X-Git-Url: http://pilppa.org/gitweb/gitweb.cgi?a=blobdiff_plain;f=drivers%2Fchar%2Frtc.c;h=5c3142b6f1fcdf102a92b79dec3b9d000b4d4a3b;hb=32fa458688fa2e68bc433929b2d4941eef7efe39;hp=22cf7aa56cc470f6b04d464547c0cfc8a716efdf;hpb=99e1221d1a1edac316f7f8116c781f75733b1159;p=linux-2.6-omap-h63xx.git diff --git a/drivers/char/rtc.c b/drivers/char/rtc.c index 22cf7aa56cc..5c3142b6f1f 100644 --- a/drivers/char/rtc.c +++ b/drivers/char/rtc.c @@ -1,5 +1,5 @@ /* - * Real Time Clock interface for Linux + * Real Time Clock interface for Linux * * Copyright (C) 1996 Paul Gortmaker * @@ -17,7 +17,7 @@ * has been received. If a RTC interrupt has already happened, * it will output an unsigned long and then block. The output value * contains the interrupt status in the low byte and the number of - * interrupts since the last read in the remaining high bytes. The + * interrupts since the last read in the remaining high bytes. The * /dev/rtc interface can also be used with the select(2) call. * * This program is free software; you can redistribute it and/or @@ -82,16 +82,13 @@ #include #include -#if defined(__i386__) +#ifdef CONFIG_X86 #include #endif -#ifdef __sparc__ +#ifdef CONFIG_SPARC32 #include #include -#ifdef __sparc_v9__ -#include -#endif static unsigned long rtc_port; static int rtc_irq = PCI_IRQ_NONE; @@ -107,12 +104,14 @@ static int rtc_has_irq = 1; #ifndef CONFIG_HPET_EMULATE_RTC #define is_hpet_enabled() 0 -#define hpet_set_alarm_time(hrs, min, sec) 0 -#define hpet_set_periodic_freq(arg) 0 -#define hpet_mask_rtc_irq_bit(arg) 0 -#define hpet_set_rtc_irq_bit(arg) 0 -#define hpet_rtc_timer_init() do { } while (0) -#define hpet_rtc_dropped_irq() 0 +#define hpet_set_alarm_time(hrs, min, sec) 0 +#define hpet_set_periodic_freq(arg) 0 +#define hpet_mask_rtc_irq_bit(arg) 0 +#define hpet_set_rtc_irq_bit(arg) 0 +#define hpet_rtc_timer_init() do { } while (0) +#define hpet_rtc_dropped_irq() 0 +#define hpet_register_irq_handler(h) ({ 0; }) +#define hpet_unregister_irq_handler(h) ({ 0; }) #ifdef RTC_IRQ static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) { @@ -150,7 +149,7 @@ static int rtc_ioctl(struct inode *inode, struct file *file, static unsigned int rtc_poll(struct file *file, poll_table *wait); #endif -static void get_rtc_alm_time (struct rtc_time *alm_tm); +static void get_rtc_alm_time(struct rtc_time *alm_tm); #ifdef RTC_IRQ static void set_rtc_irq_bit_locked(unsigned char bit); static void mask_rtc_irq_bit_locked(unsigned char bit); @@ -188,9 +187,9 @@ static int rtc_proc_open(struct inode *inode, struct file *file); * rtc_status but before mod_timer is called, which would then reenable the * timer (but you would need to have an awful timing before you'd trip on it) */ -static unsigned long rtc_status = 0; /* bitmapped status byte. */ -static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */ -static unsigned long rtc_irq_data = 0; /* our output to the world */ +static unsigned long rtc_status; /* bitmapped status byte. */ +static unsigned long rtc_freq; /* Current periodic IRQ rate */ +static unsigned long rtc_irq_data; /* our output to the world */ static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ #ifdef RTC_IRQ @@ -198,7 +197,7 @@ static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ * rtc_task_lock nests inside rtc_lock. */ static DEFINE_SPINLOCK(rtc_task_lock); -static rtc_task_t *rtc_callback = NULL; +static rtc_task_t *rtc_callback; #endif /* @@ -208,7 +207,7 @@ static rtc_task_t *rtc_callback = NULL; static unsigned long epoch = 1900; /* year corresponding to 0x00 */ -static const unsigned char days_in_mo[] = +static const unsigned char days_in_mo[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; /* @@ -245,7 +244,7 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id) * the last read in the remainder of rtc_irq_data. */ - spin_lock (&rtc_lock); + spin_lock(&rtc_lock); rtc_irq_data += 0x100; rtc_irq_data &= ~0xff; if (is_hpet_enabled()) { @@ -262,16 +261,16 @@ irqreturn_t rtc_interrupt(int irq, void *dev_id) if (rtc_status & RTC_TIMER_ON) mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); - spin_unlock (&rtc_lock); + spin_unlock(&rtc_lock); /* Now do the rest of the actions */ spin_lock(&rtc_task_lock); if (rtc_callback) rtc_callback->func(rtc_callback->private_data); spin_unlock(&rtc_task_lock); - wake_up_interruptible(&rtc_wait); + wake_up_interruptible(&rtc_wait); - kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); + kill_fasync(&rtc_async_queue, SIGIO, POLL_IN); return IRQ_HANDLED; } @@ -338,7 +337,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf, DECLARE_WAITQUEUE(wait, current); unsigned long data; ssize_t retval; - + if (rtc_has_irq == 0) return -EIO; @@ -361,11 +360,11 @@ static ssize_t rtc_read(struct file *file, char __user *buf, * confusing. And no, xchg() is not the answer. */ __set_current_state(TASK_INTERRUPTIBLE); - - spin_lock_irq (&rtc_lock); + + spin_lock_irq(&rtc_lock); data = rtc_irq_data; rtc_irq_data = 0; - spin_unlock_irq (&rtc_lock); + spin_unlock_irq(&rtc_lock); if (data != 0) break; @@ -381,10 +380,13 @@ static ssize_t rtc_read(struct file *file, char __user *buf, schedule(); } while (1); - if (count == sizeof(unsigned int)) - retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int); - else - retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long); + if (count == sizeof(unsigned int)) { + retval = put_user(data, + (unsigned int __user *)buf) ?: sizeof(int); + } else { + retval = put_user(data, + (unsigned long __user *)buf) ?: sizeof(long); + } if (!retval) retval = count; out: @@ -397,7 +399,7 @@ static ssize_t rtc_read(struct file *file, char __user *buf, static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) { - struct rtc_time wtime; + struct rtc_time wtime; #ifdef RTC_IRQ if (rtc_has_irq == 0) { @@ -429,35 +431,41 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) } case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ { - unsigned long flags; /* can be called from isr via rtc_control() */ - spin_lock_irqsave (&rtc_lock, flags); + /* can be called from isr via rtc_control() */ + unsigned long flags; + + spin_lock_irqsave(&rtc_lock, flags); mask_rtc_irq_bit_locked(RTC_PIE); if (rtc_status & RTC_TIMER_ON) { rtc_status &= ~RTC_TIMER_ON; del_timer(&rtc_irq_timer); } - spin_unlock_irqrestore (&rtc_lock, flags); + spin_unlock_irqrestore(&rtc_lock, flags); + return 0; } case RTC_PIE_ON: /* Allow periodic ints */ { - unsigned long flags; /* can be called from isr via rtc_control() */ + /* can be called from isr via rtc_control() */ + unsigned long flags; + /* * We don't really want Joe User enabling more * than 64Hz of interrupts on a multi-user machine. */ if (!kernel && (rtc_freq > rtc_max_user_freq) && - (!capable(CAP_SYS_RESOURCE))) + (!capable(CAP_SYS_RESOURCE))) return -EACCES; - spin_lock_irqsave (&rtc_lock, flags); + spin_lock_irqsave(&rtc_lock, flags); if (!(rtc_status & RTC_TIMER_ON)) { mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); rtc_status |= RTC_TIMER_ON; } set_rtc_irq_bit_locked(RTC_PIE); - spin_unlock_irqrestore (&rtc_lock, flags); + spin_unlock_irqrestore(&rtc_lock, flags); + return 0; } case RTC_UIE_OFF: /* Mask ints from RTC updates. */ @@ -480,7 +488,7 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) */ memset(&wtime, 0, sizeof(struct rtc_time)); get_rtc_alm_time(&wtime); - break; + break; } case RTC_ALM_SET: /* Store a time into the alarm */ { @@ -508,16 +516,21 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) */ } if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || - RTC_ALWAYS_BCD) - { - if (sec < 60) BIN_TO_BCD(sec); - else sec = 0xff; - - if (min < 60) BIN_TO_BCD(min); - else min = 0xff; - - if (hrs < 24) BIN_TO_BCD(hrs); - else hrs = 0xff; + RTC_ALWAYS_BCD) { + if (sec < 60) + BIN_TO_BCD(sec); + else + sec = 0xff; + + if (min < 60) + BIN_TO_BCD(min); + else + min = 0xff; + + if (hrs < 24) + BIN_TO_BCD(hrs); + else + hrs = 0xff; } CMOS_WRITE(hrs, RTC_HOURS_ALARM); CMOS_WRITE(min, RTC_MINUTES_ALARM); @@ -566,11 +579,12 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) return -EINVAL; - + if ((hrs >= 24) || (min >= 60) || (sec >= 60)) return -EINVAL; - if ((yrs -= epoch) > 255) /* They are unsigned */ + yrs -= epoch; + if (yrs > 255) /* They are unsigned */ return -EINVAL; spin_lock_irq(&rtc_lock); @@ -638,9 +652,10 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) { int tmp = 0; unsigned char val; - unsigned long flags; /* can be called from isr via rtc_control() */ + /* can be called from isr via rtc_control() */ + unsigned long flags; - /* + /* * The max we can do is 8192Hz. */ if ((arg < 2) || (arg > 8192)) @@ -649,7 +664,8 @@ static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) * We don't really want Joe User generating more * than 64Hz of interrupts on a multi-user machine. */ - if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE))) + if (!kernel && (arg > rtc_max_user_freq) && + !capable(CAP_SYS_RESOURCE)) return -EACCES; while (arg > (1<f_flags & FASYNC) { - rtc_fasync (-1, file, 0); - } + if (file->f_flags & FASYNC) + rtc_fasync(-1, file, 0); no_irq: #endif - spin_lock_irq (&rtc_lock); + spin_lock_irq(&rtc_lock); rtc_irq_data = 0; rtc_status &= ~RTC_IS_OPEN; - spin_unlock_irq (&rtc_lock); + spin_unlock_irq(&rtc_lock); + return 0; } @@ -789,9 +805,9 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait) poll_wait(file, &rtc_wait, wait); - spin_lock_irq (&rtc_lock); + spin_lock_irq(&rtc_lock); l = rtc_irq_data; - spin_unlock_irq (&rtc_lock); + spin_unlock_irq(&rtc_lock); if (l != 0) return POLLIN | POLLRDNORM; @@ -799,14 +815,6 @@ static unsigned int rtc_poll(struct file *file, poll_table *wait) } #endif -/* - * exported stuffs - */ - -EXPORT_SYMBOL(rtc_register); -EXPORT_SYMBOL(rtc_unregister); -EXPORT_SYMBOL(rtc_control); - int rtc_register(rtc_task_t *task) { #ifndef RTC_IRQ @@ -832,6 +840,7 @@ int rtc_register(rtc_task_t *task) return 0; #endif } +EXPORT_SYMBOL(rtc_register); int rtc_unregister(rtc_task_t *task) { @@ -848,7 +857,7 @@ int rtc_unregister(rtc_task_t *task) return -ENXIO; } rtc_callback = NULL; - + /* disable controls */ if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { tmp = CMOS_READ(RTC_CONTROL); @@ -868,6 +877,7 @@ int rtc_unregister(rtc_task_t *task) return 0; #endif } +EXPORT_SYMBOL(rtc_unregister); int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) { @@ -886,7 +896,7 @@ int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) return rtc_do_ioctl(cmd, arg, 1); #endif } - +EXPORT_SYMBOL(rtc_control); /* * The various file operations we support. @@ -913,14 +923,39 @@ static struct miscdevice rtc_dev = { #ifdef CONFIG_PROC_FS static const struct file_operations rtc_proc_fops = { - .owner = THIS_MODULE, - .open = rtc_proc_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, + .owner = THIS_MODULE, + .open = rtc_proc_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, }; #endif +static resource_size_t rtc_size; + +static struct resource * __init rtc_request_region(resource_size_t size) +{ + struct resource *r; + + if (RTC_IOMAPPED) + r = request_region(RTC_PORT(0), size, "rtc"); + else + r = request_mem_region(RTC_PORT(0), size, "rtc"); + + if (r) + rtc_size = size; + + return r; +} + +static void rtc_release_region(void) +{ + if (RTC_IOMAPPED) + release_region(RTC_PORT(0), rtc_size); + else + release_mem_region(RTC_PORT(0), rtc_size); +} + static int __init rtc_init(void) { #ifdef CONFIG_PROC_FS @@ -930,13 +965,9 @@ static int __init rtc_init(void) unsigned int year, ctrl; char *guess = NULL; #endif -#ifdef __sparc__ +#ifdef CONFIG_SPARC32 struct linux_ebus *ebus; struct linux_ebus_device *edev; -#ifdef __sparc_v9__ - struct sparc_isa_bridge *isa_br; - struct sparc_isa_device *isa_dev; -#endif #else void *r; #ifdef RTC_IRQ @@ -944,27 +975,16 @@ static int __init rtc_init(void) #endif #endif -#ifdef __sparc__ +#ifdef CONFIG_SPARC32 for_each_ebus(ebus) { for_each_ebusdev(edev, ebus) { - if(strcmp(edev->prom_node->name, "rtc") == 0) { + if (strcmp(edev->prom_node->name, "rtc") == 0) { rtc_port = edev->resource[0].start; rtc_irq = edev->irqs[0]; goto found; } } } -#ifdef __sparc_v9__ - for_each_isa(isa_br) { - for_each_isadev(isa_dev, isa_br) { - if (strcmp(isa_dev->prom_node->name, "rtc") == 0) { - rtc_port = isa_dev->resource.start; - rtc_irq = isa_dev->irq; - goto found; - } - } - } -#endif rtc_has_irq = 0; printk(KERN_ERR "rtc_init: no PC rtc found\n"); return -EIO; @@ -979,17 +999,25 @@ found: * XXX Interrupt pin #7 in Espresso is shared between RTC and * PCI Slot 2 INTA# (and some INTx# in Slot 1). */ - if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) { + if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", + (void *)&rtc_port)) { rtc_has_irq = 0; printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq); return -EIO; } no_irq: #else - if (RTC_IOMAPPED) - r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc"); - else - r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc"); + r = rtc_request_region(RTC_IO_EXTENT); + + /* + * If we've already requested a smaller range (for example, because + * PNPBIOS or ACPI told us how the device is configured), the request + * above might fail because it's too big. + * + * If so, request just the range we actually use. + */ + if (!r) + r = rtc_request_region(RTC_IO_EXTENT_USED); if (!r) { #ifdef RTC_IRQ rtc_has_irq = 0; @@ -1001,33 +1029,41 @@ no_irq: #ifdef RTC_IRQ if (is_hpet_enabled()) { + int err; + rtc_int_handler_ptr = hpet_rtc_interrupt; + err = hpet_register_irq_handler(rtc_interrupt); + if (err != 0) { + printk(KERN_WARNING "hpet_register_irq_handler failed " + "in rtc_init()."); + return err; + } } else { rtc_int_handler_ptr = rtc_interrupt; } - if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) { + if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, + "rtc", NULL)) { /* Yeah right, seeing as irq 8 doesn't even hit the bus. */ rtc_has_irq = 0; printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ); - if (RTC_IOMAPPED) - release_region(RTC_PORT(0), RTC_IO_EXTENT); - else - release_mem_region(RTC_PORT(0), RTC_IO_EXTENT); + rtc_release_region(); + return -EIO; } hpet_rtc_timer_init(); #endif -#endif /* __sparc__ vs. others */ +#endif /* CONFIG_SPARC32 vs. others */ if (misc_register(&rtc_dev)) { #ifdef RTC_IRQ free_irq(RTC_IRQ, NULL); + hpet_unregister_irq_handler(rtc_interrupt); rtc_has_irq = 0; #endif - release_region(RTC_PORT(0), RTC_IO_EXTENT); + rtc_release_region(); return -ENODEV; } @@ -1041,21 +1077,21 @@ no_irq: #if defined(__alpha__) || defined(__mips__) rtc_freq = HZ; - + /* Each operating system on an Alpha uses its own epoch. Let's try to guess which one we are using now. */ - + if (rtc_is_updating() != 0) msleep(20); - + spin_lock_irq(&rtc_lock); year = CMOS_READ(RTC_YEAR); ctrl = CMOS_READ(RTC_CONTROL); spin_unlock_irq(&rtc_lock); - + if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) BCD_TO_BIN(year); /* This should never happen... */ - + if (year < 20) { epoch = 2000; guess = "SRM (post-2000)"; @@ -1076,7 +1112,8 @@ no_irq: #endif } if (guess) - printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch); + printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", + guess, epoch); #endif #ifdef RTC_IRQ if (rtc_has_irq == 0) @@ -1085,8 +1122,12 @@ no_irq: spin_lock_irq(&rtc_lock); rtc_freq = 1024; if (!hpet_set_periodic_freq(rtc_freq)) { - /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */ - CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT); + /* + * Initialize periodic frequency to CMOS reset default, + * which is 1024Hz + */ + CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), + RTC_FREQ_SELECT); } spin_unlock_irq(&rtc_lock); no_irq2: @@ -1099,25 +1140,24 @@ no_irq2: return 0; } -static void __exit rtc_exit (void) +static void __exit rtc_exit(void) { cleanup_sysctl(); - remove_proc_entry ("driver/rtc", NULL); + remove_proc_entry("driver/rtc", NULL); misc_deregister(&rtc_dev); -#ifdef __sparc__ +#ifdef CONFIG_SPARC32 if (rtc_has_irq) - free_irq (rtc_irq, &rtc_port); + free_irq(rtc_irq, &rtc_port); #else - if (RTC_IOMAPPED) - release_region(RTC_PORT(0), RTC_IO_EXTENT); - else - release_mem_region(RTC_PORT(0), RTC_IO_EXTENT); + rtc_release_region(); #ifdef RTC_IRQ - if (rtc_has_irq) - free_irq (RTC_IRQ, NULL); + if (rtc_has_irq) { + free_irq(RTC_IRQ, NULL); + hpet_unregister_irq_handler(hpet_rtc_interrupt); + } #endif -#endif /* __sparc__ */ +#endif /* CONFIG_SPARC32 */ } module_init(rtc_init); @@ -1125,14 +1165,14 @@ module_exit(rtc_exit); #ifdef RTC_IRQ /* - * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. + * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. * (usually during an IDE disk interrupt, with IRQ unmasking off) * Since the interrupt handler doesn't get called, the IRQ status * byte doesn't get read, and the RTC stops generating interrupts. * A timer is set, and will call this function if/when that happens. * To get it out of this stalled state, we just read the status. * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. - * (You *really* shouldn't be trying to use a non-realtime system + * (You *really* shouldn't be trying to use a non-realtime system * for something that requires a steady > 1KHz signal anyways.) */ @@ -1140,7 +1180,7 @@ static void rtc_dropped_irq(unsigned long data) { unsigned long freq; - spin_lock_irq (&rtc_lock); + spin_lock_irq(&rtc_lock); if (hpet_rtc_dropped_irq()) { spin_unlock_irq(&rtc_lock); @@ -1159,13 +1199,15 @@ static void rtc_dropped_irq(unsigned long data) spin_unlock_irq(&rtc_lock); - if (printk_ratelimit()) - printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq); + if (printk_ratelimit()) { + printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", + freq); + } /* Now we have new data */ wake_up_interruptible(&rtc_wait); - kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); + kill_fasync(&rtc_async_queue, SIGIO, POLL_IN); } #endif @@ -1269,7 +1311,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm) * can take just over 2ms. We wait 20ms. There is no need to * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. * If you need to know *exactly* when a second has started, enable - * periodic update complete interrupts, (via ioctl) and then + * periodic update complete interrupts, (via ioctl) and then * immediately read /dev/rtc which will block until you get the IRQ. * Once the read clears, read the RTC time (again via ioctl). Easy. */ @@ -1299,8 +1341,7 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm) ctrl = CMOS_READ(RTC_CONTROL); spin_unlock_irqrestore(&rtc_lock, flags); - if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) - { + if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(rtc_tm->tm_sec); BCD_TO_BIN(rtc_tm->tm_min); BCD_TO_BIN(rtc_tm->tm_hour); @@ -1318,7 +1359,8 @@ void rtc_get_rtc_time(struct rtc_time *rtc_tm) * Account for differences between how the RTC uses the values * and how they are defined in a struct rtc_time; */ - if ((rtc_tm->tm_year += (epoch - 1900)) <= 69) + rtc_tm->tm_year += epoch - 1900; + if (rtc_tm->tm_year <= 69) rtc_tm->tm_year += 100; rtc_tm->tm_mon--; @@ -1339,8 +1381,7 @@ static void get_rtc_alm_time(struct rtc_time *alm_tm) ctrl = CMOS_READ(RTC_CONTROL); spin_unlock_irq(&rtc_lock); - if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) - { + if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(alm_tm->tm_sec); BCD_TO_BIN(alm_tm->tm_min); BCD_TO_BIN(alm_tm->tm_hour);