X-Git-Url: http://pilppa.org/gitweb/gitweb.cgi?a=blobdiff_plain;f=kernel%2Fsched_fair.c;h=ee00da284b1230233f0fb0c0d2028cb2579c441f;hb=b53cb09f54a95069b6b7343c15857138fc17dba1;hp=f819f943fb8690b04eb79cd05448c9fe203a5a3d;hpb=95938a35c5562afa7af7252821e44132391a3db8;p=linux-2.6-omap-h63xx.git diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index f819f943fb8..ee00da284b1 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c @@ -22,31 +22,34 @@ /* * Targeted preemption latency for CPU-bound tasks: - * (default: 20ms, units: nanoseconds) + * (default: 20ms * ilog(ncpus), units: nanoseconds) * * NOTE: this latency value is not the same as the concept of - * 'timeslice length' - timeslices in CFS are of variable length. - * (to see the precise effective timeslice length of your workload, - * run vmstat and monitor the context-switches field) + * 'timeslice length' - timeslices in CFS are of variable length + * and have no persistent notion like in traditional, time-slice + * based scheduling concepts. * - * On SMP systems the value of this is multiplied by the log2 of the - * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way - * systems, 4x on 8-way systems, 5x on 16-way systems, etc.) - * Targeted preemption latency for CPU-bound tasks: + * (to see the precise effective timeslice length of your workload, + * run vmstat and monitor the context-switches (cs) field) */ -const_debug unsigned int sysctl_sched_latency = 20000000ULL; +unsigned int sysctl_sched_latency = 20000000ULL; /* - * After fork, child runs first. (default) If set to 0 then - * parent will (try to) run first. + * Minimal preemption granularity for CPU-bound tasks: + * (default: 1 msec * ilog(ncpus), units: nanoseconds) */ -const_debug unsigned int sysctl_sched_child_runs_first = 1; +unsigned int sysctl_sched_min_granularity = 1000000ULL; /* - * Minimal preemption granularity for CPU-bound tasks: - * (default: 2 msec, units: nanoseconds) + * is kept at sysctl_sched_latency / sysctl_sched_min_granularity */ -const_debug unsigned int sysctl_sched_nr_latency = 20; +static unsigned int sched_nr_latency = 20; + +/* + * After fork, child runs first. (default) If set to 0 then + * parent will (try to) run first. + */ +const_debug unsigned int sysctl_sched_child_runs_first = 1; /* * sys_sched_yield() compat mode @@ -58,23 +61,25 @@ unsigned int __read_mostly sysctl_sched_compat_yield; /* * SCHED_BATCH wake-up granularity. - * (default: 10 msec, units: nanoseconds) + * (default: 10 msec * ilog(ncpus), units: nanoseconds) * * This option delays the preemption effects of decoupled workloads * and reduces their over-scheduling. Synchronous workloads will still * have immediate wakeup/sleep latencies. */ -const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL; +unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL; /* * SCHED_OTHER wake-up granularity. - * (default: 10 msec, units: nanoseconds) + * (default: 10 msec * ilog(ncpus), units: nanoseconds) * * This option delays the preemption effects of decoupled workloads * and reduces their over-scheduling. Synchronous workloads will still * have immediate wakeup/sleep latencies. */ -const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL; +unsigned int sysctl_sched_wakeup_granularity = 10000000UL; + +const_debug unsigned int sysctl_sched_migration_cost = 500000UL; /************************************************************** * CFS operations on generic schedulable entities: @@ -212,6 +217,22 @@ static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) * Scheduling class statistics methods: */ +#ifdef CONFIG_SCHED_DEBUG +int sched_nr_latency_handler(struct ctl_table *table, int write, + struct file *filp, void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); + + if (ret || !write) + return ret; + + sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, + sysctl_sched_min_granularity); + + return 0; +} +#endif /* * The idea is to set a period in which each task runs once. @@ -224,7 +245,7 @@ static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) static u64 __sched_period(unsigned long nr_running) { u64 period = sysctl_sched_latency; - unsigned long nr_latency = sysctl_sched_nr_latency; + unsigned long nr_latency = sched_nr_latency; if (unlikely(nr_running > nr_latency)) { period *= nr_running; @@ -259,6 +280,7 @@ static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running) { u64 vslice = __sched_period(nr_running); + vslice *= NICE_0_LOAD; do_div(vslice, rq_weight); return vslice; @@ -381,15 +403,6 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) se->exec_start = rq_of(cfs_rq)->clock; } -/* - * We are descheduling a task - update its stats: - */ -static inline void -update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se) -{ - se->exec_start = 0; -} - /************************************************** * Scheduling class queueing methods: */ @@ -481,19 +494,26 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running) vruntime += sched_vslice(cfs_rq)/2; + /* + * The 'current' period is already promised to the current tasks, + * however the extra weight of the new task will slow them down a + * little, place the new task so that it fits in the slot that + * stays open at the end. + */ if (initial && sched_feat(START_DEBIT)) vruntime += sched_vslice_add(cfs_rq, se); if (!initial) { + /* sleeps upto a single latency don't count. */ if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) && task_of(se)->policy != SCHED_BATCH) vruntime -= sysctl_sched_latency; - vruntime = max_t(s64, vruntime, se->vruntime); + /* ensure we never gain time by being placed backwards. */ + vruntime = max_vruntime(se->vruntime, vruntime); } se->vruntime = vruntime; - } static void @@ -526,7 +546,6 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) update_stats_dequeue(cfs_rq, se); if (sleep) { - se->peer_preempt = 0; #ifdef CONFIG_SCHEDSTATS if (entity_is_task(se)) { struct task_struct *tsk = task_of(se); @@ -554,10 +573,8 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) ideal_runtime = sched_slice(cfs_rq, curr); delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; - if (delta_exec > ideal_runtime || - (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt)) + if (delta_exec > ideal_runtime) resched_task(rq_of(cfs_rq)->curr); - curr->peer_preempt = 0; } static void @@ -611,8 +628,6 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) if (prev->on_rq) update_curr(cfs_rq); - update_stats_curr_end(cfs_rq, prev); - check_spread(cfs_rq, prev); if (prev->on_rq) { update_stats_wait_start(cfs_rq, prev); @@ -822,7 +837,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p) struct task_struct *curr = rq->curr; struct cfs_rq *cfs_rq = task_cfs_rq(curr); struct sched_entity *se = &curr->se, *pse = &p->se; - s64 delta, gran; + unsigned long gran; if (unlikely(rt_prio(p->prio))) { update_rq_clock(rq); @@ -830,25 +845,27 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p) resched_task(curr); return; } + /* + * Batch tasks do not preempt (their preemption is driven by + * the tick): + */ + if (unlikely(p->policy == SCHED_BATCH)) + return; - if (sched_feat(WAKEUP_PREEMPT)) { - while (!is_same_group(se, pse)) { - se = parent_entity(se); - pse = parent_entity(pse); - } + if (!sched_feat(WAKEUP_PREEMPT)) + return; - delta = se->vruntime - pse->vruntime; - gran = sysctl_sched_wakeup_granularity; - if (unlikely(se->load.weight != NICE_0_LOAD)) - gran = calc_delta_fair(gran, &se->load); + while (!is_same_group(se, pse)) { + se = parent_entity(se); + pse = parent_entity(pse); + } - if (delta > gran) { - int now = !sched_feat(PREEMPT_RESTRICT); + gran = sysctl_sched_wakeup_granularity; + if (unlikely(se->load.weight != NICE_0_LOAD)) + gran = calc_delta_fair(gran, &se->load); - if (now || p->prio < curr->prio || !se->peer_preempt++) - resched_task(curr); - } - } + if (pse->vruntime + gran < se->vruntime) + resched_task(curr); } static struct task_struct *pick_next_task_fair(struct rq *rq) @@ -881,6 +898,7 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) } } +#ifdef CONFIG_SMP /************************************************** * Fair scheduling class load-balancing methods: */ @@ -941,12 +959,11 @@ static int cfs_rq_best_prio(struct cfs_rq *cfs_rq) static unsigned long load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_nr_move, unsigned long max_load_move, + unsigned long max_load_move, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned, int *this_best_prio) { struct cfs_rq *busy_cfs_rq; - unsigned long load_moved, total_nr_moved = 0, nr_moved; long rem_load_move = max_load_move; struct rq_iterator cfs_rq_iterator; @@ -974,25 +991,48 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, #else # define maxload rem_load_move #endif - /* pass busy_cfs_rq argument into + /* + * pass busy_cfs_rq argument into * load_balance_[start|next]_fair iterators */ cfs_rq_iterator.arg = busy_cfs_rq; - nr_moved = balance_tasks(this_rq, this_cpu, busiest, - max_nr_move, maxload, sd, idle, all_pinned, - &load_moved, this_best_prio, &cfs_rq_iterator); - - total_nr_moved += nr_moved; - max_nr_move -= nr_moved; - rem_load_move -= load_moved; + rem_load_move -= balance_tasks(this_rq, this_cpu, busiest, + maxload, sd, idle, all_pinned, + this_best_prio, + &cfs_rq_iterator); - if (max_nr_move <= 0 || rem_load_move <= 0) + if (rem_load_move <= 0) break; } return max_load_move - rem_load_move; } +static int +move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, + struct sched_domain *sd, enum cpu_idle_type idle) +{ + struct cfs_rq *busy_cfs_rq; + struct rq_iterator cfs_rq_iterator; + + cfs_rq_iterator.start = load_balance_start_fair; + cfs_rq_iterator.next = load_balance_next_fair; + + for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { + /* + * pass busy_cfs_rq argument into + * load_balance_[start|next]_fair iterators + */ + cfs_rq_iterator.arg = busy_cfs_rq; + if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, + &cfs_rq_iterator)) + return 1; + } + + return 0; +} +#endif + /* * scheduler tick hitting a task of our scheduling class: */ @@ -1007,7 +1047,7 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr) } } -#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0) +#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0) /* * Share the fairness runtime between parent and child, thus the @@ -1027,8 +1067,9 @@ static void task_new_fair(struct rq *rq, struct task_struct *p) update_curr(cfs_rq); place_entity(cfs_rq, se, 1); + /* 'curr' will be NULL if the child belongs to a different group */ if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && - curr->vruntime < se->vruntime) { + curr && curr->vruntime < se->vruntime) { /* * Upon rescheduling, sched_class::put_prev_task() will place * 'current' within the tree based on its new key value. @@ -1036,12 +1077,7 @@ static void task_new_fair(struct rq *rq, struct task_struct *p) swap(curr->vruntime, se->vruntime); } - update_stats_enqueue(cfs_rq, se); - check_spread(cfs_rq, se); - check_spread(cfs_rq, curr); - __enqueue_entity(cfs_rq, se); - account_entity_enqueue(cfs_rq, se); - se->peer_preempt = 0; + enqueue_task_fair(rq, p, 0); resched_task(rq->curr); } @@ -1072,7 +1108,10 @@ static const struct sched_class fair_sched_class = { .pick_next_task = pick_next_task_fair, .put_prev_task = put_prev_task_fair, +#ifdef CONFIG_SMP .load_balance = load_balance_fair, + .move_one_task = move_one_task_fair, +#endif .set_curr_task = set_curr_task_fair, .task_tick = task_tick_fair,