X-Git-Url: http://pilppa.org/gitweb/gitweb.cgi?a=blobdiff_plain;f=kernel%2Fsched_rt.c;h=0a6d2e516420516cb1d0c35a5345db1f356f71ab;hb=871de939030c903fd5ed50a7c4c88e02998e1cbc;hp=0749c1837b102bd840cda4f3fccba58c5d60eab6;hpb=4df64c0bfb7e0e260d10ebc005f7d0ba1308eed7;p=linux-2.6-omap-h63xx.git diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 0749c1837b1..0a6d2e51642 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -4,20 +4,15 @@ */ #ifdef CONFIG_SMP -static cpumask_t rt_overload_mask; -static atomic_t rto_count; -static inline int rt_overloaded(void) -{ - return atomic_read(&rto_count); -} -static inline cpumask_t *rt_overload(void) + +static inline int rt_overloaded(struct rq *rq) { - return &rt_overload_mask; + return atomic_read(&rq->rd->rto_count); } + static inline void rt_set_overload(struct rq *rq) { - rq->rt.overloaded = 1; - cpu_set(rq->cpu, rt_overload_mask); + cpu_set(rq->cpu, rq->rd->rto_mask); /* * Make sure the mask is visible before we set * the overload count. That is checked to determine @@ -26,25 +21,220 @@ static inline void rt_set_overload(struct rq *rq) * updated yet. */ wmb(); - atomic_inc(&rto_count); + atomic_inc(&rq->rd->rto_count); } + static inline void rt_clear_overload(struct rq *rq) { /* the order here really doesn't matter */ - atomic_dec(&rto_count); - cpu_clear(rq->cpu, rt_overload_mask); - rq->rt.overloaded = 0; + atomic_dec(&rq->rd->rto_count); + cpu_clear(rq->cpu, rq->rd->rto_mask); } static void update_rt_migration(struct rq *rq) { - if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) - rt_set_overload(rq); - else + if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { + if (!rq->rt.overloaded) { + rt_set_overload(rq); + rq->rt.overloaded = 1; + } + } else if (rq->rt.overloaded) { rt_clear_overload(rq); + rq->rt.overloaded = 0; + } } #endif /* CONFIG_SMP */ +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ + return container_of(rt_se, struct task_struct, rt); +} + +static inline int on_rt_rq(struct sched_rt_entity *rt_se) +{ + return !list_empty(&rt_se->run_list); +} + +#ifdef CONFIG_RT_GROUP_SCHED + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + if (!rt_rq->tg) + return RUNTIME_INF; + + return rt_rq->tg->rt_runtime; +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ + list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return rt_rq->rq; +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + return rt_se->rt_rq; +} + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = rt_se->parent) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return rt_se->my_q; +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se); +static void dequeue_rt_entity(struct sched_rt_entity *rt_se); + +static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ + struct sched_rt_entity *rt_se = rt_rq->rt_se; + + if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { + struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; + + enqueue_rt_entity(rt_se); + if (rt_rq->highest_prio < curr->prio) + resched_task(curr); + } +} + +static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ + struct sched_rt_entity *rt_se = rt_rq->rt_se; + + if (rt_se && on_rt_rq(rt_se)) + dequeue_rt_entity(rt_se); +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; +} + +static int rt_se_boosted(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = group_rt_rq(rt_se); + struct task_struct *p; + + if (rt_rq) + return !!rt_rq->rt_nr_boosted; + + p = rt_task_of(rt_se); + return p->prio != p->normal_prio; +} + +#else + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ + if (sysctl_sched_rt_runtime == -1) + return RUNTIME_INF; + + return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ + for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return container_of(rt_rq, struct rq, rt); +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + struct task_struct *p = rt_task_of(rt_se); + struct rq *rq = task_rq(p); + + return &rq->rt; +} + +#define for_each_sched_rt_entity(rt_se) \ + for (; rt_se; rt_se = NULL) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ + return NULL; +} + +static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ +} + +static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ + return rt_rq->rt_throttled; +} +#endif + +static inline int rt_se_prio(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_RT_GROUP_SCHED + struct rt_rq *rt_rq = group_rt_rq(rt_se); + + if (rt_rq) + return rt_rq->highest_prio; +#endif + + return rt_task_of(rt_se)->prio; +} + +static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) +{ + u64 runtime = sched_rt_runtime(rt_rq); + + if (runtime == RUNTIME_INF) + return 0; + + if (rt_rq->rt_throttled) + return rt_rq_throttled(rt_rq); + + if (rt_rq->rt_time > runtime) { + struct rq *rq = rq_of_rt_rq(rt_rq); + + rq->rt_throttled = 1; + rt_rq->rt_throttled = 1; + + if (rt_rq_throttled(rt_rq)) { + sched_rt_rq_dequeue(rt_rq); + return 1; + } + } + + return 0; +} + +static void update_sched_rt_period(struct rq *rq) +{ + struct rt_rq *rt_rq; + u64 period; + + while (rq->clock > rq->rt_period_expire) { + period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC; + rq->rt_period_expire += period; + + for_each_leaf_rt_rq(rt_rq, rq) { + u64 runtime = sched_rt_runtime(rt_rq); + + rt_rq->rt_time -= min(rt_rq->rt_time, runtime); + if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { + rt_rq->rt_throttled = 0; + sched_rt_rq_enqueue(rt_rq); + } + } + + rq->rt_throttled = 0; + } +} + /* * Update the current task's runtime statistics. Skip current tasks that * are not in our scheduling class. @@ -52,6 +242,8 @@ static void update_rt_migration(struct rq *rq) static void update_curr_rt(struct rq *rq) { struct task_struct *curr = rq->curr; + struct sched_rt_entity *rt_se = &curr->rt; + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); u64 delta_exec; if (!task_has_rt_policy(curr)) @@ -66,88 +258,186 @@ static void update_curr_rt(struct rq *rq) curr->se.sum_exec_runtime += delta_exec; curr->se.exec_start = rq->clock; cpuacct_charge(curr, delta_exec); + + rt_rq->rt_time += delta_exec; + if (sched_rt_runtime_exceeded(rt_rq)) + resched_task(curr); } -static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq) +static inline +void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { - WARN_ON(!rt_task(p)); - rq->rt.rt_nr_running++; + WARN_ON(!rt_prio(rt_se_prio(rt_se))); + rt_rq->rt_nr_running++; +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED + if (rt_se_prio(rt_se) < rt_rq->highest_prio) + rt_rq->highest_prio = rt_se_prio(rt_se); +#endif #ifdef CONFIG_SMP - if (p->prio < rq->rt.highest_prio) - rq->rt.highest_prio = p->prio; - if (p->nr_cpus_allowed > 1) + if (rt_se->nr_cpus_allowed > 1) { + struct rq *rq = rq_of_rt_rq(rt_rq); rq->rt.rt_nr_migratory++; + } - update_rt_migration(rq); -#endif /* CONFIG_SMP */ + update_rt_migration(rq_of_rt_rq(rt_rq)); +#endif +#ifdef CONFIG_RT_GROUP_SCHED + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted++; +#endif } -static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq) +static inline +void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { - WARN_ON(!rt_task(p)); - WARN_ON(!rq->rt.rt_nr_running); - rq->rt.rt_nr_running--; -#ifdef CONFIG_SMP - if (rq->rt.rt_nr_running) { + WARN_ON(!rt_prio(rt_se_prio(rt_se))); + WARN_ON(!rt_rq->rt_nr_running); + rt_rq->rt_nr_running--; +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED + if (rt_rq->rt_nr_running) { struct rt_prio_array *array; - WARN_ON(p->prio < rq->rt.highest_prio); - if (p->prio == rq->rt.highest_prio) { + WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); + if (rt_se_prio(rt_se) == rt_rq->highest_prio) { /* recalculate */ - array = &rq->rt.active; - rq->rt.highest_prio = + array = &rt_rq->active; + rt_rq->highest_prio = sched_find_first_bit(array->bitmap); } /* otherwise leave rq->highest prio alone */ } else - rq->rt.highest_prio = MAX_RT_PRIO; - if (p->nr_cpus_allowed > 1) + rt_rq->highest_prio = MAX_RT_PRIO; +#endif +#ifdef CONFIG_SMP + if (rt_se->nr_cpus_allowed > 1) { + struct rq *rq = rq_of_rt_rq(rt_rq); rq->rt.rt_nr_migratory--; + } - update_rt_migration(rq); + update_rt_migration(rq_of_rt_rq(rt_rq)); #endif /* CONFIG_SMP */ +#ifdef CONFIG_RT_GROUP_SCHED + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted--; + + WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); +#endif } -static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) +static void enqueue_rt_entity(struct sched_rt_entity *rt_se) +{ + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; + struct rt_rq *group_rq = group_rt_rq(rt_se); + + if (group_rq && rt_rq_throttled(group_rq)) + return; + + list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); + __set_bit(rt_se_prio(rt_se), array->bitmap); + + inc_rt_tasks(rt_se, rt_rq); +} + +static void dequeue_rt_entity(struct sched_rt_entity *rt_se) { - struct rt_prio_array *array = &rq->rt.active; + struct rt_rq *rt_rq = rt_rq_of_se(rt_se); + struct rt_prio_array *array = &rt_rq->active; - list_add_tail(&p->run_list, array->queue + p->prio); - __set_bit(p->prio, array->bitmap); - inc_cpu_load(rq, p->se.load.weight); + list_del_init(&rt_se->run_list); + if (list_empty(array->queue + rt_se_prio(rt_se))) + __clear_bit(rt_se_prio(rt_se), array->bitmap); - inc_rt_tasks(p, rq); + dec_rt_tasks(rt_se, rt_rq); +} + +/* + * Because the prio of an upper entry depends on the lower + * entries, we must remove entries top - down. + * + * XXX: O(1/2 h^2) because we can only walk up, not down the chain. + * doesn't matter much for now, as h=2 for GROUP_SCHED. + */ +static void dequeue_rt_stack(struct task_struct *p) +{ + struct sched_rt_entity *rt_se, *top_se; + + /* + * dequeue all, top - down. + */ + do { + rt_se = &p->rt; + top_se = NULL; + for_each_sched_rt_entity(rt_se) { + if (on_rt_rq(rt_se)) + top_se = rt_se; + } + if (top_se) + dequeue_rt_entity(top_se); + } while (top_se); } /* * Adding/removing a task to/from a priority array: */ +static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) +{ + struct sched_rt_entity *rt_se = &p->rt; + + if (wakeup) + rt_se->timeout = 0; + + dequeue_rt_stack(p); + + /* + * enqueue everybody, bottom - up. + */ + for_each_sched_rt_entity(rt_se) + enqueue_rt_entity(rt_se); +} + static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) { - struct rt_prio_array *array = &rq->rt.active; + struct sched_rt_entity *rt_se = &p->rt; + struct rt_rq *rt_rq; update_curr_rt(rq); - list_del(&p->run_list); - if (list_empty(array->queue + p->prio)) - __clear_bit(p->prio, array->bitmap); - dec_cpu_load(rq, p->se.load.weight); + dequeue_rt_stack(p); - dec_rt_tasks(p, rq); + /* + * re-enqueue all non-empty rt_rq entities. + */ + for_each_sched_rt_entity(rt_se) { + rt_rq = group_rt_rq(rt_se); + if (rt_rq && rt_rq->rt_nr_running) + enqueue_rt_entity(rt_se); + } } /* * Put task to the end of the run list without the overhead of dequeue * followed by enqueue. */ +static +void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) +{ + struct rt_prio_array *array = &rt_rq->active; + + list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); +} + static void requeue_task_rt(struct rq *rq, struct task_struct *p) { - struct rt_prio_array *array = &rq->rt.active; + struct sched_rt_entity *rt_se = &p->rt; + struct rt_rq *rt_rq; - list_move_tail(&p->run_list, array->queue + p->prio); + for_each_sched_rt_entity(rt_se) { + rt_rq = rt_rq_of_se(rt_se); + requeue_rt_entity(rt_rq, rt_se); + } } -static void -yield_task_rt(struct rq *rq) +static void yield_task_rt(struct rq *rq) { requeue_task_rt(rq, rq->curr); } @@ -177,7 +467,7 @@ static int select_task_rq_rt(struct task_struct *p, int sync) * cold cache anyway. */ if (unlikely(rt_task(rq->curr)) && - (p->nr_cpus_allowed > 1)) { + (p->rt.nr_cpus_allowed > 1)) { int cpu = find_lowest_rq(p); return (cpu == -1) ? task_cpu(p) : cpu; @@ -200,25 +490,48 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) resched_task(rq->curr); } -static struct task_struct *pick_next_task_rt(struct rq *rq) +static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, + struct rt_rq *rt_rq) { - struct rt_prio_array *array = &rq->rt.active; - struct task_struct *next; + struct rt_prio_array *array = &rt_rq->active; + struct sched_rt_entity *next = NULL; struct list_head *queue; int idx; idx = sched_find_first_bit(array->bitmap); - if (idx >= MAX_RT_PRIO) - return NULL; + BUG_ON(idx >= MAX_RT_PRIO); queue = array->queue + idx; - next = list_entry(queue->next, struct task_struct, run_list); - - next->se.exec_start = rq->clock; + next = list_entry(queue->next, struct sched_rt_entity, run_list); return next; } +static struct task_struct *pick_next_task_rt(struct rq *rq) +{ + struct sched_rt_entity *rt_se; + struct task_struct *p; + struct rt_rq *rt_rq; + + rt_rq = &rq->rt; + + if (unlikely(!rt_rq->rt_nr_running)) + return NULL; + + if (rt_rq_throttled(rt_rq)) + return NULL; + + do { + rt_se = pick_next_rt_entity(rq, rt_rq); + BUG_ON(!rt_se); + rt_rq = group_rt_rq(rt_se); + } while (rt_rq); + + p = rt_task_of(rt_se); + p->se.exec_start = rq->clock; + return p; +} + static void put_prev_task_rt(struct rq *rq, struct task_struct *p) { update_curr_rt(rq); @@ -226,6 +539,7 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) } #ifdef CONFIG_SMP + /* Only try algorithms three times */ #define RT_MAX_TRIES 3 @@ -236,7 +550,7 @@ static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && - (p->nr_cpus_allowed > 1)) + (p->rt.nr_cpus_allowed > 1)) return 1; return 0; } @@ -244,54 +558,33 @@ static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) /* Return the second highest RT task, NULL otherwise */ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) { - struct rt_prio_array *array = &rq->rt.active; - struct task_struct *next; - struct list_head *queue; + struct task_struct *next = NULL; + struct sched_rt_entity *rt_se; + struct rt_prio_array *array; + struct rt_rq *rt_rq; int idx; - assert_spin_locked(&rq->lock); - - if (likely(rq->rt.rt_nr_running < 2)) - return NULL; - - idx = sched_find_first_bit(array->bitmap); - if (unlikely(idx >= MAX_RT_PRIO)) { - WARN_ON(1); /* rt_nr_running is bad */ - return NULL; - } - - queue = array->queue + idx; - BUG_ON(list_empty(queue)); - - next = list_entry(queue->next, struct task_struct, run_list); - if (unlikely(pick_rt_task(rq, next, cpu))) - goto out; - - if (queue->next->next != queue) { - /* same prio task */ - next = list_entry(queue->next->next, struct task_struct, - run_list); - if (pick_rt_task(rq, next, cpu)) - goto out; - } - - retry: - /* slower, but more flexible */ - idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); - if (unlikely(idx >= MAX_RT_PRIO)) - return NULL; - - queue = array->queue + idx; - BUG_ON(list_empty(queue)); - - list_for_each_entry(next, queue, run_list) { - if (pick_rt_task(rq, next, cpu)) - goto out; + for_each_leaf_rt_rq(rt_rq, rq) { + array = &rt_rq->active; + idx = sched_find_first_bit(array->bitmap); + next_idx: + if (idx >= MAX_RT_PRIO) + continue; + if (next && next->prio < idx) + continue; + list_for_each_entry(rt_se, array->queue + idx, run_list) { + struct task_struct *p = rt_task_of(rt_se); + if (pick_rt_task(rq, p, cpu)) { + next = p; + break; + } + } + if (!next) { + idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); + goto next_idx; + } } - goto retry; - - out: return next; } @@ -304,7 +597,7 @@ static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask) int count = 0; int cpu; - cpus_and(*lowest_mask, cpu_online_map, task->cpus_allowed); + cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed); /* * Scan each rq for the lowest prio. @@ -496,8 +789,6 @@ static int push_rt_task(struct rq *rq) int ret = 0; int paranoid = RT_MAX_TRIES; - assert_spin_locked(&rq->lock); - if (!rq->rt.overloaded) return 0; @@ -542,8 +833,6 @@ static int push_rt_task(struct rq *rq) goto out; } - assert_spin_locked(&lowest_rq->lock); - deactivate_task(rq, next_task, 0); set_task_cpu(next_task, lowest_rq->cpu); activate_task(lowest_rq, next_task, 0); @@ -578,64 +867,20 @@ static void push_rt_tasks(struct rq *rq) static int pull_rt_task(struct rq *this_rq) { - struct task_struct *next; - struct task_struct *p; + int this_cpu = this_rq->cpu, ret = 0, cpu; + struct task_struct *p, *next; struct rq *src_rq; - cpumask_t *rto_cpumask; - int this_cpu = this_rq->cpu; - int cpu; - int ret = 0; - assert_spin_locked(&this_rq->lock); - - /* - * If cpusets are used, and we have overlapping - * run queue cpusets, then this algorithm may not catch all. - * This is just the price you pay on trying to keep - * dirtying caches down on large SMP machines. - */ - if (likely(!rt_overloaded())) + if (likely(!rt_overloaded(this_rq))) return 0; next = pick_next_task_rt(this_rq); - rto_cpumask = rt_overload(); - - for_each_cpu_mask(cpu, *rto_cpumask) { + for_each_cpu_mask(cpu, this_rq->rd->rto_mask) { if (this_cpu == cpu) continue; src_rq = cpu_rq(cpu); - if (unlikely(src_rq->rt.rt_nr_running <= 1)) { - /* - * It is possible that overlapping cpusets - * will miss clearing a non overloaded runqueue. - * Clear it now. - */ - if (double_lock_balance(this_rq, src_rq)) { - /* unlocked our runqueue lock */ - struct task_struct *old_next = next; - next = pick_next_task_rt(this_rq); - if (next != old_next) - ret = 1; - } - if (likely(src_rq->rt.rt_nr_running <= 1)) - /* - * Small chance that this_rq->curr changed - * but it's really harmless here. - */ - rt_clear_overload(this_rq); - else - /* - * Heh, the src_rq is now overloaded, since - * we already have the src_rq lock, go straight - * to pulling tasks from it. - */ - goto try_pulling; - spin_unlock(&src_rq->lock); - continue; - } - /* * We can potentially drop this_rq's lock in * double_lock_balance, and another CPU could @@ -645,6 +890,7 @@ static int pull_rt_task(struct rq *this_rq) */ if (double_lock_balance(this_rq, src_rq)) { struct task_struct *old_next = next; + next = pick_next_task_rt(this_rq); if (next != old_next) ret = 1; @@ -653,12 +899,9 @@ static int pull_rt_task(struct rq *this_rq) /* * Are there still pullable RT tasks? */ - if (src_rq->rt.rt_nr_running <= 1) { - spin_unlock(&src_rq->lock); - continue; - } + if (src_rq->rt.rt_nr_running <= 1) + goto skip; - try_pulling: p = pick_next_highest_task_rt(src_rq, this_cpu); /* @@ -681,7 +924,7 @@ static int pull_rt_task(struct rq *this_rq) */ if (p->prio < src_rq->curr->prio || (next && next->prio < src_rq->curr->prio)) - goto bail; + goto skip; ret = 1; @@ -693,9 +936,7 @@ static int pull_rt_task(struct rq *this_rq) * case there's an even higher prio task * in another runqueue. (low likelyhood * but possible) - */ - - /* + * * Update next so that we won't pick a task * on another cpu with a priority lower (or equal) * than the one we just picked. @@ -703,23 +944,21 @@ static int pull_rt_task(struct rq *this_rq) next = p; } - bail: + skip: spin_unlock(&src_rq->lock); } return ret; } -static void schedule_balance_rt(struct rq *rq, - struct task_struct *prev) +static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) { /* Try to pull RT tasks here if we lower this rq's prio */ - if (unlikely(rt_task(prev)) && - rq->rt.highest_prio > prev->prio) + if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) pull_rt_task(rq); } -static void schedule_tail_balance_rt(struct rq *rq) +static void post_schedule_rt(struct rq *rq) { /* * If we have more than one rt_task queued, then @@ -736,10 +975,9 @@ static void schedule_tail_balance_rt(struct rq *rq) } -static void wakeup_balance_rt(struct rq *rq, struct task_struct *p) +static void task_wake_up_rt(struct rq *rq, struct task_struct *p) { - if (unlikely(rt_task(p)) && - !task_running(rq, p) && + if (!task_running(rq, p) && (p->prio >= rq->rt.highest_prio) && rq->rt.overloaded) push_rt_tasks(rq); @@ -762,6 +1000,7 @@ move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, /* don't touch RT tasks */ return 0; } + static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) { int weight = cpus_weight(*new_mask); @@ -772,12 +1011,12 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) * Update the migration status of the RQ if we have an RT task * which is running AND changing its weight value. */ - if (p->se.on_rq && (weight != p->nr_cpus_allowed)) { + if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { struct rq *rq = task_rq(p); - if ((p->nr_cpus_allowed <= 1) && (weight > 1)) + if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { rq->rt.rt_nr_migratory++; - else if((p->nr_cpus_allowed > 1) && (weight <= 1)) { + } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { BUG_ON(!rq->rt.rt_nr_migratory); rq->rt.rt_nr_migratory--; } @@ -786,18 +1025,136 @@ static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask) } p->cpus_allowed = *new_mask; - p->nr_cpus_allowed = weight; + p->rt.nr_cpus_allowed = weight; +} + +/* Assumes rq->lock is held */ +static void join_domain_rt(struct rq *rq) +{ + if (rq->rt.overloaded) + rt_set_overload(rq); +} + +/* Assumes rq->lock is held */ +static void leave_domain_rt(struct rq *rq) +{ + if (rq->rt.overloaded) + rt_clear_overload(rq); +} + +/* + * When switch from the rt queue, we bring ourselves to a position + * that we might want to pull RT tasks from other runqueues. + */ +static void switched_from_rt(struct rq *rq, struct task_struct *p, + int running) +{ + /* + * If there are other RT tasks then we will reschedule + * and the scheduling of the other RT tasks will handle + * the balancing. But if we are the last RT task + * we may need to handle the pulling of RT tasks + * now. + */ + if (!rq->rt.rt_nr_running) + pull_rt_task(rq); +} +#endif /* CONFIG_SMP */ + +/* + * When switching a task to RT, we may overload the runqueue + * with RT tasks. In this case we try to push them off to + * other runqueues. + */ +static void switched_to_rt(struct rq *rq, struct task_struct *p, + int running) +{ + int check_resched = 1; + + /* + * If we are already running, then there's nothing + * that needs to be done. But if we are not running + * we may need to preempt the current running task. + * If that current running task is also an RT task + * then see if we can move to another run queue. + */ + if (!running) { +#ifdef CONFIG_SMP + if (rq->rt.overloaded && push_rt_task(rq) && + /* Don't resched if we changed runqueues */ + rq != task_rq(p)) + check_resched = 0; +#endif /* CONFIG_SMP */ + if (check_resched && p->prio < rq->curr->prio) + resched_task(rq->curr); + } } -#else /* CONFIG_SMP */ -# define schedule_tail_balance_rt(rq) do { } while (0) -# define schedule_balance_rt(rq, prev) do { } while (0) -# define wakeup_balance_rt(rq, p) do { } while (0) + +/* + * Priority of the task has changed. This may cause + * us to initiate a push or pull. + */ +static void prio_changed_rt(struct rq *rq, struct task_struct *p, + int oldprio, int running) +{ + if (running) { +#ifdef CONFIG_SMP + /* + * If our priority decreases while running, we + * may need to pull tasks to this runqueue. + */ + if (oldprio < p->prio) + pull_rt_task(rq); + /* + * If there's a higher priority task waiting to run + * then reschedule. Note, the above pull_rt_task + * can release the rq lock and p could migrate. + * Only reschedule if p is still on the same runqueue. + */ + if (p->prio > rq->rt.highest_prio && rq->curr == p) + resched_task(p); +#else + /* For UP simply resched on drop of prio */ + if (oldprio < p->prio) + resched_task(p); #endif /* CONFIG_SMP */ + } else { + /* + * This task is not running, but if it is + * greater than the current running task + * then reschedule. + */ + if (p->prio < rq->curr->prio) + resched_task(rq->curr); + } +} -static void task_tick_rt(struct rq *rq, struct task_struct *p) +static void watchdog(struct rq *rq, struct task_struct *p) +{ + unsigned long soft, hard; + + if (!p->signal) + return; + + soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur; + hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max; + + if (soft != RLIM_INFINITY) { + unsigned long next; + + p->rt.timeout++; + next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); + if (p->rt.timeout > next) + p->it_sched_expires = p->se.sum_exec_runtime; + } +} + +static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) { update_curr_rt(rq); + watchdog(rq, p); + /* * RR tasks need a special form of timeslice management. * FIFO tasks have no timeslices. @@ -805,16 +1162,16 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p) if (p->policy != SCHED_RR) return; - if (--p->time_slice) + if (--p->rt.time_slice) return; - p->time_slice = DEF_TIMESLICE; + p->rt.time_slice = DEF_TIMESLICE; /* * Requeue to the end of queue if we are not the only element * on the queue: */ - if (p->run_list.prev != p->run_list.next) { + if (p->rt.run_list.prev != p->rt.run_list.next) { requeue_task_rt(rq, p); set_tsk_need_resched(p); } @@ -845,8 +1202,17 @@ const struct sched_class rt_sched_class = { .load_balance = load_balance_rt, .move_one_task = move_one_task_rt, .set_cpus_allowed = set_cpus_allowed_rt, + .join_domain = join_domain_rt, + .leave_domain = leave_domain_rt, + .pre_schedule = pre_schedule_rt, + .post_schedule = post_schedule_rt, + .task_wake_up = task_wake_up_rt, + .switched_from = switched_from_rt, #endif .set_curr_task = set_curr_task_rt, .task_tick = task_tick_rt, + + .prio_changed = prio_changed_rt, + .switched_to = switched_to_rt, };