kprobe_saved_msr = kprobe_saved_msr_prev;
 }
 
+void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs)
+{
+       struct kretprobe_instance *ri;
+
+       if ((ri = get_free_rp_inst(rp)) != NULL) {
+               ri->rp = rp;
+               ri->task = current;
+               ri->ret_addr = (kprobe_opcode_t *)regs->link;
+
+               /* Replace the return addr with trampoline addr */
+               regs->link = (unsigned long)kretprobe_trampoline;
+               add_rp_inst(ri);
+       } else {
+               rp->nmissed++;
+       }
+}
+
 static inline int kprobe_handler(struct pt_regs *regs)
 {
        struct kprobe *p;
        return ret;
 }
 
+/*
+ * Function return probe trampoline:
+ *     - init_kprobes() establishes a probepoint here
+ *     - When the probed function returns, this probe
+ *             causes the handlers to fire
+ */
+void kretprobe_trampoline_holder(void)
+{
+       asm volatile(".global kretprobe_trampoline\n"
+                       "kretprobe_trampoline:\n"
+                       "nop\n");
+}
+
+/*
+ * Called when the probe at kretprobe trampoline is hit
+ */
+int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
+{
+        struct kretprobe_instance *ri = NULL;
+        struct hlist_head *head;
+        struct hlist_node *node, *tmp;
+       unsigned long orig_ret_address = 0;
+       unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
+
+        head = kretprobe_inst_table_head(current);
+
+       /*
+        * It is possible to have multiple instances associated with a given
+        * task either because an multiple functions in the call path
+        * have a return probe installed on them, and/or more then one return
+        * return probe was registered for a target function.
+        *
+        * We can handle this because:
+        *     - instances are always inserted at the head of the list
+        *     - when multiple return probes are registered for the same
+         *       function, the first instance's ret_addr will point to the
+        *       real return address, and all the rest will point to
+        *       kretprobe_trampoline
+        */
+       hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
+                if (ri->task != current)
+                       /* another task is sharing our hash bucket */
+                        continue;
+
+               if (ri->rp && ri->rp->handler)
+                       ri->rp->handler(ri, regs);
+
+               orig_ret_address = (unsigned long)ri->ret_addr;
+               recycle_rp_inst(ri);
+
+               if (orig_ret_address != trampoline_address)
+                       /*
+                        * This is the real return address. Any other
+                        * instances associated with this task are for
+                        * other calls deeper on the call stack
+                        */
+                       break;
+       }
+
+       BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
+       regs->nip = orig_ret_address;
+
+       unlock_kprobes();
+
+        /*
+         * By returning a non-zero value, we are telling
+         * kprobe_handler() that we have handled unlocking
+         * and re-enabling preemption.
+         */
+        return 1;
+}
+
 /*
  * Called after single-stepping.  p->addr is the address of the
  * instruction whose first byte has been replaced by the "breakpoint"
        memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
        return 1;
 }
+
+static struct kprobe trampoline_p = {
+       .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
+       .pre_handler = trampoline_probe_handler
+};
+
+int __init arch_init(void)
+{
+       return register_kprobe(&trampoline_p);
+}