X-Git-Url: http://pilppa.org/gitweb/gitweb.cgi?a=blobdiff_plain;f=lib%2Fcrc32.c;h=49d1c9e3ce3820ccb8dd3d01cec5e11ac39cd7cc;hb=b41ad14c30acf023d09ac064096a4cf41248ce46;hp=065198f98b3f5fc3aebb16ed8b9b81749ec8f741;hpb=17fa53da1239b8712c5cebbd72a74c713b6c2db9;p=linux-2.6-omap-h63xx.git diff --git a/lib/crc32.c b/lib/crc32.c index 065198f98b3..49d1c9e3ce3 100644 --- a/lib/crc32.c +++ b/lib/crc32.c @@ -42,21 +42,22 @@ MODULE_AUTHOR("Matt Domsch "); MODULE_DESCRIPTION("Ethernet CRC32 calculations"); MODULE_LICENSE("GPL"); +/** + * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 + * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for + * other uses, or the previous crc32 value if computing incrementally. + * @p: pointer to buffer over which CRC is run + * @len: length of buffer @p + */ +u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len); + #if CRC_LE_BITS == 1 /* * In fact, the table-based code will work in this case, but it can be * simplified by inlining the table in ?: form. */ -/** - * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 - * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for - * other uses, or the previous crc32 value if computing incrementally. - * @p - pointer to buffer over which CRC is run - * @len - length of buffer @p - * - */ -u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) +u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) { int i; while (len--) { @@ -68,15 +69,7 @@ u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) } #else /* Table-based approach */ -/** - * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 - * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for - * other uses, or the previous crc32 value if computing incrementally. - * @p - pointer to buffer over which CRC is run - * @len - length of buffer @p - * - */ -u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) +u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) { # if CRC_LE_BITS == 8 const u32 *b =(u32 *)p; @@ -145,21 +138,22 @@ u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) } #endif +/** + * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 + * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for + * other uses, or the previous crc32 value if computing incrementally. + * @p: pointer to buffer over which CRC is run + * @len: length of buffer @p + */ +u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len); + #if CRC_BE_BITS == 1 /* * In fact, the table-based code will work in this case, but it can be * simplified by inlining the table in ?: form. */ -/** - * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 - * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for - * other uses, or the previous crc32 value if computing incrementally. - * @p - pointer to buffer over which CRC is run - * @len - length of buffer @p - * - */ -u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) +u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) { int i; while (len--) { @@ -173,15 +167,7 @@ u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) } #else /* Table-based approach */ -/** - * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 - * @crc - seed value for computation. ~0 for Ethernet, sometimes 0 for - * other uses, or the previous crc32 value if computing incrementally. - * @p - pointer to buffer over which CRC is run - * @len - length of buffer @p - * - */ -u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) +u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) { # if CRC_BE_BITS == 8 const u32 *b =(u32 *)p; @@ -249,19 +235,8 @@ u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) } #endif -u32 bitreverse(u32 x) -{ - x = (x >> 16) | (x << 16); - x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00); - x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0); - x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc); - x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa); - return x; -} - EXPORT_SYMBOL(crc32_le); EXPORT_SYMBOL(crc32_be); -EXPORT_SYMBOL(bitreverse); /* * A brief CRC tutorial. @@ -373,7 +348,7 @@ EXPORT_SYMBOL(bitreverse); * but again the multiple of the polynomial to subtract depends only on * the high bits, the high 8 bits in this case. * - * The multile we need in that case is the low 32 bits of a 40-bit + * The multiple we need in that case is the low 32 bits of a 40-bit * value whose high 8 bits are given, and which is a multiple of the * generator polynomial. This is simply the CRC-32 of the given * one-byte message. @@ -410,10 +385,7 @@ buf_dump(char const *prefix, unsigned char const *buf, size_t len) static void bytereverse(unsigned char *buf, size_t len) { while (len--) { - unsigned char x = *buf; - x = (x >> 4) | (x << 4); - x = (x >> 2 & 0x33) | (x << 2 & 0xcc); - x = (x >> 1 & 0x55) | (x << 1 & 0xaa); + unsigned char x = bitrev8(*buf); *buf++ = x; } } @@ -470,11 +442,11 @@ static u32 test_step(u32 init, unsigned char *buf, size_t len) /* Now swap it around for the other test */ bytereverse(buf, len + 4); - init = bitreverse(init); - crc2 = bitreverse(crc1); - if (crc1 != bitreverse(crc2)) + init = bitrev32(init); + crc2 = bitrev32(crc1); + if (crc1 != bitrev32(crc2)) printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", - crc1, crc2, bitreverse(crc2)); + crc1, crc2, bitrev32(crc2)); crc1 = crc32_le(init, buf, len); if (crc1 != crc2) printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,