]> pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - mm/slab.c
[libata sata_mv] move code around
[linux-2.6-omap-h63xx.git] / mm / slab.c
index 5cbbdfa6dd0e75b0dbcffd490d1f6a75eb76f745..8a73dcfc6a2760f04a4d67c5cf40762b24f00515 100644 (file)
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -368,7 +368,7 @@ static inline void kmem_list3_init(struct kmem_list3 *parent)
  * manages a cache.
  */
        
-struct kmem_cache_s {
+struct kmem_cache {
 /* 1) per-cpu data, touched during every alloc/free */
        struct array_cache      *array[NR_CPUS];
        unsigned int            batchcount;
@@ -386,7 +386,7 @@ struct kmem_cache_s {
        unsigned int            gfporder;
 
        /* force GFP flags, e.g. GFP_DMA */
-       unsigned int            gfpflags;
+       gfp_t                   gfpflags;
 
        size_t                  colour;         /* cache colouring range */
        unsigned int            colour_off;     /* colour offset */
@@ -434,7 +434,7 @@ struct kmem_cache_s {
 /* Optimization question: fewer reaps means less 
  * probability for unnessary cpucache drain/refill cycles.
  *
- * OTHO the cpuarrays can contain lots of objects,
+ * OTOH the cpuarrays can contain lots of objects,
  * which could lock up otherwise freeable slabs.
  */
 #define REAPTIMEOUT_CPUC       (2*HZ)
@@ -650,8 +650,7 @@ static inline struct array_cache *ac_data(kmem_cache_t *cachep)
        return cachep->array[smp_processor_id()];
 }
 
-static inline kmem_cache_t *__find_general_cachep(size_t size,
-                                               unsigned int __nocast gfpflags)
+static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
 {
        struct cache_sizes *csizep = malloc_sizes;
 
@@ -675,8 +674,7 @@ static inline kmem_cache_t *__find_general_cachep(size_t size,
        return csizep->cs_cachep;
 }
 
-kmem_cache_t *kmem_find_general_cachep(size_t size,
-               unsigned int __nocast gfpflags)
+kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 {
        return __find_general_cachep(size, gfpflags);
 }
@@ -1185,7 +1183,7 @@ __initcall(cpucache_init);
  * did not request dmaable memory, we might get it, but that
  * would be relatively rare and ignorable.
  */
-static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
+static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
 {
        struct page *page;
        void *addr;
@@ -1504,6 +1502,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
 {
        size_t left_over, slab_size, ralign;
        kmem_cache_t *cachep = NULL;
+       struct list_head *p;
 
        /*
         * Sanity checks... these are all serious usage bugs.
@@ -1518,6 +1517,35 @@ kmem_cache_create (const char *name, size_t size, size_t align,
                        BUG();
                }
 
+       down(&cache_chain_sem);
+
+       list_for_each(p, &cache_chain) {
+               kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
+               mm_segment_t old_fs = get_fs();
+               char tmp;
+               int res;
+
+               /*
+                * This happens when the module gets unloaded and doesn't
+                * destroy its slab cache and no-one else reuses the vmalloc
+                * area of the module.  Print a warning.
+                */
+               set_fs(KERNEL_DS);
+               res = __get_user(tmp, pc->name);
+               set_fs(old_fs);
+               if (res) {
+                       printk("SLAB: cache with size %d has lost its name\n",
+                                       pc->objsize);
+                       continue;
+               }
+
+               if (!strcmp(pc->name,name)) {
+                       printk("kmem_cache_create: duplicate cache %s\n", name);
+                       dump_stack();
+                       goto oops;
+               }
+       }
+
 #if DEBUG
        WARN_ON(strchr(name, ' '));     /* It confuses parsers */
        if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
@@ -1594,7 +1622,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
        /* Get cache's description obj. */
        cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
        if (!cachep)
-               goto opps;
+               goto oops;
        memset(cachep, 0, sizeof(kmem_cache_t));
 
 #if DEBUG
@@ -1688,7 +1716,7 @@ next:
                printk("kmem_cache_create: couldn't create cache %s.\n", name);
                kmem_cache_free(&cache_cache, cachep);
                cachep = NULL;
-               goto opps;
+               goto oops;
        }
        slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
                                + sizeof(struct slab), align);
@@ -1783,43 +1811,14 @@ next:
                cachep->limit = BOOT_CPUCACHE_ENTRIES;
        } 
 
-       /* Need the semaphore to access the chain. */
-       down(&cache_chain_sem);
-       {
-               struct list_head *p;
-               mm_segment_t old_fs;
-
-               old_fs = get_fs();
-               set_fs(KERNEL_DS);
-               list_for_each(p, &cache_chain) {
-                       kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
-                       char tmp;
-                       /* This happens when the module gets unloaded and doesn't
-                          destroy its slab cache and noone else reuses the vmalloc
-                          area of the module. Print a warning. */
-                       if (__get_user(tmp,pc->name)) { 
-                               printk("SLAB: cache with size %d has lost its name\n", 
-                                       pc->objsize); 
-                               continue; 
-                       }       
-                       if (!strcmp(pc->name,name)) { 
-                               printk("kmem_cache_create: duplicate cache %s\n",name); 
-                               up(&cache_chain_sem); 
-                               unlock_cpu_hotplug();
-                               BUG(); 
-                       }       
-               }
-               set_fs(old_fs);
-       }
-
        /* cache setup completed, link it into the list */
        list_add(&cachep->next, &cache_chain);
-       up(&cache_chain_sem);
        unlock_cpu_hotplug();
-opps:
+oops:
        if (!cachep && (flags & SLAB_PANIC))
                panic("kmem_cache_create(): failed to create slab `%s'\n",
                        name);
+       up(&cache_chain_sem);
        return cachep;
 }
 EXPORT_SYMBOL(kmem_cache_create);
@@ -2048,7 +2047,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
 
 /* Get the memory for a slab management obj. */
 static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
-                       int colour_off, unsigned int __nocast local_flags)
+                       int colour_off, gfp_t local_flags)
 {
        struct slab *slabp;
        
@@ -2119,7 +2118,7 @@ static void cache_init_objs(kmem_cache_t *cachep,
        slabp->free = 0;
 }
 
-static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags)
+static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
 {
        if (flags & SLAB_DMA) {
                if (!(cachep->gfpflags & GFP_DMA))
@@ -2149,12 +2148,12 @@ static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
  * Grow (by 1) the number of slabs within a cache.  This is called by
  * kmem_cache_alloc() when there are no active objs left in a cache.
  */
-static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
+static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
 {
        struct slab     *slabp;
        void            *objp;
        size_t           offset;
-       unsigned int     local_flags;
+       gfp_t            local_flags;
        unsigned long    ctor_flags;
        struct kmem_list3 *l3;
 
@@ -2356,7 +2355,7 @@ bad:
 #define check_slabp(x,y) do { } while(0)
 #endif
 
-static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags)
+static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
 {
        int batchcount;
        struct kmem_list3 *l3;
@@ -2421,6 +2420,7 @@ retry:
                        next = slab_bufctl(slabp)[slabp->free];
 #if DEBUG
                        slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
+                       WARN_ON(numa_node_id() != slabp->nodeid);
 #endif
                        slabp->free = next;
                }
@@ -2456,7 +2456,7 @@ alloc_done:
 }
 
 static inline void
-cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags)
+cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
 {
        might_sleep_if(flags & __GFP_WAIT);
 #if DEBUG
@@ -2467,7 +2467,7 @@ cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags)
 #if DEBUG
 static void *
 cache_alloc_debugcheck_after(kmem_cache_t *cachep,
-                       unsigned int __nocast flags, void *objp, void *caller)
+                       gfp_t flags, void *objp, void *caller)
 {
        if (!objp)      
                return objp;
@@ -2510,7 +2510,7 @@ cache_alloc_debugcheck_after(kmem_cache_t *cachep,
 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
 #endif
 
-static inline void *____cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
+static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
 {
        void* objp;
        struct array_cache *ac;
@@ -2528,7 +2528,7 @@ static inline void *____cache_alloc(kmem_cache_t *cachep, unsigned int __nocast
        return objp;
 }
 
-static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
+static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
 {
        unsigned long save_flags;
        void* objp;
@@ -2548,7 +2548,7 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast fl
 /*
  * A interface to enable slab creation on nodeid
  */
-static void *__cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid)
+static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
 {
        struct list_head *entry;
        struct slab *slabp;
@@ -2635,8 +2635,10 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int n
                check_spinlock_acquired_node(cachep, node);
                check_slabp(cachep, slabp);
 
-
 #if DEBUG
+               /* Verify that the slab belongs to the intended node */
+               WARN_ON(slabp->nodeid != node);
+
                if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
                        printk(KERN_ERR "slab: double free detected in cache "
                                        "'%s', objp %p\n", cachep->name, objp);
@@ -2787,7 +2789,7 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp)
  * Allocate an object from this cache.  The flags are only relevant
  * if the cache has no available objects.
  */
-void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags)
+void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
 {
        return __cache_alloc(cachep, flags);
 }
@@ -2848,7 +2850,7 @@ out:
  * New and improved: it will now make sure that the object gets
  * put on the correct node list so that there is no false sharing.
  */
-void *kmem_cache_alloc_node(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid)
+void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
 {
        unsigned long save_flags;
        void *ptr;
@@ -2875,7 +2877,7 @@ void *kmem_cache_alloc_node(kmem_cache_t *cachep, unsigned int __nocast flags, i
 }
 EXPORT_SYMBOL(kmem_cache_alloc_node);
 
-void *kmalloc_node(size_t size, unsigned int __nocast flags, int node)
+void *kmalloc_node(size_t size, gfp_t flags, int node)
 {
        kmem_cache_t *cachep;
 
@@ -2908,7 +2910,7 @@ EXPORT_SYMBOL(kmalloc_node);
  * platforms.  For example, on i386, it means that the memory must come
  * from the first 16MB.
  */
-void *__kmalloc(size_t size, unsigned int __nocast flags)
+void *__kmalloc(size_t size, gfp_t flags)
 {
        kmem_cache_t *cachep;
 
@@ -2997,7 +2999,7 @@ EXPORT_SYMBOL(kmem_cache_free);
  * @size: how many bytes of memory are required.
  * @flags: the type of memory to allocate.
  */
-void *kzalloc(size_t size, unsigned int __nocast flags)
+void *kzalloc(size_t size, gfp_t flags)
 {
        void *ret = kmalloc(size, flags);
        if (ret)
@@ -3261,6 +3263,7 @@ static void drain_array_locked(kmem_cache_t *cachep,
 
 /**
  * cache_reap - Reclaim memory from caches.
+ * @unused: unused parameter
  *
  * Called from workqueue/eventd every few seconds.
  * Purpose:
@@ -3277,7 +3280,7 @@ static void cache_reap(void *unused)
 
        if (down_trylock(&cache_chain_sem)) {
                /* Give up. Setup the next iteration. */
-               schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
+               schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
                return;
        }
 
@@ -3346,7 +3349,7 @@ next:
        up(&cache_chain_sem);
        drain_remote_pages();
        /* Setup the next iteration */
-       schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
+       schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
 }
 
 #ifdef CONFIG_PROC_FS
@@ -3603,7 +3606,7 @@ unsigned int ksize(const void *objp)
  * @s: the string to duplicate
  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  */
-char *kstrdup(const char *s, unsigned int __nocast gfp)
+char *kstrdup(const char *s, gfp_t gfp)
 {
        size_t len;
        char *buf;