]> pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - drivers/rtc/interface.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[linux-2.6-omap-h63xx.git] / drivers / rtc / interface.c
index ad66c6ecf36533d339573106f4bd17db05305e26..de0da545c7a107c0c967e35b9a4eb3daa4cf1c5b 100644 (file)
@@ -12,6 +12,7 @@
 */
 
 #include <linux/rtc.h>
+#include <linux/log2.h>
 
 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 {
@@ -99,7 +100,7 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 }
 EXPORT_SYMBOL_GPL(rtc_set_mmss);
 
-int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 {
        int err;
 
@@ -119,6 +120,87 @@ int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
        mutex_unlock(&rtc->ops_lock);
        return err;
 }
+
+int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+       int err;
+       struct rtc_time before, now;
+       int first_time = 1;
+
+       /* The lower level RTC driver may not be capable of filling
+        * in all fields of the rtc_time struct (eg. rtc-cmos),
+        * and so might instead return -1 in some fields.
+        * We deal with that here by grabbing a current RTC timestamp
+        * and using values from that for any missing (-1) values.
+        *
+        * But this can be racey, because some fields of the RTC timestamp
+        * may have wrapped in the interval since we read the RTC alarm,
+        * which would lead to us inserting inconsistent values in place
+        * of the -1 fields.
+        *
+        * Reading the alarm and timestamp in the reverse sequence
+        * would have the same race condition, and not solve the issue.
+        *
+        * So, we must first read the RTC timestamp,
+        * then read the RTC alarm value,
+        * and then read a second RTC timestamp.
+        *
+        * If any fields of the second timestamp have changed
+        * when compared with the first timestamp, then we know
+        * our timestamp may be inconsistent with that used by
+        * the low-level rtc_read_alarm_internal() function.
+        *
+        * So, when the two timestamps disagree, we just loop and do
+        * the process again to get a fully consistent set of values.
+        *
+        * This could all instead be done in the lower level driver,
+        * but since more than one lower level RTC implementation needs it,
+        * then it's probably best best to do it here instead of there..
+        */
+
+       /* Get the "before" timestamp */
+       err = rtc_read_time(rtc, &before);
+       if (err < 0)
+               return err;
+       do {
+               if (!first_time)
+                       memcpy(&before, &now, sizeof(struct rtc_time));
+               first_time = 0;
+
+               /* get the RTC alarm values, which may be incomplete */
+               err = rtc_read_alarm_internal(rtc, alarm);
+               if (err)
+                       return err;
+               if (!alarm->enabled)
+                       return 0;
+
+               /* get the "after" timestamp, to detect wrapped fields */
+               err = rtc_read_time(rtc, &now);
+               if (err < 0)
+                       return err;
+
+               /* note that tm_sec is a "don't care" value here: */
+       } while (   before.tm_min   != now.tm_min
+                || before.tm_hour  != now.tm_hour
+                || before.tm_mon   != now.tm_mon
+                || before.tm_year  != now.tm_year
+                || before.tm_isdst != now.tm_isdst);
+
+       /* Fill in any missing alarm fields using the timestamp */
+       if (alarm->time.tm_sec == -1)
+               alarm->time.tm_sec = now.tm_sec;
+       if (alarm->time.tm_min == -1)
+               alarm->time.tm_min = now.tm_min;
+       if (alarm->time.tm_hour == -1)
+               alarm->time.tm_hour = now.tm_hour;
+       if (alarm->time.tm_mday == -1)
+               alarm->time.tm_mday = now.tm_mday;
+       if (alarm->time.tm_mon == -1)
+               alarm->time.tm_mon = now.tm_mon;
+       if (alarm->time.tm_year == -1)
+               alarm->time.tm_year = now.tm_year;
+       return 0;
+}
 EXPORT_SYMBOL_GPL(rtc_read_alarm);
 
 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
@@ -210,6 +292,10 @@ int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
        if (task == NULL || task->func == NULL)
                return -EINVAL;
 
+       /* Cannot register while the char dev is in use */
+       if (!(mutex_trylock(&rtc->char_lock)))
+               return -EBUSY;
+
        spin_lock_irq(&rtc->irq_task_lock);
        if (rtc->irq_task == NULL) {
                rtc->irq_task = task;
@@ -217,13 +303,14 @@ int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
        }
        spin_unlock_irq(&rtc->irq_task_lock);
 
+       mutex_unlock(&rtc->char_lock);
+
        return retval;
 }
 EXPORT_SYMBOL_GPL(rtc_irq_register);
 
 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 {
-
        spin_lock_irq(&rtc->irq_task_lock);
        if (rtc->irq_task == task)
                rtc->irq_task = NULL;
@@ -231,6 +318,16 @@ void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 }
 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 
+/**
+ * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
+ * @rtc: the rtc device
+ * @task: currently registered with rtc_irq_register()
+ * @enabled: true to enable periodic IRQs
+ * Context: any
+ *
+ * Note that rtc_irq_set_freq() should previously have been used to
+ * specify the desired frequency of periodic IRQ task->func() callbacks.
+ */
 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 {
        int err = 0;
@@ -240,8 +337,10 @@ int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled
                return -ENXIO;
 
        spin_lock_irqsave(&rtc->irq_task_lock, flags);
+       if (rtc->irq_task != NULL && task == NULL)
+               err = -EBUSY;
        if (rtc->irq_task != task)
-               err = -ENXIO;
+               err = -EACCES;
        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
        if (err == 0)
@@ -251,6 +350,16 @@ int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled
 }
 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 
+/**
+ * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
+ * @rtc: the rtc device
+ * @task: currently registered with rtc_irq_register()
+ * @freq: positive frequency with which task->func() will be called
+ * Context: any
+ *
+ * Note that rtc_irq_set_state() is used to enable or disable the
+ * periodic IRQs.
+ */
 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 {
        int err = 0;
@@ -259,9 +368,14 @@ int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
        if (rtc->ops->irq_set_freq == NULL)
                return -ENXIO;
 
+       if (!is_power_of_2(freq))
+               return -EINVAL;
+
        spin_lock_irqsave(&rtc->irq_task_lock, flags);
+       if (rtc->irq_task != NULL && task == NULL)
+               err = -EBUSY;
        if (rtc->irq_task != task)
-               err = -ENXIO;
+               err = -EACCES;
        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
        if (err == 0) {