]> pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - Documentation/spi/spi-summary
ext4: Fix memory and buffer head leak in callers to ext4_ext_find_extent()
[linux-2.6-omap-h63xx.git] / Documentation / spi / spi-summary
index 795fbb48ffa7f080c88ccfd39e5afc7827183d3d..8861e47e5a2d7e66fcbdf4ef1f5643901a4cd4a6 100644 (file)
@@ -1,26 +1,30 @@
 Overview of Linux kernel SPI support
 ====================================
 
-02-Dec-2005
+21-May-2007
 
 What is SPI?
 ------------
 The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial
 link used to connect microcontrollers to sensors, memory, and peripherals.
+It's a simple "de facto" standard, not complicated enough to acquire a
+standardization body.  SPI uses a master/slave configuration.
 
 The three signal wires hold a clock (SCK, often on the order of 10 MHz),
 and parallel data lines with "Master Out, Slave In" (MOSI) or "Master In,
 Slave Out" (MISO) signals.  (Other names are also used.)  There are four
 clocking modes through which data is exchanged; mode-0 and mode-3 are most
 commonly used.  Each clock cycle shifts data out and data in; the clock
-doesn't cycle except when there is data to shift.
+doesn't cycle except when there is a data bit to shift.  Not all data bits
+are used though; not every protocol uses those full duplex capabilities.
 
-SPI masters may use a "chip select" line to activate a given SPI slave
+SPI masters use a fourth "chip select" line to activate a given SPI slave
 device, so those three signal wires may be connected to several chips
-in parallel.  All SPI slaves support chipselects.  Some devices have
+in parallel.  All SPI slaves support chipselects; they are usually active
+low signals, labeled nCSx for slave 'x' (e.g. nCS0).  Some devices have
 other signals, often including an interrupt to the master.
 
-Unlike serial busses like USB or SMBUS, even low level protocols for
+Unlike serial busses like USB or SMBus, even low level protocols for
 SPI slave functions are usually not interoperable between vendors
 (except for commodities like SPI memory chips).
 
@@ -33,6 +37,11 @@ SPI slave functions are usually not interoperable between vendors
   - Some devices may use eight bit words.  Others may different word
     lengths, such as streams of 12-bit or 20-bit digital samples.
 
+  - Words are usually sent with their most significant bit (MSB) first,
+    but sometimes the least significant bit (LSB) goes first instead.
+
+  - Sometimes SPI is used to daisy-chain devices, like shift registers.
+
 In the same way, SPI slaves will only rarely support any kind of automatic
 discovery/enumeration protocol.  The tree of slave devices accessible from
 a given SPI master will normally be set up manually, with configuration
@@ -44,6 +53,14 @@ half-duplex SPI, for request/response protocols), SSP ("Synchronous
 Serial Protocol"), PSP ("Programmable Serial Protocol"), and other
 related protocols.
 
+Some chips eliminate a signal line by combining MOSI and MISO, and
+limiting themselves to half-duplex at the hardware level.  In fact
+some SPI chips have this signal mode as a strapping option.  These
+can be accessed using the same programming interface as SPI, but of
+course they won't handle full duplex transfers.  You may find such
+chips described as using "three wire" signaling: SCK, data, nCSx.
+(That data line is sometimes called MOMI or SISO.)
+
 Microcontrollers often support both master and slave sides of the SPI
 protocol.  This document (and Linux) currently only supports the master
 side of SPI interactions.
@@ -74,6 +91,32 @@ interfaces with SPI modes.  Given SPI support, they could use MMC or SD
 cards without needing a special purpose MMC/SD/SDIO controller.
 
 
+I'm confused.  What are these four SPI "clock modes"?
+-----------------------------------------------------
+It's easy to be confused here, and the vendor documentation you'll
+find isn't necessarily helpful.  The four modes combine two mode bits:
+
+ - CPOL indicates the initial clock polarity.  CPOL=0 means the
+   clock starts low, so the first (leading) edge is rising, and
+   the second (trailing) edge is falling.  CPOL=1 means the clock
+   starts high, so the first (leading) edge is falling.
+
+ - CPHA indicates the clock phase used to sample data; CPHA=0 says
+   sample on the leading edge, CPHA=1 means the trailing edge.
+
+   Since the signal needs to stablize before it's sampled, CPHA=0
+   implies that its data is written half a clock before the first
+   clock edge.  The chipselect may have made it become available.
+
+Chip specs won't always say "uses SPI mode X" in as many words,
+but their timing diagrams will make the CPOL and CPHA modes clear.
+
+In the SPI mode number, CPOL is the high order bit and CPHA is the
+low order bit.  So when a chip's timing diagram shows the clock
+starting low (CPOL=0) and data stabilized for sampling during the
+trailing clock edge (CPHA=1), that's SPI mode 1.
+
+
 How do these driver programming interfaces work?
 ------------------------------------------------
 The <linux/spi/spi.h> header file includes kerneldoc, as does the
@@ -113,21 +156,29 @@ using the driver model to connect controller and protocol drivers using
 device tables provided by board specific initialization code.  SPI
 shows up in sysfs in several locations:
 
+   /sys/devices/.../CTLR ... physical node for a given SPI controller
+
    /sys/devices/.../CTLR/spiB.C ... spi_device on bus "B",
        chipselect C, accessed through CTLR.
 
+   /sys/bus/spi/devices/spiB.C ... symlink to that physical
+       .../CTLR/spiB.C device
+
    /sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
        that should be used with this device (for hotplug/coldplug)
 
-   /sys/bus/spi/devices/spiB.C ... symlink to the physical
-       spiB.C device
-
    /sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
 
-   /sys/class/spi_master/spiB ... class device for the controller
-       managing bus "B".  All the spiB.* devices share the same
+   /sys/class/spi_master/spiB ... symlink (or actual device node) to
+       a logical node which could hold class related state for the
+       controller managing bus "B".  All spiB.* devices share one
        physical SPI bus segment, with SCLK, MOSI, and MISO.
 
+Note that the actual location of the controller's class state depends
+on whether you enabled CONFIG_SYSFS_DEPRECATED or not.  At this time,
+the only class-specific state is the bus number ("B" in "spiB"), so
+those /sys/class entries are only useful to quickly identify busses.
+
 
 How does board-specific init code declare SPI devices?
 ------------------------------------------------------
@@ -294,7 +345,8 @@ SPI protocol drivers somewhat resemble platform device drivers:
 
 The driver core will autmatically attempt to bind this driver to any SPI
 device whose board_info gave a modalias of "CHIP".  Your probe() code
-might look like this unless you're creating a class_device:
+might look like this unless you're creating a device which is managing
+a bus (appearing under /sys/class/spi_master).
 
        static int __devinit CHIP_probe(struct spi_device *spi)
        {
@@ -399,7 +451,7 @@ An SPI controller will probably be registered on the platform_bus; write
 a driver to bind to the device, whichever bus is involved.
 
 The main task of this type of driver is to provide an "spi_master".
-Use spi_alloc_master() to allocate the master, and class_get_devdata()
+Use spi_alloc_master() to allocate the master, and spi_master_get_devdata()
 to get the driver-private data allocated for that device.
 
        struct spi_master       *master;
@@ -409,7 +461,7 @@ to get the driver-private data allocated for that device.
        if (!master)
                return -ENODEV;
 
-       c = class_get_devdata(&master->cdev);
+       c = spi_master_get_devdata(master);
 
 The driver will initialize the fields of that spi_master, including the
 bus number (maybe the same as the platform device ID) and three methods