X-Git-Url: http://pilppa.org/gitweb/gitweb.cgi?a=blobdiff_plain;f=mm%2Fhugetlb.c;h=db861d8b6c2824f460cc177f0d4008fd8850cc3e;hb=a067d9ac39cd207b5a0994c73199a56e7d5a17a3;hp=ae2959bb59cbb785c70ffa99677c6194b1d4910d;hpb=fc8a327db6c46de783b1a4276d846841b9abc24c;p=linux-2.6-omap-h63xx.git diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ae2959bb59c..db861d8b6c2 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -31,7 +31,7 @@ static unsigned int free_huge_pages_node[MAX_NUMNODES]; static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; static gfp_t htlb_alloc_mask = GFP_HIGHUSER; unsigned long hugepages_treat_as_movable; -int hugetlb_dynamic_pool; +unsigned long nr_overcommit_huge_pages; static int hugetlb_next_nid; /* @@ -116,7 +116,9 @@ static void update_and_free_page(struct page *page) static void free_huge_page(struct page *page) { int nid = page_to_nid(page); + struct address_space *mapping; + mapping = (struct address_space *) page_private(page); BUG_ON(page_count(page)); INIT_LIST_HEAD(&page->lru); @@ -129,6 +131,9 @@ static void free_huge_page(struct page *page) enqueue_huge_page(page); } spin_unlock(&hugetlb_lock); + if (mapping) + hugetlb_put_quota(mapping, 1); + set_page_private(page, 0); } /* @@ -222,22 +227,58 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, unsigned long address) { struct page *page; + unsigned int nid; - /* Check if the dynamic pool is enabled */ - if (!hugetlb_dynamic_pool) + /* + * Assume we will successfully allocate the surplus page to + * prevent racing processes from causing the surplus to exceed + * overcommit + * + * This however introduces a different race, where a process B + * tries to grow the static hugepage pool while alloc_pages() is + * called by process A. B will only examine the per-node + * counters in determining if surplus huge pages can be + * converted to normal huge pages in adjust_pool_surplus(). A + * won't be able to increment the per-node counter, until the + * lock is dropped by B, but B doesn't drop hugetlb_lock until + * no more huge pages can be converted from surplus to normal + * state (and doesn't try to convert again). Thus, we have a + * case where a surplus huge page exists, the pool is grown, and + * the surplus huge page still exists after, even though it + * should just have been converted to a normal huge page. This + * does not leak memory, though, as the hugepage will be freed + * once it is out of use. It also does not allow the counters to + * go out of whack in adjust_pool_surplus() as we don't modify + * the node values until we've gotten the hugepage and only the + * per-node value is checked there. + */ + spin_lock(&hugetlb_lock); + if (surplus_huge_pages >= nr_overcommit_huge_pages) { + spin_unlock(&hugetlb_lock); return NULL; + } else { + nr_huge_pages++; + surplus_huge_pages++; + } + spin_unlock(&hugetlb_lock); page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN, HUGETLB_PAGE_ORDER); + + spin_lock(&hugetlb_lock); if (page) { + nid = page_to_nid(page); set_compound_page_dtor(page, free_huge_page); - spin_lock(&hugetlb_lock); - nr_huge_pages++; - nr_huge_pages_node[page_to_nid(page)]++; - surplus_huge_pages++; - surplus_huge_pages_node[page_to_nid(page)]++; - spin_unlock(&hugetlb_lock); + /* + * We incremented the global counters already + */ + nr_huge_pages_node[nid]++; + surplus_huge_pages_node[nid]++; + } else { + nr_huge_pages--; + surplus_huge_pages--; } + spin_unlock(&hugetlb_lock); return page; } @@ -323,7 +364,7 @@ free: * allocated to satisfy the reservation must be explicitly freed if they were * never used. */ -void return_unused_surplus_pages(unsigned long unused_resv_pages) +static void return_unused_surplus_pages(unsigned long unused_resv_pages) { static int nid = -1; struct page *page; @@ -353,35 +394,55 @@ void return_unused_surplus_pages(unsigned long unused_resv_pages) } } -static struct page *alloc_huge_page(struct vm_area_struct *vma, - unsigned long addr) + +static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, + unsigned long addr) { - struct page *page = NULL; - int use_reserved_page = vma->vm_flags & VM_MAYSHARE; + struct page *page; spin_lock(&hugetlb_lock); - if (!use_reserved_page && (free_huge_pages <= resv_huge_pages)) - goto fail; - page = dequeue_huge_page(vma, addr); - if (!page) - goto fail; + spin_unlock(&hugetlb_lock); + return page ? page : ERR_PTR(-VM_FAULT_OOM); +} +static struct page *alloc_huge_page_private(struct vm_area_struct *vma, + unsigned long addr) +{ + struct page *page = NULL; + + if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) + return ERR_PTR(-VM_FAULT_SIGBUS); + + spin_lock(&hugetlb_lock); + if (free_huge_pages > resv_huge_pages) + page = dequeue_huge_page(vma, addr); spin_unlock(&hugetlb_lock); - set_page_refcounted(page); + if (!page) { + page = alloc_buddy_huge_page(vma, addr); + if (!page) { + hugetlb_put_quota(vma->vm_file->f_mapping, 1); + return ERR_PTR(-VM_FAULT_OOM); + } + } return page; +} -fail: - spin_unlock(&hugetlb_lock); +static struct page *alloc_huge_page(struct vm_area_struct *vma, + unsigned long addr) +{ + struct page *page; + struct address_space *mapping = vma->vm_file->f_mapping; - /* - * Private mappings do not use reserved huge pages so the allocation - * may have failed due to an undersized hugetlb pool. Try to grab a - * surplus huge page from the buddy allocator. - */ - if (!use_reserved_page) - page = alloc_buddy_huge_page(vma, addr); + if (vma->vm_flags & VM_MAYSHARE) + page = alloc_huge_page_shared(vma, addr); + else + page = alloc_huge_page_private(vma, addr); + if (!IS_ERR(page)) { + set_page_refcounted(page); + set_page_private(page, (unsigned long) mapping); + } return page; } @@ -461,6 +522,12 @@ static unsigned long set_max_huge_pages(unsigned long count) * Increase the pool size * First take pages out of surplus state. Then make up the * remaining difference by allocating fresh huge pages. + * + * We might race with alloc_buddy_huge_page() here and be unable + * to convert a surplus huge page to a normal huge page. That is + * not critical, though, it just means the overall size of the + * pool might be one hugepage larger than it needs to be, but + * within all the constraints specified by the sysctls. */ spin_lock(&hugetlb_lock); while (surplus_huge_pages && count > persistent_huge_pages) { @@ -489,6 +556,14 @@ static unsigned long set_max_huge_pages(unsigned long count) * to keep enough around to satisfy reservations). Then place * pages into surplus state as needed so the pool will shrink * to the desired size as pages become free. + * + * By placing pages into the surplus state independent of the + * overcommit value, we are allowing the surplus pool size to + * exceed overcommit. There are few sane options here. Since + * alloc_buddy_huge_page() is checking the global counter, + * though, we'll note that we're not allowed to exceed surplus + * and won't grow the pool anywhere else. Not until one of the + * sysctls are changed, or the surplus pages go out of use. */ min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; min_count = max(count, min_count); @@ -624,6 +699,11 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, dst_pte = huge_pte_alloc(dst, addr); if (!dst_pte) goto nomem; + + /* If the pagetables are shared don't copy or take references */ + if (dst_pte == src_pte) + continue; + spin_lock(&dst->page_table_lock); spin_lock(&src->page_table_lock); if (!pte_none(*src_pte)) { @@ -726,9 +806,9 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, page_cache_get(old_page); new_page = alloc_huge_page(vma, address); - if (!new_page) { + if (IS_ERR(new_page)) { page_cache_release(old_page); - return VM_FAULT_OOM; + return -PTR_ERR(new_page); } spin_unlock(&mm->page_table_lock); @@ -772,27 +852,28 @@ retry: size = i_size_read(mapping->host) >> HPAGE_SHIFT; if (idx >= size) goto out; - if (hugetlb_get_quota(mapping)) - goto out; page = alloc_huge_page(vma, address); - if (!page) { - hugetlb_put_quota(mapping); - ret = VM_FAULT_OOM; + if (IS_ERR(page)) { + ret = -PTR_ERR(page); goto out; } clear_huge_page(page, address); if (vma->vm_flags & VM_SHARED) { int err; + struct inode *inode = mapping->host; err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); if (err) { put_page(page); - hugetlb_put_quota(mapping); if (err == -EEXIST) goto retry; goto out; } + + spin_lock(&inode->i_lock); + inode->i_blocks += BLOCKS_PER_HUGEPAGE; + spin_unlock(&inode->i_lock); } else lock_page(page); } @@ -822,7 +903,6 @@ out: backout: spin_unlock(&mm->page_table_lock); - hugetlb_put_quota(mapping); unlock_page(page); put_page(page); goto out; @@ -868,7 +948,8 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, - unsigned long *position, int *length, int i) + unsigned long *position, int *length, int i, + int write) { unsigned long pfn_offset; unsigned long vaddr = *position; @@ -886,11 +967,11 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, */ pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); - if (!pte || pte_none(*pte)) { + if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) { int ret; spin_unlock(&mm->page_table_lock); - ret = hugetlb_fault(mm, vma, vaddr, 0); + ret = hugetlb_fault(mm, vma, vaddr, write); spin_lock(&mm->page_table_lock); if (!(ret & VM_FAULT_ERROR)) continue; @@ -1017,10 +1098,10 @@ static long region_chg(struct list_head *head, long f, long t) /* If we are below the current region then a new region is required. * Subtle, allocate a new region at the position but make it zero - * size such that we can guarentee to record the reservation. */ + * size such that we can guarantee to record the reservation. */ if (&rg->link == head || t < rg->from) { nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); - if (nrg == 0) + if (!nrg) return -ENOMEM; nrg->from = f; nrg->to = f; @@ -1132,9 +1213,13 @@ int hugetlb_reserve_pages(struct inode *inode, long from, long to) if (chg < 0) return chg; + if (hugetlb_get_quota(inode->i_mapping, chg)) + return -ENOSPC; ret = hugetlb_acct_memory(chg); - if (ret < 0) + if (ret < 0) { + hugetlb_put_quota(inode->i_mapping, chg); return ret; + } region_add(&inode->i_mapping->private_list, from, to); return 0; } @@ -1142,5 +1227,11 @@ int hugetlb_reserve_pages(struct inode *inode, long from, long to) void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) { long chg = region_truncate(&inode->i_mapping->private_list, offset); - hugetlb_acct_memory(freed - chg); + + spin_lock(&inode->i_lock); + inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; + spin_unlock(&inode->i_lock); + + hugetlb_put_quota(inode->i_mapping, (chg - freed)); + hugetlb_acct_memory(-(chg - freed)); }