file.  This can fail
+                * if they try to read past end. */
+               if (lseek64(vblk->fd, off, SEEK_SET) != off)
+                       err(1, "Bad seek to sector %llu", out->sector);
+
+               ret = readv(vblk->fd, iov+1, in_num-1);
+               verbose("READ from sector %llu: %i\n", out->sector, ret);
+               if (ret >= 0) {
+                       wlen = sizeof(in) + ret;
+                       in->status = VIRTIO_BLK_S_OK;
+               } else {
+                       wlen = sizeof(in);
+                       in->status = VIRTIO_BLK_S_IOERR;
+               }
+       }
+
+       /* We can't trigger an IRQ, because we're not the Launcher.  It does
+        * that when we tell it we're done. */
+       add_used(dev->vq, head, wlen);
+       return true;
+}
+
+/* This is the thread which actually services the I/O. */
+static int io_thread(void *_dev)
+{
+       struct device *dev = _dev;
+       struct vblk_info *vblk = dev->priv;
+       char c;
+
+       /* Close other side of workpipe so we get 0 read when main dies. */
+       close(vblk->workpipe[1]);
+       /* Close the other side of the done_fd pipe. */
+       close(dev->fd);
+
+       /* When this read fails, it means Launcher died, so we follow. */
+       while (read(vblk->workpipe[0], &c, 1) == 1) {
+               /* We acknowledge each request immediately, to reduce latency,
+                * rather than waiting until we've done them all.  I haven't
+                * measured to see if it makes any difference. */
+               while (service_io(dev))
+                       write(vblk->done_fd, &c, 1);
        }
+       return 0;
+}
+
+/* When the thread says some I/O is done, we interrupt the Guest. */
+static bool handle_io_finish(int fd, struct device *dev)
+{
+       char c;
+
+       /* If child died, presumably it printed message. */
+       if (read(dev->fd, &c, 1) != 1)
+               exit(1);
+
+       /* It did some work, so trigger the irq. */
+       trigger_irq(fd, dev->vq);
+       return true;
+}
+
+/* When the Guest submits some I/O, we wake the I/O thread. */
+static void handle_virtblk_output(int fd, struct virtqueue *vq)
+{
+       struct vblk_info *vblk = vq->dev->priv;
+       char c = 0;
+
+       /* Wake up I/O thread and tell it to go to work! */
+       if (write(vblk->workpipe[1], &c, 1) != 1)
+               /* Presumably it indicated why it died. */
+               exit(1);
 }
 
-static void __attribute__((noreturn))
-run_guest(int lguest_fd, struct device_list *device_list)
+/* This creates a virtual block device. */
+static void setup_block_file(const char *filename)
+{
+       int p[2];
+       struct device *dev;
+       struct vblk_info *vblk;
+       void *stack;
+       u64 cap;
+       unsigned int val;
+
+       /* This is the pipe the I/O thread will use to tell us I/O is done. */
+       pipe(p);
+
+       /* The device responds to return from I/O thread. */
+       dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
+
+       /* The device has a virtqueue. */
+       add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
+
+       /* Allocate the room for our own bookkeeping */
+       vblk = dev->priv = malloc(sizeof(*vblk));
+
+       /* First we open the file and store the length. */
+       vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
+       vblk->len = lseek64(vblk->fd, 0, SEEK_END);
+
+       /* Tell Guest how many sectors this device has. */
+       cap = cpu_to_le64(vblk->len / 512);
+       add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
+
+       /* Tell Guest not to put in too many descriptors at once: two are used
+        * for the in and out elements. */
+       val = cpu_to_le32(VIRTQUEUE_NUM - 2);
+       add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
+
+       /* The I/O thread writes to this end of the pipe when done. */
+       vblk->done_fd = p[1];
+
+       /* This is how we tell the I/O thread about more work. */
+       pipe(vblk->workpipe);
+
+       /* Create stack for thread and run it */
+       stack = malloc(32768);
+       if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
+               err(1, "Creating clone");
+
+       /* We don't need to keep the I/O thread's end of the pipes open. */
+       close(vblk->done_fd);
+       close(vblk->workpipe[0]);
+
+       verbose("device %u: virtblock %llu sectors\n",
+               devices.device_num, cap);
+}
+/* That's the end of device setup. */
+
+/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
+ * its input and output, and finally, lays it to rest. */
+static void __attribute__((noreturn)) run_guest(int lguest_fd)
 {
        for (;;) {
-               u32 args[] = { LHREQ_BREAK, 0 };
-               unsigned long arr[2];
+               unsigned long args[] = { LHREQ_BREAK, 0 };
+               unsigned long notify_addr;
                int readval;
 
                /* We read from the /dev/lguest device to run the Guest. */
-               readval = read(lguest_fd, arr, sizeof(arr));
+               readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
 
-               if (readval == sizeof(arr)) {
-                       handle_output(lguest_fd, arr[0], arr[1], device_list);
+               /* One unsigned long means the Guest did HCALL_NOTIFY */
+               if (readval == sizeof(notify_addr)) {
+                       verbose("Notify on address %#lx\n", notify_addr);
+                       handle_output(lguest_fd, notify_addr);
                        continue;
+               /* ENOENT means the Guest died.  Reading tells us why. */
                } else if (errno == ENOENT) {
                        char reason[1024] = { 0 };
                        read(lguest_fd, reason, sizeof(reason)-1);
                        errx(1, "%s", reason);
+               /* EAGAIN means the waker wanted us to look at some input.
+                * Anything else means a bug or incompatible change. */
                } else if (errno != EAGAIN)
                        err(1, "Running guest failed");
-               handle_input(lguest_fd, device_list);
+
+               /* Service input, then unset the BREAK which releases
+                * the Waker. */
+               handle_input(lguest_fd);
                if (write(lguest_fd, args, sizeof(args)) < 0)
                        err(1, "Resetting break");
        }
 }
+/*
+ * This is the end of the Launcher.
+ *
+ * But wait!  We've seen I/O from the Launcher, and we've seen I/O from the
+ * Drivers.  If we were to see the Host kernel I/O code, our understanding
+ * would be complete... :*/
 
 static struct option opts[] = {
        { "verbose", 0, NULL, 'v' },
-       { "sharenet", 1, NULL, 's' },
        { "tunnet", 1, NULL, 't' },
        { "block", 1, NULL, 'b' },
        { "initrd", 1, NULL, 'i' },
@@ -927,37 +1575,66 @@ static struct option opts[] = {
 static void usage(void)
 {
        errx(1, "Usage: lguest [--verbose] "
-            "[--sharenet=<filename>|--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
+            "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
             "|--block=<filename>|--initrd=<filename>]...\n"
             "<mem-in-mb> vmlinux [args...]");
 }
 
+/*L:105 The main routine is where the real work begins: */
 int main(int argc, char *argv[])
 {
-       unsigned long mem, pgdir, start, page_offset, initrd_size = 0;
-       int c, lguest_fd;
-       struct device_list device_list;
-       void *boot = (void *)0;
+       /* Memory, top-level pagetable, code startpoint and size of the
+        * (optional) initrd. */
+       unsigned long mem = 0, pgdir, start, initrd_size = 0;
+       /* A temporary and the /dev/lguest file descriptor. */
+       int i, c, lguest_fd;
+       /* The boot information for the Guest. */
+       void *boot;
+       /* If they specify an initrd file to load. */
        const char *initrd_name = NULL;
 
-       device_list.max_infd = -1;
-       device_list.dev = NULL;
-       device_list.lastdev = &device_list.dev;
-       FD_ZERO(&device_list.infds);
+       /* First we initialize the device list.  Since console and network
+        * device receive input from a file descriptor, we keep an fdset
+        * (infds) and the maximum fd number (max_infd) with the head of the
+        * list.  We also keep a pointer to the last device, for easy appending
+        * to the list.  Finally, we keep the next interrupt number to hand out
+        * (1: remember that 0 is used by the timer). */
+       FD_ZERO(&devices.infds);
+       devices.max_infd = -1;
+       devices.lastdev = &devices.dev;
+       devices.next_irq = 1;
+
+       /* We need to know how much memory so we can set up the device
+        * descriptor and memory pages for the devices as we parse the command
+        * line.  So we quickly look through the arguments to find the amount
+        * of memory now. */
+       for (i = 1; i < argc; i++) {
+               if (argv[i][0] != '-') {
+                       mem = atoi(argv[i]) * 1024 * 1024;
+                       /* We start by mapping anonymous pages over all of
+                        * guest-physical memory range.  This fills it with 0,
+                        * and ensures that the Guest won't be killed when it
+                        * tries to access it. */
+                       guest_base = map_zeroed_pages(mem / getpagesize()
+                                                     + DEVICE_PAGES);
+                       guest_limit = mem;
+                       guest_max = mem + DEVICE_PAGES*getpagesize();
+                       devices.descpage = get_pages(1);
+                       break;
+               }
+       }
 
+       /* The options are fairly straight-forward */
        while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
                switch (c) {
                case 'v':
                        verbose = true;
                        break;
-               case 's':
-                       setup_net_file(optarg, &device_list);
-                       break;
                case 't':
-                       setup_tun_net(optarg, &device_list);
+                       setup_tun_net(optarg);
                        break;
                case 'b':
-                       setup_block_file(optarg, &device_list);
+                       setup_block_file(optarg);
                        break;
                case 'i':
                        initrd_name = optarg;
@@ -967,46 +1644,70 @@ int main(int argc, char *argv[])
                        usage();
                }
        }
+       /* After the other arguments we expect memory and kernel image name,
+        * followed by command line arguments for the kernel. */
        if (optind + 2 > argc)
                usage();
 
-       /* We need a console device */
-       setup_console(&device_list);
+       verbose("Guest base is at %p\n", guest_base);
 
-       /* First we map /dev/zero over all of guest-physical memory. */
-       mem = atoi(argv[optind]) * 1024 * 1024;
-       map_zeroed_pages(0, mem / getpagesize());
+       /* We always have a console device */
+       setup_console();
 
        /* Now we load the kernel */
-       start = load_kernel(open_or_die(argv[optind+1], O_RDONLY),
-                           &page_offset);
+       start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
 
-       /* Write the device descriptors into memory. */
-       map_device_descriptors(&device_list, mem);
+       /* Boot information is stashed at physical address 0 */
+       boot = from_guest_phys(0);
 
-       /* Map the initrd image if requested */
+       /* Map the initrd image if requested (at top of physical memory) */
        if (initrd_name) {
                initrd_size = load_initrd(initrd_name, mem);
+               /* These are the location in the Linux boot header where the
+                * start and size of the initrd are expected to be found. */
                *(unsigned long *)(boot+0x218) = mem - initrd_size;
                *(unsigned long *)(boot+0x21c) = initrd_size;
+               /* The bootloader type 0xFF means "unknown"; that's OK. */
                *(unsigned char *)(boot+0x210) = 0xFF;
        }
 
-       /* Set up the initial linar pagetables. */
-       pgdir = setup_pagetables(mem, initrd_size, page_offset);
+       /* Set up the initial linear pagetables, starting below the initrd. */
+       pgdir = setup_pagetables(mem, initrd_size);
 
-       /* E820 memory map: ours is a simple, single region. */
+       /* The Linux boot header contains an "E820" memory map: ours is a
+        * simple, single region. */
        *(char*)(boot+E820NR) = 1;
        *((struct e820entry *)(boot+E820MAP))
                = ((struct e820entry) { 0, mem, E820_RAM });
-       /* Command line pointer and command line (at 4096) */
-       *(void **)(boot + 0x228) = boot + 4096;
+       /* The boot header contains a command line pointer: we put the command
+        * line after the boot header (at address 4096) */
+       *(u32 *)(boot + 0x228) = 4096;
        concat(boot + 4096, argv+optind+2);
-       /* Paravirt type: 1 == lguest */
+
+       /* The guest type value of "1" tells the Guest it's under lguest. */
        *(int *)(boot + 0x23c) = 1;
 
-       lguest_fd = tell_kernel(pgdir, start, page_offset);
-       waker_fd = setup_waker(lguest_fd, &device_list);
+       /* We tell the kernel to initialize the Guest: this returns the open
+        * /dev/lguest file descriptor. */
+       lguest_fd = tell_kernel(pgdir, start);
+
+       /* We fork off a child process, which wakes the Launcher whenever one
+        * of the input file descriptors needs attention.  Otherwise we would
+        * run the Guest until it tries to output something. */
+       waker_fd = setup_waker(lguest_fd);
 
-       run_guest(lguest_fd, &device_list);
+       /* Finally, run the Guest.  This doesn't return. */
+       run_guest(lguest_fd);
 }
+/*:*/
+
+/*M:999
+ * Mastery is done: you now know everything I do.
+ *
+ * But surely you have seen code, features and bugs in your wanderings which
+ * you now yearn to attack?  That is the real game, and I look forward to you
+ * patching and forking lguest into the Your-Name-Here-visor.
+ *
+ * Farewell, and good coding!
+ * Rusty Russell.
+ */