]> pilppa.org Git - linux-2.6-omap-h63xx.git/blobdiff - mm/slub.c
[ARM] 4364/1: AT91: LEDS on AT91SAM9261-EK
[linux-2.6-omap-h63xx.git] / mm / slub.c
index bd2efae02bcd9cedf262b8dd6e2c79f3fd4b1bec..b39c8a69a4ff4f79faecc51b6d8cfeaabf707754 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
  * PageActive          The slab is used as a cpu cache. Allocations
  *                     may be performed from the slab. The slab is not
  *                     on any slab list and cannot be moved onto one.
+ *                     The cpu slab may be equipped with an additioanl
+ *                     lockless_freelist that allows lockless access to
+ *                     free objects in addition to the regular freelist
+ *                     that requires the slab lock.
  *
  * PageError           Slab requires special handling due to debug
  *                     options set. This moves slab handling out of
- *                     the fast path.
+ *                     the fast path and disables lockless freelists.
  */
 
 static inline int SlabDebug(struct page *page)
@@ -1014,6 +1018,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
        set_freepointer(s, last, NULL);
 
        page->freelist = start;
+       page->lockless_freelist = NULL;
        page->inuse = 0;
 out:
        if (flags & __GFP_WAIT)
@@ -1276,6 +1281,23 @@ static void putback_slab(struct kmem_cache *s, struct page *page)
  */
 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
 {
+       /*
+        * Merge cpu freelist into freelist. Typically we get here
+        * because both freelists are empty. So this is unlikely
+        * to occur.
+        */
+       while (unlikely(page->lockless_freelist)) {
+               void **object;
+
+               /* Retrieve object from cpu_freelist */
+               object = page->lockless_freelist;
+               page->lockless_freelist = page->lockless_freelist[page->offset];
+
+               /* And put onto the regular freelist */
+               object[page->offset] = page->freelist;
+               page->freelist = object;
+               page->inuse--;
+       }
        s->cpu_slab[cpu] = NULL;
        ClearPageActive(page);
 
@@ -1322,47 +1344,46 @@ static void flush_all(struct kmem_cache *s)
 }
 
 /*
- * slab_alloc is optimized to only modify two cachelines on the fast path
- * (aside from the stack):
+ * Slow path. The lockless freelist is empty or we need to perform
+ * debugging duties.
+ *
+ * Interrupts are disabled.
  *
- * 1. The page struct
- * 2. The first cacheline of the object to be allocated.
+ * Processing is still very fast if new objects have been freed to the
+ * regular freelist. In that case we simply take over the regular freelist
+ * as the lockless freelist and zap the regular freelist.
  *
- * The only other cache lines that are read (apart from code) is the
- * per cpu array in the kmem_cache struct.
+ * If that is not working then we fall back to the partial lists. We take the
+ * first element of the freelist as the object to allocate now and move the
+ * rest of the freelist to the lockless freelist.
  *
- * Fastpath is not possible if we need to get a new slab or have
- * debugging enabled (which means all slabs are marked with SlabDebug)
+ * And if we were unable to get a new slab from the partial slab lists then
+ * we need to allocate a new slab. This is slowest path since we may sleep.
  */
-static void *slab_alloc(struct kmem_cache *s,
-                               gfp_t gfpflags, int node, void *addr)
+static void *__slab_alloc(struct kmem_cache *s,
+               gfp_t gfpflags, int node, void *addr, struct page *page)
 {
-       struct page *page;
        void **object;
-       unsigned long flags;
-       int cpu;
+       int cpu = smp_processor_id();
 
-       local_irq_save(flags);
-       cpu = smp_processor_id();
-       page = s->cpu_slab[cpu];
        if (!page)
                goto new_slab;
 
        slab_lock(page);
        if (unlikely(node != -1 && page_to_nid(page) != node))
                goto another_slab;
-redo:
+load_freelist:
        object = page->freelist;
        if (unlikely(!object))
                goto another_slab;
        if (unlikely(SlabDebug(page)))
                goto debug;
 
-have_object:
-       page->inuse++;
-       page->freelist = object[page->offset];
+       object = page->freelist;
+       page->lockless_freelist = object[page->offset];
+       page->inuse = s->objects;
+       page->freelist = NULL;
        slab_unlock(page);
-       local_irq_restore(flags);
        return object;
 
 another_slab:
@@ -1370,11 +1391,11 @@ another_slab:
 
 new_slab:
        page = get_partial(s, gfpflags, node);
-       if (likely(page)) {
+       if (page) {
 have_slab:
                s->cpu_slab[cpu] = page;
                SetPageActive(page);
-               goto redo;
+               goto load_freelist;
        }
 
        page = new_slab(s, gfpflags, node);
@@ -1397,7 +1418,7 @@ have_slab:
                                discard_slab(s, page);
                                page = s->cpu_slab[cpu];
                                slab_lock(page);
-                               goto redo;
+                               goto load_freelist;
                        }
                        /* New slab does not fit our expectations */
                        flush_slab(s, s->cpu_slab[cpu], cpu);
@@ -1405,16 +1426,52 @@ have_slab:
                slab_lock(page);
                goto have_slab;
        }
-       local_irq_restore(flags);
        return NULL;
 debug:
+       object = page->freelist;
        if (!alloc_object_checks(s, page, object))
                goto another_slab;
        if (s->flags & SLAB_STORE_USER)
                set_track(s, object, TRACK_ALLOC, addr);
        trace(s, page, object, 1);
        init_object(s, object, 1);
-       goto have_object;
+
+       page->inuse++;
+       page->freelist = object[page->offset];
+       slab_unlock(page);
+       return object;
+}
+
+/*
+ * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
+ * have the fastpath folded into their functions. So no function call
+ * overhead for requests that can be satisfied on the fastpath.
+ *
+ * The fastpath works by first checking if the lockless freelist can be used.
+ * If not then __slab_alloc is called for slow processing.
+ *
+ * Otherwise we can simply pick the next object from the lockless free list.
+ */
+static void __always_inline *slab_alloc(struct kmem_cache *s,
+                               gfp_t gfpflags, int node, void *addr)
+{
+       struct page *page;
+       void **object;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       page = s->cpu_slab[smp_processor_id()];
+       if (unlikely(!page || !page->lockless_freelist ||
+                       (node != -1 && page_to_nid(page) != node)))
+
+               object = __slab_alloc(s, gfpflags, node, addr, page);
+
+       else {
+               object = page->lockless_freelist;
+               page->lockless_freelist = object[page->offset];
+       }
+       local_irq_restore(flags);
+       return object;
 }
 
 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
@@ -1432,20 +1489,19 @@ EXPORT_SYMBOL(kmem_cache_alloc_node);
 #endif
 
 /*
- * The fastpath only writes the cacheline of the page struct and the first
- * cacheline of the object.
+ * Slow patch handling. This may still be called frequently since objects
+ * have a longer lifetime than the cpu slabs in most processing loads.
  *
- * We read the cpu_slab cacheline to check if the slab is the per cpu
- * slab for this processor.
+ * So we still attempt to reduce cache line usage. Just take the slab
+ * lock and free the item. If there is no additional partial page
+ * handling required then we can return immediately.
  */
-static void slab_free(struct kmem_cache *s, struct page *page,
+static void __slab_free(struct kmem_cache *s, struct page *page,
                                        void *x, void *addr)
 {
        void *prior;
        void **object = (void *)x;
-       unsigned long flags;
 
-       local_irq_save(flags);
        slab_lock(page);
 
        if (unlikely(SlabDebug(page)))
@@ -1475,7 +1531,6 @@ checks_ok:
 
 out_unlock:
        slab_unlock(page);
-       local_irq_restore(flags);
        return;
 
 slab_empty:
@@ -1487,7 +1542,6 @@ slab_empty:
 
        slab_unlock(page);
        discard_slab(s, page);
-       local_irq_restore(flags);
        return;
 
 debug:
@@ -1502,6 +1556,34 @@ debug:
        goto checks_ok;
 }
 
+/*
+ * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
+ * can perform fastpath freeing without additional function calls.
+ *
+ * The fastpath is only possible if we are freeing to the current cpu slab
+ * of this processor. This typically the case if we have just allocated
+ * the item before.
+ *
+ * If fastpath is not possible then fall back to __slab_free where we deal
+ * with all sorts of special processing.
+ */
+static void __always_inline slab_free(struct kmem_cache *s,
+                       struct page *page, void *x, void *addr)
+{
+       void **object = (void *)x;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       if (likely(page == s->cpu_slab[smp_processor_id()] &&
+                                               !SlabDebug(page))) {
+               object[page->offset] = page->lockless_freelist;
+               page->lockless_freelist = object;
+       } else
+               __slab_free(s, page, x, addr);
+
+       local_irq_restore(flags);
+}
+
 void kmem_cache_free(struct kmem_cache *s, void *x)
 {
        struct page *page;
@@ -2363,9 +2445,8 @@ void __init kmem_cache_init(void)
        register_cpu_notifier(&slab_notifier);
 #endif
 
-       if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
-               kmem_size = offsetof(struct kmem_cache, cpu_slab)
-                        + nr_cpu_ids * sizeof(struct page *);
+       kmem_size = offsetof(struct kmem_cache, cpu_slab) +
+                               nr_cpu_ids * sizeof(struct page *);
 
        printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
                " Processors=%d, Nodes=%d\n",